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 In this paper, a variable structure control law is proposed for discrete time 

sliding mode control so as to reduce both reaching time and quasi sliding 

mode band reduction. This new law is composed of two different sliding 

variable dynamics; one to achieve fast reaching and the other to counter its 

effect on widening the quasi sliding mode band. This is accomplished by 

introducing a boundary layer around the sliding surface about which the 

transformation of the sliding variable dynamics takes place. This provides the 

flexibility to choose the initial dynamics in such a way as to speed up the 

reaching phase and then at the boundary transform this dynamics to one that 

reduces the quasi sliding mode band. Thus, the law effectively coalesces the 

advantageous traits of hitherto proposed reaching laws that succeed in either 

the reduction of reaching phase or the elimination of quasi sliding mode 

band. The effectiveness of the proposed reaching law is validated through 

simulations. 
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1. INTRODUCTION 

Sliding Mode Control (SMC), since its inception in Russia in the late 1950s has acquired wide 

appeal in the area of control engineering [1-3], by virtue of the numerous advantages it offers, the most 

important of which is the invariance to external disturbances and system uncertainties. There are several 

approaches to the design of SMC among which the Reaching Law (RL) approach is considered in this paper. 

In RL based SMC, the desired evolution of the sliding variable is defined beforehand so that finite reaching 

of the sliding motion is ensured. This approach is advantageous in that it can prescribe the reaching dynamics 

i.e. the manner in which the system trajectory moves to the sliding surface. The reaching law approach was 

first proposed for continuous systems [2, 3], but with the widespread use of computers in control techniques, 

it was only natural that SMC be extended to discrete time systems [4]. The Reaching law approach for 

Discrete time Sliding Mode Control (DSMC) was first proposed by Gao, Wang and Homaifa [5]. In this 

paper, this RL is referred to as Gao’s Discrete Reaching Law (GDRL). Taking advantage of the flexibility 

and merits offered by the RL approach, several authors have henceforth put forward modified reaching laws 

[7-11] that help improve the various attributes of DSMC such as reduction of chattering for reduced Quasi 

Sliding Mode Band (QSMB), better reaching dynamics, improved settling time etc. While the QSMB width 

may be decreased by using smaller controller gains, this will in turn prolong the reaching phase. In a similar 

manner, the use of a higher rate of change of the sliding variable to reduce the reaching time will reflect as 

increased width of QSMB. This dilemma as stated in [11] was attempted to be solved by incorporating an 

exponential term in the conventional reaching law proposed by Gao et al. [5]. While this modification [11] 
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did result in faster reaching, the width of the QSMB remained the same as that of Gao’s reaching law in [5] 

because the RL structure in [11] transforms into Gao’s RL as the sliding variable approaches zero. In this 

paper, the above dilemma is solved by combining the faster reaching provided by the RL in [11] and the 

QSMB reduction offered by the RL proposed by Bartoszewicz et al. in [10] in such a way that there occurs a 

change in the structure of the system during the reaching phase. Initially, for large values of the sliding 

variable, the RL with the exponential term is ideal (for fast reaching) and for smaller values, the asymptotic 

convergence of RL in [10] is most suitable (for reduced QSMB). The proposed RL is so structured that each 

of the above laws comes in to play depending on the value of the sliding variable. This is accomplished by 

the concept of a boundary layer around the sliding surface where the RL undergoes a transformation from the 

fast paced reaching provided by the RL in [11] (referred as Novel Exponential Reaching Law (NERL)) to an 

asymptotic convergence of the sliding variable to the sliding surface as per [10] (being referred to as 

Bartoszewicz Latosi´nski Discrete-time Reaching Law (BLDRL) in this paper). 

This paper is structured as follows. In section 2, a brief review of NERL and BLDRL is given and 

based on these, the proposed RL is formulated for nominal and perturbed systems. In section 3, the 

simulation results obtained for the proposed RL law are given together with a comparison between the 

various reaching laws, viz., GDRL, NERL and BLDRL. Concluding remarks are given in Section 4. 

 

 

2. PROPOSED CONTROL STRATEGY 

2.1. Brief review of NERL and BLDRL 

Consider the following discrete linear system: 

 

 (   )    ( )    ( ) (1) 

 

where   is an     matrix,  ( ) is the state vector,   is the input vector and  ( ) is the scalar control 

signal. The sliding surface is defined as: 

 

 ( )      ( )    (2) 

 

where  ( )   ( )    ( ) is the error vector and    is the sliding coefficient vector that is so designed to 

yield stable dynamics when the system is in Sliding Mode Motion (SMM).   ( ) is the desired value of the 

state vector.  

The seminal RL proposed by Gao et al. in 1995 [5] takes the following form: 

 

 (   )  (    ) ( )       , ( )- (3) 

 

where   is the proportional term,   is the constant term with         and     and   is the sampling 

period. While this RL remains popular to this date, this law causes the system representative point (tip of the 

system trajectory and/or sliding variable) to cross the sliding surface at some finite time and then move in a 

perpetually zigzag manner around the surface. This motion, in contrast to the ideal SMM, was coined as the 

Quasi Sliding Mode (QSM) motion around the sliding surface [5]. Due to the QSM, more control effort is 

expended in the sliding mode. Hence, it is desirable to keep the width of the QSMB as minimum as possible. 

The width of QSMB is directly affected by the constant term   in (3) and it can be reduced by the use of a 

smaller value of  . However, this will in turn reduce the rate of change of the sliding variable leading to 

increased reaching phase. Since it is the SMM that offers robustness to system performance, increased 

reaching phase is undesirable. On the other hand, if the term  , that affects the reaching time, is increased, 

the reaching time is reduced, but causes an increase in the width of the QSMB due to the increased rate of 

change of the sliding variable near the sliding surface. In order to solve this dilemma, several new RLs have 

been proposed that use controller gains that adapt to the variations in the sliding variable. NERL, proposed 

by Ma et al. strives to solve this dilemma by incorporating an exponential term [11] in (3). The NERL for a 

nominal system is defined as: 

 

 (   )  (    ) ( ) ( )  
 

 ( )
   ( ( )) (4) 

 

where 

 

 ( )     (    ) 
  | ( )|  (5) 
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{
                      
                        

 (6) 

 

From (5), it is seen that the value of  ( ) is    for large values of the sliding variable, i.e. when the system 

states are far away from the sliding surface and it takes the value one when systems states are closer to the 

sliding surface. Since    is a positive value less than one, the first term becomes (      )   which is lesser 

than (      ) and the second term becomes 
 

  
 which is higher than  . This causes a faster rate of change of 

the sliding variable at the beginning as compared to (3) ( =1 sec is assumed). But, as the system 

representative points (RP) move closer to the sliding surface the reaching law (4) transforms in to GDRL as 

in (3). Thus, the width of the QSMB is bound to remain the same as that of GDRL, but the reaching time is 

reduced. 

BLDRL in [10] offered reduced QSMB owing to a bounded rate of convergence of the sliding 

variable to zero. This RL acts as a compromise between the switching type RLs, where sliding variable 

crosses the sliding surface in each discrete instant in the QSM, and the non switching type RLs that retain the 

sliding variable in a specified band around the sliding surface [10]. Whether the sliding variable crosses the 

sliding surface or is retained in a band near the surface, the distance of the system RP from the sliding surface 

decreases with each step when the system is in QSM, making it the ideal reaching law near    . The 

BLDRL is given by: 

 

 (   )    , ( )-( ( )      , ( )-) (7) 

 

where 

 

  , ( )-       * , ( )  -
  +  

 

  is a positive real number and    . The value of    for large values of  ( ) is one, thereby causing the 

the sliding variable to decrease at an almost constant rate,  . But, closer to the sliding surface the value of    

decreases and tends to zero asymptotically. As a result, around the sliding surface, if  ( ) reaches exactly on 

the surface  ( )   , it will remain there from then on. Otherwise, the value of  ( ) keeps decreasing with 

each step. Thus, the control effort during sliding mode is greatly reduced as compared to NERL and GDRL. 

However, the reaching time is more than that provided by the modified constant term in (4). The proposed 

RL successfully utilizes the aforementioned merits of both NERL and BLDRL. 

 

2.2. Proposed reaching law for nominal systems 

Keeping in consideration both reduced reaching time and reduced QSMB width, it is desirable that 

NERL be used for large values of the sliding variable (initial phase of reaching), thereby providing fast rate 

of change of sliding variable at the beginning and BLDRL be used as the system RP inches closer to the 

sliding surface, resulting in smaller QSMB. This is accomplished by introducing a boundary layer around the 

sliding surface, say  ( )    , where   is a small positive value lesser than the initial value of the sliding 

variable. For values of | ( )|   , the controller evolving from NERL is employed and for | ( )|   , 

BLDRL's controller is used. Hence, it is essential to have a RL that will assume the form in (4) until  ( )  
   and beyond that it should transform to (7). This is achieved by the proposed RL with the structure: 

 

 (   )    , ( )-( ( )      , ( )-)  , ( )-

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   , ( )- 

(8) 

 

where 

 

  , ( )-     (   , ( )-(   , ( )   -     , ( )   -)) 

  , ( )-     (   , ( )-(   , ( )   -     , ( )   -)) 
 

 

From the above expressions, it can be seen that for values of | ( )|     ,    is zero and    is one and (8) 

transforms into NERL given by (4). In a similar manner, for | ( )|    ,     becomes one and    is equal to 

zero, thus causing (8) to metamorphose into (7). Thus, initially for large values of sliding variable, faster rate 

of change is obtained and near the sliding surface, a constant rate of change followed by an asymptotic 

convergence is achieved. This results in much faster reaching as compared to GDRL and BLDRL. The 

reaching time is comparable to that of NERL, but the QSMB is reduced to a great extent which is not 
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possible with NERL. In short, it combines the benefits of NERL and BLDRL, giving a reaching law that can 

successfully tackle the reaching time/QSMB dilemma mentioned earlier. 

 

2.2.1. Reachability of the proposed reaching law 

Assume that  ( )    with  ( )   . From (8), we can write: 

 

 (   )  (    ) ( ) ( )  
 

 ( )
 (9) 

 

which can be rewritten as: 

 

 (   )   ( )      ( ) ( )  
 

 ( )
 (10) 

 

We have    ,     and  ( )   . Thus, the RHS of (10) is negative whereby with  ( )   , it follows 

that  (   )   ( ). Similarly, it can be seen that for  ( )    and  ( )    , the sliding variable value 

decreases in each discrete step. It can thus be concluded that outside the boundary layer,  (   )   ( ). 
Once the sliding variable enters the boundary layer,  ( )    and  ( )    or  ( )    and  ( )    . Let 

us first consider the case when  ( )    and  ( )   . From (8), 

 

 (   )    , ( )-( ( )   ) (11) 

 

The sliding surface is crossed when  (   )   . Thus, 

 

  , ( )-( ( )   )    (12) 

 

Since   , ( )- is always positive, 

 

 ( )      (13) 

 

From (13), it can be concluded that the sliding surface will be crossed when  ( ) becomes less than  . In a 

similar manner, this can be proved for the case when  ( )   . In general, we can write if | ( )|   , then 

   , (   )-        , (   )-. On the other hand, if | ( )|   ,  (   )     ( ). Thus, we can 

conclude that the value of the sliding variable keeps decreasing outside the boundary as well as inside the 

boundary. Once the value of  ( ) becomes less than  , it crosses the sliding surface. This is ensured due to 

the steady decrease in the value of sliding variable because of which at some point  ( )   . Thus, it is 

ensured that the sliding surface is reached in finite time. 

 

2.2.2. Quasi-sliding mode of the proposed reaching law 

Once the sliding variable reaches the vicinity of the sliding surface  ( )   , the function     

begins to drop. As a result, in the quasi sliding mode band, instead of maintaining the same value as is seen 

with NERL and GDRL, the sliding variable value drops in each subsequent discrete instant. 

 

 (   )    , ( )-( ( )   ) (14) 

 

where      in the near vicinity of  ( )   . Whether the sliding variable switches in every instant or not, 

it is assured that the value of  ( ) reduces in each sampling time in QSM. Thus, it reduces the width of the 

QSMB to a negligibly small value. 

 

2.3. Proposed reaching law for perturbed systems 

Consider the following perturbed system: 

 

 (   )    ( )    ( )   ( )  (15) 

 

where   is the state vector,   is an     matrix and   is the input vector.  ( ) is the perturbation term, 

whose upper and lower bounds are assumed to be known. In order to satisfy the matching conditions, we can 

write     ̃ [5]. Equation (9) becomes 
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 (   )    ( )   ( ( )   ̃( )) (16) 

 

Now, assuming the control law to be generated from the same RL (8) for the system (16), we obtain  ( ) as: 

 

 ( )  (   )  {  , ( )-( ( )      , ( )-)  ( ( ))

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   ( ( ))   

   ( )

  ̃( )} 

(17) 

 

Since  ̃( ) is not usually known, this term has to be adequately dealt with. This term is hence replaced by 

another term   ( ) in such a way so that the reaching conditions are still satisfied [5]. 

 

 ( )  (   )  {  , ( )-( ( )      , ( )-)  ( ( ))

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   ( ( ))   

   ( )

   ( )} 

(18) 

 

With the control law as in (18), RL in (8) becomes: 

 

 (   )    , ( )-( ( )      , ( )-)  ( ( ))

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   ( ( ))

    ( ̃( )    ) 

(19) 

 

Let    ( ̃( )    )   ̃    . Rewriting (19), 

 

 (   )    , ( )-( ( )      , ( )-)  ( ( ))

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   ( ( ))

    ( ̃    ) 

(20) 

 

Since, it is assumed the upper and lower bounds of  ( ) are known, it follows that  ̃ is also bounded by 

known values, say    and   . In (29),    should be so chosen that the reaching conditions are satisfied [5]. 

Therefore,    is taken as: 

 

           , ( )-  

 

where    
     

 
 and    

     

 
. The proposed reaching law for perturbed systems can hence be 

formulated as: 

 

 (   )    , ( )-( ( )      , ( )-)  ( ( ))

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   ( ( ))   ̃( )

         , ( )- 

(21) 

 

In the next section, the proposed RLs as in (8) and (19) are simulated on the same system on which 

Bartosewicz et al. verified BLDRL [10]. 
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3. RESULTS AND ANALYSIS  

3.1. Nominal systems 

The system as in [10] is being considered for simulating the performance when the system is 

controlled by the proposed RLs. The matrices/vectors for the system (1) and the initial states as in [10] are 

given by: 

 

  [
     
   
      

]  

 

   ,   - and    ,     -.  The initial value of states are also taken as in [10], with   
  

,      - and   
  ,   -. 

The control input,  ( ) for system (1) with the sliding surface (2) using GDRL (3) can be derived as 

[5]: 

 

 ( )  (   )  {(    ) ( ) ( )       ( ( ))      ( )} (22) 

 

With NERL (4)  ( ) turns out to be [11]: 

 

 ( )  (   )  {(    ) ( ) ( )  
 

 ( )
   ( ( ))      ( )} (23) 

 

and with BLDRL (7),  ( ) is [10]: 

 

 ( )  (   )  *  , ( )-( ( )      , ( )-)   
   ( )+ (24) 

 

With the proposed RL in (8), the control input  ( ) is derived as: 

 

 ( )  (   )  {  , ( )-( ( )      , ( )-)  ( ( ))

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   ( ( ))

     ( )} 

(25) 

 

The values of the various parameters are taken as   = 0.2,   = 0.6 ,    = 0.6,   = 5,   = 10,   = 1 and   = 2 . 

The simulation results (using same values for the common RL parameters) are shown in Figures 1-8. Figure 1 

depicts the sliding variable of the proposed RL and Figure 2 gives the sliding variables for NERL, BLDRL 

and GDRL. Figure 4(a) and Figure 6(a) highlight the QSMB in GDRL and NERL respectively and  

Figure 4(b) and Figure 6(b) reveal the negligible QSMB of BLDRL and the proposed RL. From these 

figures, it is evident that the proposed RL achieves the best reaching while it embraces the negligible QSMB 

of BLDRL. The zoomed views are incorporated in Figures 4 and 6 to highlight the QSMB width of the four 

RLs. Comparing the control inputs shown in Figure 5(a) and 5(b), it is noted that the proposed RL achieves 

faster reaching with an input comparable to that of NERL. Any attempt to increase the reaching speed of 

GDRL by providing more control effort (through its RL parameters) will lead to wider QSMB and making 

this effort on BLDRL will not yield positive results in terms of reaching time because its inherent structure 

focuses on QSMB reduction preventing fast reaching. Table 1 has the figure of merits in terms of width of 

QSMB and performance speed. With NERL, the sliding variable enters QSM at 7 sec (see Figure 6(a)), 

where the QSM is defined as [5]: 

 

* |    ( )    +  

 

In the proposed reaching law, the system RP reaches the sliding surface ( ( )   ) at 5 sec, which 

is then retained as in BLDRL. However, in BLDRL, the reaching phase is longer. The faster reaching of the 

proposed RL and NERL demands greater control effort in the reaching phase.  However, in NERL, due to the 

larger QSMB, excessive control effort is dissipated in the sliding phase. The proposed RL emulates BLDRL's 

trait of retaining the QSMB, thus ensuring that unnecessary dissipation of control energy in sliding phase is 

avoided. Figures 7 and 8 depict the dynamics of the states of the system. It can be observed that the proposed 
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reaching law allows fast settling of the states as compared to other laws. The proposed RL returns a settling 

time of 6 sec as compared to 8 sec with NERL. 

 

 

 
 

Figure 1. Sliding variable with the Proposed RL 

 
 

Figure 2. Sliding variables with different RLs 

 

 

 
(a) 

 
(b) 

 

Figure 3. Control input for (a) GDRL and (b) BLDRL 

 

 

 
(a) 

 
(b) 

 

Figure 4. Sliding variable for (a) GDRL and (b) BLDRL 
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(a) 

 
(b) 

 

Figure 5. Control input for (a) NERL and (b) proposed RL 

 

 

 
(a) 

 
(b) 

 

Figure 6. Sliding variable for (a) NERL and (b) proposed RL 

 

 

 
(a) 

 
(b) 

 

Figure 7. States of the system for (a) GDRL and (b) BLDRL 
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(a) 

 
(b) 

 

Figure 8. States of the system for (a) NERL and (b) proposed RL 

 

 

Table 1. Figures of merit with nominal system 
Comparison of RLs Proposed NERL BLDRL GDRL 

Reaching time 5 7 60 14 

Width of QSMB na 0.6 na 0.6 

Settling time 6 8 61 15 

 

 

3.2. Perturbed systems 

From (15), (2) and (21), the control law for perturbed systems is derived as: 

 

 ( )  (   )  {  , ( )-( ( )      , ( )-)  ( ( ))

 ((    ) ( ) ( )  
 

 ( )
   , ( )-)   ( ( ))   

   ( )

         , ( )-} 

(26) 

 

For the system (15),  ,  ,   ,  ( ), and    are taken to be the same as in the above subsection.     sec. 

The perturbation term is taken as  ( )     (  ),    - (as in [10]). Thus,      and       .  The control 

law proposed by Gao et al. is defined as [5]: 

 

 ( )  (   )  [(    ) ( ) ( )       ( ( ))      ( )    
      ( ( ))] 

(27) 

 

The simulation results of the law (26) and GDRL for perturbed systems (27) are shown in Figures 9-12. 

It is observed, as in the case of nominal systems that the proposed reaching law has much faster 

reaching and less width of QSMB. The reaching time with the proposed law is 7 sec and that with GDRL is 

13 sec. It is also observed that the sliding variable is contained in a much smaller band with the proposed RL 

as compared to GDRL. A zoomed in view of the QMSB with the two reaching laws is shown in Figure 12. 

Table 2 gives the performance traits of the two RLs. 

 

 

Table 2. Figures of merit with perturbed system 
Comparison of RLs Proposed GDRL 

Reaching time 7 13 

Width of QSMB 0.8 2 

Settling time 8 14 
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(a) 

 
(b) 

 

Figure 9. (a) Control input and (b) sliding variable of the proposed RL 

 

 

 
(a) 

 
(b) 

 

Figure 10. (a) Control input and (b) sliding variable for GDRL 

 

 

 
(a) 

 
(b) 

 

Figure 11. States of the system for the (a) proposed RL and (b) GDRL 
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(a) 

 
(b) 

 

Figure 12. Zoomed in view of the sliding variable - QSMB (a) proposed RL and (b) GDRL 

 

 

4. CONCLUSION  

A new structure for Reaching Law (RL) based sliding mode control has been presented in this 

paper. This RL structure operates in the true essence of variable structure control system in that it switches 

the system structure by transforming one RL into another, encompassing the desirable traits of each structure 

in the form of reduced reaching time and smaller width of Quasi Sliding Mode Band (QSMB). The merits of 

the proposed RL are substantiated through simulation and are compared to other existing reaching laws. The 

proposed RL is then modified for application to perturbed systems. Its performance traits are also verified 

through simulation and are compared with Gao’s reaching law for perturbed systems. The proposed RL 

structure is seen to fetch reduced reaching time and minimal QSMB. 
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