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 This paper addresses the control at discrete time of physical complex systems 

multi-inputs multi-outputs with variables parameters. Classified among the 

robust control laws the Internal Model Control (IMC) is adopted in this work 

to ensure the desired performances adjacent to the complexities of the 

system. However, the application of this control strategy requires that these 

different building blocks be open loop stable, which invites us, on the one 

hand, to apply the algebraic approach of Kharitinov for delimiting the 

summits stability domain’s system. On the other case, the Linear Matrix 

Inequalities (LMI) approach is applied to determine the corrector’s stability 

conditions obtained by a specific inversion of the chosen model. It is in this 

sense that we contribute by this work to execute the command by inversion 

the discrete-time model in order to ensure the stability and to maintain the 

performances the stability conditions of required for the double damper 

system with variable parameters. 
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1. INTRODUCTION  

The Complex engineering systems are frequently multivariable [1]. They have more than one 

control input and more than one output. In this work, we limit ourselves to the study of systems having the 

same number of input-outputs and functionally controllable. The objective of the command is to have an 

acceptable behavior of several output variables simultaneously by the manipulation of several inputs. The 

realization of these control laws is based on the modeling of systems.  

The design of a servo control is generally carried out from a model of the real system often called 

nominal model. The latter is only an approximation of reality. It may have various deficiencies among which 

include the modeling uncertainties. It is therefore necessary to optimize the control with respect to the model 

ensuring against its uncertainties [2] and [3]. 

The Internal Model Control (IMC) introduced by Garcia and Morari in the 1970s is a robust control 

structure commonly exploited for its control performance [4]. It’s presented as an alternative to the classic 

closed loop. The IMC [5] command applied simultaneously to the process and its model (in the monovariable 

or multivariable, linear or nonlinear case). Their behavioral gap is used to correct the error on the reference 

signal. The error signal includes the influence of external disturbances and the modeling errors of the 

controlled system. In the IMC structure, the controller is assumed to be the inverse of the model associated to 

the plant. From where the need to study the problems related to this reversal because it is physically 

impossible in most cases (delay problems, not minimum phase or non-relative non-zero degree...).  
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Faced with the industrial necessities and the rapid progress of electronics that have generated 

considerable synthesis in the field of control by computers. It was essential to develop this strategy (IMC) in 

the discrete case and which was the study’s subject of several works [6], [7], [8], and [9]. 

The application of IMC based on a linear modeling of the process. Such a model doesn’t, in many 

cases, fully describe the behavior of the process (neglected dynamics, ignorance or variations in process 

parameters). This leads us to study the case of a chosen model having different transfer matrix of the process. 

The proposed IMC control structure mustn’t only impose the system response but also maintain its behavior 

in the face of parametric uncertainties and external perturbations, despite the imperfections of the model. It is 

at this level that the use of a study strategy to verify stability conditions is required, namely the Kharitinov 

theorem [7], applied for systems with bounded parametric uncertainties.  

In this paper, we intend to check the robustness of the control with respect to parametric 

uncertainties, which may be due to the sensors’s precision, the frictional forces and the unpredictable external 

factors. This work includes the application of the LMI approach [8], in the synthesis phase of the IMC 

regulator obtained by specific inversion of the multivariable model will be used to ensure its stability. 

It’s in this sense, we approach this work by modeling the uncertain parameter systems and 

presentation of Kharitinov’s theorem in the discrete case then we develop the IMC control structure in the 

MIMO case, where we will focus on the establishment of its regulator whose synthesis leads us to apply the 

LMI method. The aim of this work contribute to the regulation by inversion model MIMO [8] and [9] of the 

double damper system with uncertain parameters 

 

 

2. IMC STRUCTURE PROPOSED FOR MIMO LINEAR SYSTEMS 

In the IMC, the synthesis of a corrector that is equal to the direct inverse despite of the physical 

system’s complexities of the transfer matrix in the multivariate case is principal in order to ensure perfect 

Instructions. Yet, directly seversal is virtually impossible particularly. We propose to develop the method of 

realization of an approximate inverse, inspired by the work of [5], in the case of multivariable linear systems. 

 

2.1.  Structure of the proposed IMC regulator 

The structure of the regulator proposed in the case of monovariable systems [5] and [10] is extended 

to multivariate linear systems having the same number of input-outputs [11]. It is presented in Figure 1. 

There are: 

m: the number of system inputs, outputs; 

A1: a square inversion matrix, to choose of dimension (m×m) 

M(z): the multivariate system transfer matrix of dimension (m×m) 

e: the input vector of the dimension regulator (m×1) 

u: the dimension control vector (m×1) 

 

 

 
 

Figure 1. Generalized controller structure C(z) 
 

 

According to the diagram in Figure 1, the controller transfer matrix can be expressed by the next  

equation (1): 
 

-1 1 1 1

m 1 1 1C(z) = ue (I A M(z)) A (A M(z))       (1) 

 

With Im is the identity matrix of dimension m. 

The inversion matrix K1 is an invertible square matrix. It must ensure the regulator’s stability 

discussed later.To simplify our study, we can choose A1 of the form A1, =α× Im with  . For A1 (chosen 

such that α took sufficiently high thus to approximate   
1

1
1A M z


   into   1

M z


. In this case C(z) can be 

considered as an approximate inverse matrix (2) of the transfer matrix M(z) (2): 
 

A1 

M (z) 

e(z) u(z) 
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    1
C z M z



 (2) 

 

2.2.  The stability’s study of the proposed regulator 

The regulator C(z) have the following form (3):  

 

 
  
  

com m 1 1

m 1

t I A M z A
C z

det I A M z





 (3) 

 

The chosen model M (z) must be stable, to garantee the stability of the regulator C(z), the matrix and the 

sampling period T applied must ensure the stability of the regulator C(z). 

 

2.3.  The regulator’s precision 

The matrix of the static gains of the regulator C (1) is defined by the following equation (4):  
 

    
1

m 1 1C 1 I A M 1 A


   (4) 

 

The precision is ensured for (5) 
 

1K 1 :     1
C 1 M 1


 (5) 

 

2.4.  The IMC’s structure proposed 

The IMC structure use explicitly the model as a controller algorithm of the plant that is stable in 

open loop. In this case, the inverse model can obtain the controller (6-9). The IMC structure for multivariable 

discrete-time system is shown in Figure 2. 
 

 

 
 

Figure 2. Internal Model Control design 

 

 

G(z): the process  

y(z): the Output vector of the process 

v(z): the disturbance vector 

ym (z): the model output vector 

r(z): the reference vector 

e(z): the reference vector  

u(z): the control vector  

d(z) : the difference between the outputs of the 

model and the process one 

 

 

        
11 1

m m 1 1 m 1 1u(z) I I A M(z) A G(z) M(z) I A M(z) A r(z) v(z)
 

       (6) 

 

         r vy z y z r z y z v z 
 (7) 

 

               
11 1

r m m 1 1 m 1 1y z G z I I A M z A G z M z I A M z A
 

      (8) 

 

               
11 1

v m m m 1 1 m 1 1y z I G z I I A M z A G z M z I A M z A
 

       (9) 
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If we assume that the process is not subjected to any perturbation and in the case of a perfect modelization, 

then the expression of the output (7) is reduced to the following equation (10): 

 

        
1

m 1 1y z G z I A G z A r z


   (10) 

 

2.5.  The precision 
For the perfect modeling and after the output vector of the process, there can be defined the matrix 

B such that (11):  

 

    
1

m 1 1B G 1 I A G 1 A


   (11) 

 

with G (1) is the matrix of the static gains of the process G. For high values of α, we obtain mB I , which 

allows for a gap asymptotically zero between the vector of outputs and references. 

 

2.6.  The rejection of external disturbances 

The attached output vector of an external disturbance for a perfect modelling is written in the 

following form (12): 

 

      
1

v m m 1 1y z I G z I A G z A


    (12) 

 

Which generates an output vector vy 0  for sufficiently high values of α.  

 

 

3. THE SYSTEM’S PARAMETRIC UNCERTAINTY AND ROBUST CONTROL STUDY 

It’s envisaged to check the robustness of the control with respect to the parametric uncertainties, 

which may be due to the precision of the sensors, the frictional forces and the unpredictable external factors 

which were not taken into account during the modeling of the system. 

 

3.1.  The precision 

In the case of a continuous system, and taking into account the presence of parametric uncertainties 

at the level of the element  ijG p  of the transfer matrix G of the process,  ijG p is written in the following 

form (13): 

 

     
m n

i ' j
ij k k l l

i 0 j 0

G p ( b p ) \ ( a p ), m n
 

      (13) 

 

with k  and '
l  are the parametric uncertainties respectively kb  and la . 

 

3.2.  Stability of the uncertain process/ apply of the Kharitinov’ 

From the expression of the output of the system (14): 

 

 
       

   
1A N p r p D p v p

y p
p p




 
 (14) 

 

   m i
i ii 0

N p b p


   (14.1) 

 

   m ' j
j jj 0

D p a p


   (14.2) 

 

     m ' i
1 i i j ji 0

p A b a p

     
   (14.3) 
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   n ' j
j jj m 1

p a p
 

    (14.4) 

 

From the last equations, the stability of the controlled process depends on the controller structure and the 

value’s gain A1. To ensure the process’s stability we are interested in the determination of the non-localized 

extreme models using the indirect method based on the algebraic Kharitonov’s approach [2], [7] and [10] 

which has nooperating points or predetermined areas of validity. Let consider the case of continuous-time 

process, whose evolution is described by a differential equation of the form (15):  

 
(m)

0 1 0 1 m

(1) (n) (1)

nb y ab (.)y b (.)y ... a (.)u a (.)u ... (.)u       (15) 

 

The symbol (.) represents the set of variables, uncertainties, noise or disturbances affecting the coefficients of 

the process such as (16): 

 

i i i i

i i i i

a max(a );a min(a )

b max(b );b min(b )

 


 
 (16) 

 

This method envisages considering the four extreme models defined by the following transfer functions: 

 

 
2 3

0 1 2 3

1 2 3
0 1 2 3

a a p a p a p ...
H p

b b p b p b p ...

   


   
 (16.1) 

 

 
2 3

0 1 2 3

2 2 3
0 1 2 3

a a p a p a p ...
H p

b b p b p b p ...

   


   
 (16.2) 

 

 
2 3

0 1 2 3

3 2 3
0 1 2 3

a a p a p a p ...
H p

b b p b p b p ...

   


   
 (16.3) 

 

 
2 3

0 1 2 3

4 2 3
0 1 2 3

a a p a p a p ...
H p

b b p b p b p ...

   


   
 (16.4) 

 

 5H p  is often useful to add the average model, denoted as a fifth model in the library [7]. The latter. The 

transfer function of the fifth sample is given by (17): 

 
2 3

5.0 5.1 5.2 5.3
5 2 3

5.0 5.1 5.2 5.3

a a p a p a p ...
H

b b p b p b p ...

   


   
 (17) 

 

Such as:  

 

i i

5.i

a a
a

2


  and  

i i

5.i

b b
b

2


  

 

To the discrete case and to check the domain of stability, we adopt the geometric method [13] [14] and [15] 

which have to calculate the distance (18) between the output vector s,ky of the system and r partial exits i,ky

base model for (18) 

 

i 1,2,...., r : i,k i,k s,kD y y   (18) 
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The normalized distances i,kD  are given by (19): 

 

i,k
i,k r

j,k

j 1

D
D

D





 (19) 

 

The Validities are given by (20):  

 

 

 
2

r
i,k

j,k i,k

j 1

D
t 1 D 1 exp



   
      
        



 

 is a variable parameter set between 0 and 0.99 

 

3.3.  The controller’s stabilization condition: the LMI approach 

In this section we apply the LMI [8], [16], in the synthesis phase of the regulator to check its 

stability in open loop. Consider a discrete-time MIMO system represented by its state space (21): 

 

x(k 1) Ax(k) Bu(k)

y(k) Cx(k)

ì + = +ïï
í
ï =ïî

 (21) 

 

x(k), u(k) and y(k), are respectively state, input and output vectors such that

( ) ( ) ( )n m px k ,u k and y kÎ Î Î¡ ¡ ¡  and matrices A, B and C are known constant matrices. The system is 

represented by equation (21), is asymptotically stable if: 0
k
limx(k) 0, x 0


   . 

The system (21) is stable in the Lyapunov sense [17], if there exists a quadratic Lyapunov function 

represented by equation (22):  

 
TV(k) x (k)Px(k) 0= >  (22) 

 

it comes back to get  i imax A 0   if and only if there exists a symmetric matrix 
TP P 0= > . 

n nA ´Î ¡

is constant. After derivating, the quadratic Lyapunov function V of the system in (21) her form become: 

 

( )( ) ( )( ) ( )( )V x k 0 V x k 1 V x k 0D < Û + - <  (23) 

 

which leads us to:  
 

( )( ) ( )( ) ( )( )V x k V x k 1 V x k 0D = + - <  (24) 

 

If and only if: 
 

 ( )TA PA-P 0<  (25) 

 

A is given matrices of appropriate sizes and P is the variable. The system (21) is stable if there exists a matrix 
nP Î ¡  such that the following LMI (Linear Matrix Inequality) is feasible: ( )TP 0 , A PA-P 0> < (26). In 

this work we extend the study developed in [11], to the discretization of multivariable systems witn uncartain 

parameters. The plant G(s) and the model M(s) are discretized bye the bilinear method .The LMI approach is 

used in this work to guarantee the quadratic stability of the controller C(z).  

 

 

i,k

i,k r
i,k r

i,k
j,k i 1

j 1

0 V 1
t

V Satisfying the conditions of convexity:
V 1

t




 


 





 
(20) 
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4. RESULTS AND ANALYSIS  

In order to validate the proposed internal model control for multivariable uncertain linear systems, 

let us consider the example of the double-damper system of a car. Designing an automotive suspension 

system is an interesting and challenging control problem. The suspension system is designed by 1/4 model 

(one of the four wheels). We used to simplify the problem to a 1D multiple spring-damper system. A diagram 

of this system is shown in Figure 3. 

 

 

 
 

Figure 3. Structure of a double-damper system of a car (1/4 model) 

 

 

The different parameters of the process are presented as follows. 

M1:     body mass                                                             

M2:     suspension mass 

K1:    spring constant of suspension system                      

K2:    spring constant of the wheel and tire                

C1:    damping constant of suspension 

C2:   damping constant of wheel and 

F1, F2 :    external forces   

y1, y2 : system outputs (displacements)                                                                              

kg  

kg  

N/m 

N/m 

N.s/m 

N.s/m 

N 

m 

 

This system is a two inputs two outputs system and it is represented by the following equations 

 

1 1 1 1 1 2 1 1 2

2 2 2 1 1 2 1 1 2 2 2 2 2

M y = F -K (y - y )-C (y - y )

M y = F +K (y - y )-C (y - y )-K  y -C y





 (27) 

 

This system will be modeled by calculating the forces acting on both masses (body and suspension).Then; we 

applied the Newton's law to each mass. The transfer matrix of the outputs of the system is expressed by:  

 

 
F
1

y  y G(s)
1 2 F

2

 
        

 (28) 

 

The system can be arranged in the following state-space model and represented as 

 
2C s +K M s +C s +K  

1 1 1 1 1
DEN DEN

G(s) =
2M s +(C +C )s +K +K C s +K

2 1 2 1 2 1 1
DEN DEN

 
 
 
 
 
 
 

 (29) 

 
4 3DEN = M M s +M (C +C ) +C M )s +(M  (K +K ) +C (C +C )

1 2 1 1 2 1 2 1 1 2 1 1 2
2 2 2+K M -C )s +(C (K +K ) +K (C +C )-2C K )s +K (K +K )-K

1 2 1 1 1 2 1 1 2 1 1 1 1 2 1  
 

The uncertain parameters are: 

M1:   10±50% kg ; M2:   500±50%  kg 
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K1:    2000±50% N/m; K2:    2000±50%  N/m 

C1:    500±50%  N.s/m ; C2:    500±50%  N.s/m 

The reference signals r1, r2 are chosen as vector of steps of amplitude equal to 510 . 

 

4.1.  Case of Imperfect modelling without disturbances 

Let’s consider the imperfect modeling characterized by the absence of disturbances, such that v(z) 

=0 where the model is chosen diffrent to the plant M(z)≠G(z) and the sampling time is equal to T=0.2 s. The 

chosen matrix A1 is equal to A1=50×I. The two outputs y1 and y2 are shown in Figure 4 and Figure 5. 

 

 

  
Figure 4. Output y1 for non disturbed IMC control Figure 5 Output y2 for non disturbed IMC control 

 

 

It is clear that the system outputs reach perfectly the input reference. The IMC applied of the 

double-damp system is maintaining the stability of the chosen discrete model despite the presence of 

uncertainty parameters. 

 

4.2.  Case of disturbed system 

Now let’s consider the presence of a disturbance vector and let’s show its effect in the case of the 

IMC proposed for the double-damp system control. The disturbances are applied at the time T=15s. A1 is 

considered as the same at last method. simulations results are shown in Figure 6 and Figure 7. 

 

 

  
Figure 6. Output y1 of disturbed system Figure 7. Output y2 of disturbed system 

 

 

The simulations show a robust behavior even on the presence of disturbances affecting directly the 

process outputs. We conclude that the proposed IMC for the multivariable uncertain double-damp system 

rejects disturbances and ensure again its robustness. The LMI approach is used in this work to guarantee the 

quadratic stability of the controller. LMIs has been performed in MATLAB environment. Solving the LMI in 

equation (25), we obtain a matrix P of dimension (24×24), this matrix ensures the stability of our system for 

50<A1<700.  

Then we adopt the algebraic Kharitonov’s approach, which is based on the calculation of the 

distance (18) between the output vector y of the system and r partial exits 
i

y base model.The Table (1) 

presents the different values between the outputs of the process G(z) and the model ones taken during the 

time of simulation. 
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Table 1. The Performance of the Kharitinov’s method for verifing stability 
Variable t=0s t=5s          t =10s          t =15s        t =20s       t =25s       t = 30s        t =35s             t =40s 

y-y1 0.22 0.086         0.04           0.034          0.028         0.004        0.0034        0.0013            0.0001 

 

y-y2 0.5 0.1             0.3             0.43            0.31           0.04          0.054          0.014              0.0021 

 

y-y3 

 

0.44 
 

0.38           0.321         0.33            0.24           0.071        0.002          0.0017            0.001 

y-y4 0.399 0.291         0.21           0.351          0.314         0.004        0.003          0.0015            0.002 

 

 

5. CONCLUSION  

In this work, a new approach for IMC of linear multivariable uncertain systems is developed in 

discrete-time. The realized research is an extension of the IMC concept defined for discrete multivariable 

uncertain systems. An application of a double-damp system with uncertain parameters is proposed to test the 

effectiveness of the control despite the presence of disturbances and uncertainties. The chosen system is a 

two-input-two-output linear system. The simulation results show the proposed approach capability to 

preserve the system stability and performances on preserving the rejection of the external disturbances. 
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