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 Robots have been used in many applications in the past few decades. 

Moreover, due to high nonlinearity behavior of these systems, an optimal and 

robust control design approaches have been considered to stabilize and 

improve their performance and robustness. The uncertainties of the time 

delay on the output states of the mobile robot system have a significant 

influence on the system nominal performance. As a result, the work becomes 

here to address the influence of these uncertainties on the robot system 

performance. In order to achieve this objective, the nonlinear controller via 

sliding mode control (SMC) is designed by selecting a suitable sliding 

surface dynamics in which the considered robot displacement and tilt angle 

are sliding on. The lyapunov function is considered here to accomplish  

the design of the sliding control signals for robot stabilization. Furthermore, 

the stability of the considered system is guaranteed due to convergence of  

the lyapunov functions into zero when the state trajectories tend to desired 

set points. In addition, we consider the trajectory tracking and stabilization of 

TWBMR system using parallel double loop PID controllers whose controllers 

gains are tuning via linear quadratic regulator (LQR) approach.  Finally, to 

demonstrate the effectiveness of SMC and PID-LQR design methods,  

the comparison is carried out when the nominal and uncertain conditions. 
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1. INTRODUCTION 

The two-wheeled model has attracted much attention in the field of control theory because they 

are nonlinear and under actuated with inherent unstable dynamics. Wheeled inverted pendulum is one kind of 

inverted pendulum system, and it names two-wheeled self-balanced mobile robot (TWBMR). The TWBMR 

use clean energy as a power and has advantage of small capacity, feasible rotation, which is used widely in 

many fields, such as traffic, survey, rescue and entertainment [1, 2]. TWBMR is set up by cart, meanwhile, 

each wheel of cart is connected with an output shaft of a motor. Moreover, the motors drive the movement 

while maintaining self-balancing of the body of the system in the two-dimensions [3, 4]. SMC has many 

applications in robotics [5]. In particular, this control algorithm has been used for tracking control of 

unmanned surface vessels in simulated rough seas with high degree of success [6, 7]. Also, the LQR 

approach has been used for the design of optimal PID controllers where the controller gains are formulated as 

the optimal state-feedback gains, corresponding to the desired response.The time delay is a significant 

problem that have been interested in many previous researches as in [8, 9]. By going in the same direction of 

the previous literatures for addressing the influence of time delay on the system performance, the work in this 
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paper is considered here to avoid the effect of time delays on the TWBMR tracking performance is presented. 

This paper can be arranged as follows. In section two, the nonlinear and linear dynamic model of TWBMR is 

presented, in section three, the SMC design is presented, in section four PID based LQR is designed and 

shown, the simulation results were provided in section five and finally the conclusion is included in section six. 

 

 

2. MATHEMATICAL MODEL OF TWBMR 

The TWBMR is restricted to a plane, and it is assumed that the wheels always stay in contact  

with the ground and that there is no slip at the wheel’s contact point. Therefore, there is no movement in  

the z axis. The set of equations of TWBMR has been developed by [6] to describe the system by  

the following nonlinear equations: 
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With x represents the car displacement,   is the pendulium angular displacement,    is the body mass,    is 

the body inertia,    denotes to the back EMF,    is the wheel mass,    is the wheel inertia,   is the motor 

torque constant, R  is the resistance, L is the distance from center of gravity (COG), r is the wheel radius, 

   is the applied voltage,   is the gravity,   is disturbance force and Z is the position of applied disturbance.  

For more details about the derivation of this model, the reader refers to [10]. These equations are then used to 

make a simulink model of the robot as shown in Figure 1. The linearization process is done to obtain the 

linearized model of the considered system for optimized PID control design. Accordingly, the state space 

model is derived in order to carry out the design of the LQR controller. 
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The mathematical model was programmed in Matlab for both the linearized and nonlinear model to 

verify how the systems behave and to design controllers for stabilizing the system. The obtained results 

shown in Figure 2 indicate the instability problem. This problem will be solved in the next sections. 

 

 

 
 

Figure 1. Simulink model of the TWBMR 
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Figure 2.  Position and angle of the nonlinear and linear system 

 

 

3. SLIDING MODE CONTROL MODEL  

The following general form gives the nonlinear system: 

 

          (5) 

 

where n denotes to the derivative order, f(x) represents the nonlinear functions with x is the vector of states to 

be controlled and   is the control signal generated by any of the considered controller. Generally speaking, 

the main control problem here is how to force the state vector x to follows the desired vector state    under 

the influence of the model uncertainties and noise disturbance on the nonlinear system described by     . 

Where, the uncertainties can be considered as a system time delay on the system feedback states. The sliding 

mode controller generates two control signals, one is the hitting control signal which forces the system state 

to hit the sliding surface on which the desired state       is located and the equivalent control signal to slides 

the system state on the sliding surface until the desired state       is reached as shown in Figure 3. 
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Figure 3. Sliding surface control signals 

 

 

3.1.  Displacement sliding mode controller 

To force the trajectory of robot displacement x into the sliding surface  , let the sliding surface 
       is defined by the following [11]: 
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where,     is an adjustable positive parameter and    is the error difference between the desired set point and 

the actual output displacement signal i.e 

 

        (7) 

 

The sliding surface in (6) can be rewritten in the following form: 

 

    ̇         (8) 

 

The rate of change of the sliding surface   ̇    will be 
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For the general nonlinear system model in (5) with derivative order       can be rewritten as 
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   is the sliding control signal. Now in order to design this signal, the following Lyapunov function is 

considered [12, 13] 
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According to the Lyapunov stability concept, the squared distance to the sliding surface can be measured by 

the square of    and to be decreased along all the system trajectories. Thereafter the following rate of change 

of the Lyapunov function is taken: 
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With    is a small positive number near to zero. From (9) and (10), the following in-equality is obtained 
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By using the following equivalent in-equality relations [12] 
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The in equality in (14) with (9) and (10), can be manipulated to get 

 

[  (    )      ̈     ̇ ]             (15) 

 

By inserting the model uncertainty    (    ) to get  
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Where  ̂(    ) is the estimate of  (    ), the in-equality given by (15) will be modified into 
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By inserting the upper bound     of the uncertainty    (    ) to get 
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Then the in in-equality (17) can be rewritten as 
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From (20), the following sliding control signal is obtained 
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where,      is the equivalent control signal given by 
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The hitting control signal is represented by switching discontinuous term              with the sign function 

expressed by 
 

                  ,                       and                       
 

3.2.  Rotation sliding mode controller 

Similarly, to force the trajectory of robot angle rotation     into the sliding surface, assume the sliding 

surface        is defined by 
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The derivative of the sliding surface  ̇  is given by 
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And due to limited space in this article, the same procedure taken in the previous design of displacement 

sliding mode controller are considered here with the following substitutions: 
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And with Lyapunov function given by 

 

           
  (27) 

 

Similarly, the rate of change of Lyapunov function introduces the following in-equality: 
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Accordingly, the sliding control signals for robot rotation control have been derived to get 
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Where the equivalent control signal     
 is represented by 
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And the hitting control signal is given by            with 
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3.3.  Lyapunove stability analysis 

The design of the nonlinear controllers based on the Lyapunov design concept achieves the stability 

guarantee for TWBMR system model considered here. As known from the previous design of sliding mode 

controller, the sliding control signals for controlling the TWBMR displacement and tilt angle have been 

developed respectively based on the concept of the Lyapunov stability functions given by (12) and (27).  

And if these signals inserting respectively into (13) and (28), then by sequence the following two in-equalities  

are obtained: 
 

  (           )     |  | (32) 

 

  (           )     |  | (33) 

 

Consequently, because the constant parameters are always                , so the related rate of change 

of Lyapunov functions denoted respectively by   ̇   and  ̇   will be diminished to the value of less than or 

equal to zero. This will be demonstrated by the shown numerical simulation results later on.  

 

 

4. PID ALGORITHM BASED LQR WITH INTEGRAL CONTROL 

Here only (   ) are considered for the measurement. Two PID controllers are developed, one for 

controlling the tilte angle of the intermediate body (IB) for returning the body back to the upright position 

after a change caused by the disturbance force, and one for keeping the body wheels within a specified linear 

position from a specific reference position. In order to demonstrate the performance of the PID based LQR 

controller for locating the TWBMR to its desired position and angle, the collocated signals for the robot 

position and angle are feedback and compared to the desired position    and desired angle    respectively. 

The position and angle errors are regulated through the following PID controllers represented respectively by 

      and        [10, 14]. 
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Accordingly the PID control signal can be described by the following equation: 
 

                                (35) 

 

         [          ]       [          ] (36) 
 

Since the pendulum angle and cart position dynamics are coupled to each other, and this makes the tuning 

tedious. The gain parameters of PID controllers determined by using of LQR and integral control with 

guaranteed desired response. The closed loop of the angle and position transfer functions after inserting  

the PID controllers in the coupled form shown in Figure 4 can be obtained as follows: 
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Figure 4. Parallel control double loop of TWBMR 
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where the transfer functions       and       are derived by taking the Laplace transform operator on  

the state space model given by (3) and (4) to get [12] 
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And according to the given typical data in [12], the following identified transfer functions can be obtained: 
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The       and       represent the command signals of the angle and position of the robot respectively.  

Then the close-loop transfer functions of the angle and position are expressed as follows: 
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The characteristic equation for the two-loop PID controller is given as below 
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Substituting the dynamics of       ,             and       obtained previously, one obtains the following 

characteristic equation: 
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Simplifying (42) yields the following equation 
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This will be compared to the following desired charterstic equation: 
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                       are the desired eigen values. 

In this section, we shall consider the design of stable control system based on desired specification. The two-

loop PID controller’s gains are formulated as the optimal state-feedback gains [12]. Comparing (43) and (44) gives 
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But, there are six unknowns and five equations thus it is required to choose one variable arbitrarily. This will 

make the matrix in (45) invertible.  It can be seen that the value of      can be chosen arbitrarily in (45).  

We get the following equations: 
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All the PIDx and PIDa controller parameters must be tuned simultaneously to achieve the best responses as 

desired. The gains of the PID controller are obtained using matlab program.  
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5. SIMULATION RESULTS 

The nonlinear model for the considered TWBMR system is simulated with the influence of the SMC 

and PID-LQR algorithm in order to improve the system performance under the nominal case and when  

the uncertainties due to effect of time delay and random noise on the robot feedback displacement and angle 

signals. The designed parameters of SMC and PID-LQR controllers are presented in Table 1. To assess  

the effectiveness of the proposed controllers computer simulations using MATLAB/SIMULINK are implemented. 

 

      

Table 1. Design parameters of SMC and PID-LQR  
State SMC PID-LQR 

Displacement    8.186 
   160.851 

         

       

       
Tilt angle    10.246 

  =40.9 

          

          

           

 

 

5.1.  Nominal case 

Under the lack of uncertainties due to time delay and disturbance noise, the considered system is 

judged by observing its position (x), velocity   ̇  tilt angle     and angular velocity   ̇  as shown in Figure 5.  

It is seen that, both of controllers are successful to stabilize the system, where the SMC could achieve a better 

tracking performance in comparing to the PID- LQR where the settling time is lower for time response of  

the system outputs. 

 

 

 
 

Figure 5. States of TWBMR using SMC and PID-LQR 

 

 

Besides to the high tracking performance have been achieved by SMC, the system stability can be 

guaranteed as well, this can done by using of derived Lapunove function written in (32) and.(33) to get the 

Lyapunove function versus time for TWBMR system displacement and tilt angle as shown in Figure 6. 

Where, it is observed that the trajectories of these functions diminished to the values of less than or equal to 

zero which is the stability concept of the Lapunove theory. However, this stability guarantee could not be 

demonstrated graphically in case of design by PID–LQR.  
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Figure 6. Lapunov function versus time for position  and angle 

 

 

5.2.  Uncertain time delay 

Time delay is a common phenomenon in robotic systems due to computational requirements and 

communication properties between or within high-level and low-level controllers as well as the physical 

constraints of the actuator and sensor. It is widely believed that delays are harmful for robotic systems in 

terms of stability and performance; therefore, in this paper, we discuss the influences of the displacement and 

tilt angle feedback delays on robotic system dynamics with each type of the considered controllers. In this 

simulation, the time delay with transfer function given as 

 

      
        

       
 

 

 
In general, studies, such type of delay attempts to cause degradation in the system tracking 

performance. Figure 7 shows the influence of this uncertain model on the TWBMR system displacement and 

tilt angle. Where it is observed that, the SMC could keep the system stability with an acceptable performance 

while the un-stability is observed in case of PID-LQR due to the divergence of the displacement and tilt angle 

of the system. 

 

 

 
 

Figure 7. States of TWBMR  with time delay 
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5.3.  Uncertain random noise 

In addition, the uncertainty due to effect of noise is another factor has been analyzed here. In this 

simulation, the random noise is considered. Such type of noise is generated by using of simulink block called 

uniform random block with minimum and maximum interval     . The influence of this signal on the system 

tracking performance can be seen from the time responses of the system as shown Figure 8. Where it is 

observed that, the SMC suppresses the effect of this uncertain noise and keep a better tracking performance 

in comparing to controller design by PID-LQR. 

 

 

 
 

Figure 8. States of TWBMR with effect of noise 

                                                        

    

6. CONLUSION 

The linear and nonlinear model for the TWBMR system was presented and simulated using 

Matlab program. In which the SMC and PID-LQR were investigated. The design of these two types of 

controllers have been done where in case of sliding mode controller, the two sliding mode control signals 

have been designed based on the stability concept of the Lyapunov theory, in order to force the system 

displacement and tilt angle with their derivatives to be sliding on the equivalent designed surfaces, until  

the desired set point is reached. Where in the other control designed approach, the parameters of PID-LQR 

for the double loop control have been designed based optimal state feedback control. The numerical 

simulation to test the effectiveness of each type of the controllers is carried out. Where in the nominal case,  

it is concluded that, both types of controllers achieve the input set point tracking with a better tracking 

performance was obtained when the SMC design technique is applied.  In addition, the uncertainty due to 

effect of time delay dynamics and random noise signal is considered to test the robustness of the two control 

design approaches, and it is demonstrated that, the SMC is more robustness in comparing to the other type of 

the controller. This is because an acceptable tracking was achieved rather than other control design method in 

which the degradation in the tracking performance was observed while the random noise is applied, and the 

instability was occur when the time delay is considered.  
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