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 Particle swarm optimization (PSO)-based algorithms are suitable for path 

planning of the Autonomous Underwater Vehicle (AUV) due to their  

high computational efficiency. However, such algorithms may produce  

sub-optimal paths or require higher computational load to produce an optimal 

path. This paper proposed a new approach that improves the ability of  

PSO-based algorithms to search for the optimal path while maintaining  

a low computational requirement. By hybridizing with differential evolution 

(DE), the proposed algorithms carry out the DE operator selectively to 

improve the search ability. The algorithms were applied in an offline AUV 

path planner to generate a near-optimal path that safely guides the AUV 

through an environment with a priori known obstacles and time-invariant 

non-uniform currents. The algorithm performances were benchmarked 

against other algorithms in an offline path planner because if the proposed 

algorithms can provide better computational efficiency to demonstrate  

the minimum capability of a path planner, then they will outperform  

the tested algorithms in a realistic scenario. Through Monte Carlo 

simulations and Kruskal-Wallis test, SDEAPSO (selective DE-hybridized 

PSO with adaptive factor) and SDEQPSO (selective DE-hybridized 

Quantum-behaved PSO) were found to be capable of generating feasible 

AUV path with higher efficiency than other algorithms tested, as indicated 

by their lower computational requirement and excellent path quality. 
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1. INTRODUCTION 

AUVs are unmanned underwater vehicles that can be remotely programmed to conduct various 

missions, ranging from seabed survey, coastal mapping and environmental monitoring for scientific research 

purposes, to anti-submarine warfare for defence purposes. To date, numerous efforts have been made in  

the attempt to enable the operation of AUVs in more dynamic and constrained environments, such as shallow 

coastal areas, deep ocean regions and regions underneath ice shelves. The operation of AUVs in highly dynamic 

regions is challenging and it poses several technical issues, particularly for the path planning of the AUVs.  

Planning the path for an AUV is essentially a multimodal optimization problem; numerous 

optimization techniques have been proposed to solve this problem effectively and efficiently. Nonetheless, 

developing the algorithms for AUV path planning still faces several intrinsic difficulties, particularly in 
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balancing the computational requirements and the performance of the path planner. The high computational 

requirements for planning the path in a realistic 3D environment may lead to excessive energy drain in an 

AUV. A common way to keep the computational requirements of path planner feasible is to reduce  

the problem to a 2D space [1]. This however compromises the performance of the path planner due to 

reduced amount of 3D information available for the path planner, such as currents field, bathymetry and 

obstacles in the ocean environment. Thus, a high computational-efficient algorithm is required for effective 

AUV path planning in realistic ocean environment. 

Recently, Zeng, Sammut [2], and Youakim and Ridao [3] compared and classified various path 

planning techniques including Artificial Potential Field APF, search-based methods, sampling-based methods 

and optimization methods. The APF method [4] is fast and efficient, but very susceptible to local minima. 

Search heuristic-based planners such as Field D* [5] and Fast Marching* (FM*) [6] are capable of generating 

optimal and robust paths, but their computational efficiencies are limited to less complex and lower 

dimensional problems. Sampling-based methods such as Rapidly-exploring Random Trees RRT [7] and its 

variants RRT* [8] are effective for high-dimensional and highly time-constraint scenarios at the cost of  

the path optimality, and the resultant paths often require further refinement. Meta-heuristic optimization 

methods such as the evolutionary algorithms [9, 10] show excellent performance in terms of solution 

optimality. Evolutionary algorithms are effective for high-dimensional complex problems but they may 

converge to local minima within finite time. Among the existing evolutionary algorithms, Zeng, Sammut [2] 

further pointed out that the particle swarm optimization (PSO)-based algorithms are remarkably robust and 

efficient for solving high-dimensional path planning problems. 

PSO algorithm and its most significant variant, the quantum-behaved PSO (QPSO) are extensively 

used in various optimization problems ever since their emergence in 1995 and 2004 respectively due to their 

fine search abilities and easy implementations [11]. Some pioneering examples of their applications in path 

planning can be found in [12-14]. PSO-based path planners are suitable for dynamic environments where 

online path planning is required because they maintain a large pool of solutions, which is available at any 

time during the mission. These solutions can serve as the initial solutions whenever path replanning is 

required, thus significantly improving the computational efficiency. Some successful applications of  

PSO-based algorithm in online path planning of AUV can be found in [15, 16]. Nonetheless, PSO-based 

algorithms are susceptible to convergence at local minimum solutions if the time allowed for path planning is 

limited, which is often the case in real AUV operations.  

In recent years, many strategies that modified the PSO and QPSO algorithms have been proposed in 

order to improve their performances in path planning of various autonomous systems. Each of these variants 

of the algorithms claimed to have different improvements over the original PSO and QPSO algorithms. To 

benchmark the PSO and QPSO variants in the application of AUV path planning, a recent comparison study 

[17] classified and evaluated the algorithms based on their solution qualities, stabilities and computational 

efficiency. It was concluded from the results of [17] that the hybridization of differential evolution (DE) in 

PSO and QPSO, which were proposed by [18], are able to produce path planning solution with the highest 

quality due to their stronger resistance to local minima, but at the cost of higher computational requirements. 

Moreover, the findings of [17] suggested that having an adaptive mechanism in the evolution of particles in 

the PSO algorithm can produce solution quality that is second only to DE-hybridized algorithms, but with  

a relatively low computational requirement; the adaptive PSO (APSO) proposed by [19] was able to generate 

a path planning solution that achieves a balance between solution quality and computational requirements. 

Inspired by the DE hybridization, a number of algorithms, namely SDEPSO (PSO with selective DE 

hybridization), SDEAPSO (PSO with adaptive factor and selective DE hybridization), and SDEQPSO 

(QPSO with selective DE hybridization), are proposed in this paper. These algorithms explore the strengths 

of DE-hybridized algorithms, and minimize their weaknesses in order to improve the algorithm performance. 

The proposed algorithms were implemented in an offline AUV path planner and their performance were 

benchmarked against other meta-heuristic algorithms because if the proposed algorithms can provide better 

computational efficiency to demonstrate the minimum capability of a path planner, then they will outperform 

the tested algorithms in a realistic online path planner. The objective of the AUV path planner is defined as 

finding a near-optimal path that safely guides the AUV from a starting position to a destination based on  

a minimum time criterion. The path planning scenario with a priori known obstacles and non-uniform current 

field was first simulated in a 2-dimensional (2D) domain, followed by the simulation in a 3-dimensional (3D) 

domain. Extensive Monte Carlo simulations were conducted on all algorithms and the simulation results were 

analysed based on their respective solution qualities and stabilities. 

The rest of this paper is arranged as follows. In Section 2, the overview of the basic PSO, QPSO and 

their variants, including DEPSO, DEQPSO and APSO are provided. Section 3 describes the novel algorithms 

proposed in this paper. The formulation of the path planning problem is outlined in Section 4. Section 5 

presents the simulation setup, results and discussions. The generated path solutions were then validated using 
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an AUV simulator of REMUS 100 in Section 6. Finally, Section 7 concludes the paper along with the future 

research directions. 

 

 

2. REVIEW ON PSO AND ITS VARIANTS 

This section presents the overview of various particle swarm intelligence based algorithms used for 

developing the novel algorithms, which include the basic PSO, basic QPSO and their variants.  

 

2.1. PSO algorithm 

Introduced by Eberhart and Kennedy [20], PSO algorithm is a heuristic population-based 

optimization algorithm inspired by the analogues of cognitive abilities and social interaction in animals.  

The algorithm consists of particles that move within a multidimensional search space to find the potential 

solutions, which are represented by the particles‟ positions. The particles‟ velocities are iteratively updated 

by the particle‟s own experience (cognitive behaviour) and the entire swarm‟s experience (social behaviour) 

to vary the particles‟ positions. In a standard PSO algorithm that consists of N particles with D number of 

dimensions for solving a cost evaluation function f, the position vector of the i
th

 particle at t
th

 iteration can be 

denoted as: 
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Based on its previous best position pbest and global best position in the swarm gbest, the velocity V and  

the position X of the i
th

 particle at (t+1)
th

 iteration are updated by (2) and (3) respectively. pbest and gbest are 

determined based on the particle‟s fitness f(X) and its previous best fitness f(pbest) as shown in (4) and (5). 
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In (2), r1 and r2 are uniform distributed random positive numbers that are less than 1.0. C1 and  

C2 denote the acceleration coefficients for cognitive and social components respectively; they are both set  

to 2.0 for most applications [21]. Parameter w is the inertia weight introduced by [22] for balancing  

the global exploration and local exploitation of the particles. A common strategy is to set the inertia weight at 

an initial wmax value of 0.9, and linearly decreasing to a wmin value of 0.4 according to (6) as the iteration 

progresses [23, 24].  
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where tmax is the maximum number of iterations defined for the algorithm.  

To confine the particles within the search space, the particle velocity denoted by V is usually bound 

to an interval of [-Vmax, Vmax], where the maximum velocity Vmax is recommended to be 10% to 20% of  

the dynamic range of the variables [24, 25]. 

 

2.2. QPSO algorithm 

Inspired by the mechanics of quantum system and dynamical analysis of the PSO algorithm, Sun, 

Feng [26] proposed the QPSO algorithm. In QPSO, the position of the i
th

 particle can be updated using  

the following stochastic equation: 
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where u is a uniform distributed random positive number that is less than 1.0,  is a uniform  

distributed random positive number that is less than 1.0 , and mbest is the mean best position which is 

defined as the average of personal best positions of all particles in the swarm as shown in (8).  is known as 

the contraction-expansion (CE) coefficient, which is the most critical parameter for tuning the convergence 

behaviour of QPSO. As suggested by the empirical study of parameter selection in [11], a linearly decreasing 

 from a maximum value max of 1.0 to a minimum value min of 0.5 according to (9) is suitable for  

most applications. 
 

       
 

    

(         ) (9) 

 

2.3. DEPSO and DEQPSO algorithms 

One of the most effective method used for improving the PSO-based algorithm is by hybridization, 

in which the beneficial features of other optimization techniques is combined with PSO or QPSO algorithm. 

In [27], the basic PSO was combined with Differential Evolution (DE), resulting in a hybrid algorithm known 

as DEPSO. Based on the inspiration from DEPSO, [18] applied a similar hybridization concept in QPSO  

to propose DEQPSO. In both DEPSO and DEQPSO, the particles undergo the usual position update 

operations, followed by a successive three-step DE operation, which is the mutation, crossover and selection 

as described below. 

- Mutation: A mutated donor vector U is first generated using (10): 
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where r1, r2, r3 and r4 are randomly selected particle indices that are mutually different, and different from 

the current index i and the particle index of global best position, i.e. r1  r2  r3  r4  i  gbest. 

- Crossover: A trial vector T is generated to increase the diversity, by conducting crossover between  

the donor vector and personal best position as shown in (11). 
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where CR is the crossover probability which is suggested to be 0.85, rj is a uniform distributed random 

number ranging from 0 to 1.0, and r is a random positive integer ranging from 1 to the number of particle 

dimensions D. 

- Selection: A greedy selection is used to decide whether the trial vector T should replace the current 

position X in the (t+1)
th

 iteration. The fitness of T will be evaluated and compared with X. X will only be 

replaced if T has better fitness value; otherwise X will be retained. This means the hybridization of the DE 

operation will never deteriorate the solution, but only make it better or remain unchanged. 

DEPSO and DEQPSO algorithms were applied to solve the path planning problem of Unmanned 

Aerial Vehicle (UAV) in [18], and has proven to be capable of generating significantly higher solution 

quality than basic PSO and QPSO algorithms. 

 

2.4. APSO algorithm 

In basic PSO, the acceleration coefficients C1 and C2, and inertia weight w in the update equation are 

important for maintaining the balance between the global exploration and local exploitation of the particles. 

Zhan, Zhang [19] proposed an adaptive PSO (APSO), in which an evolutionary factor is used as an indicator 

representing the evolutionary state of the particles to control the equation coefficients adaptively. To 

determine the evolutionary factor, the mean particle distance di of the i
th

 particle to other particles has to be 

calculated using (12). The evolutionary factor f is then computed according to (13). 
 

   
 

   
∑ √∑(  

    
 )

 
 

   

 

       

 (12) 

 

  (       ) (         )⁄       ,   - (13) 



          ISSN:2089-4856 

Int J Rob & Autom, Vol. 9, No. 2, June 2020 :  94 – 112 

98 

where dg is the mean particle distance of the global best particle, dmin and dmax are the minimum and 

maximum of the mean particle distances respectively. The inertia weight w can be calculated from 

evolutionary factor f using (14). The adaptation of the acceleration coefficients C1 and C2 can also be 

achieved using the evolutionary factor as shown in (15). 
 

   (           )       ,       -⁄  (14) 
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3. METHODOLOGY: SELECTIVE DE HYBRIDIZATION 

Although DEPSO and DEQPSO algorithms are able to generate excellent solution qualities for 

AUV path planning, the hybridization of DE significantly increases the computational requirements of  

the algorithm due to the greedy selection operator used in the DE operation [17]. The greedy selection 

operator requires the fitness of the particles to be evaluated twice for comparison purposes, meaning  

an additional fitness evaluation for every particle in every iteration. As the fitness evaluation process  

usually contributes to the majority of the computational time [11], the greedy operator drastically increases 

the computational requirements of the algorithms. The increase in computational requirements due to  

the addition of greedy selection operator will be even more obvious when the complexity and the 

dimensionality of the problem increase [17]. In order to minimize the downside of DE operator in PSO-based 

algorithm, a selective hybridization scheme is proposed in this paper to present the following algorithms: 

- SDEPSO (PSO with selective DE hybridization) 

- SDEAPSO (PSO with adaptive factor and selective DE hybridization) 

- SDEQPSO (QPSO with selective DE hybridization) 

Using the selective scheme, these proposed algorithms apply the DE operation to a selected number 

of particles only, instead of the entire swarm. The number of particles selected for DE operation, NS, is 

controlled by a selective factor S as shown in (16). 
 

              ,   - (16) 
 

The DE operation in the proposed algorithms was modified by replacing the greedy selection 

operator with a natural selection operator. The DE operation proposed in this paper initiates by sorting all the 

particles in the entire swarm according to their personal best positions. Next, a number of selected particles 

with the best fitness undergo the mutation and crossover operators, similar to those in DEPSO and DEQPSO, 

to generate the same number of trial vectors. The trial vectors are then subjected to a natural selection 

operator, in which the same number of particles with the worst fitness is replaced by the trial vectors.  

As only the worst particles are replaced in this process, all potentially best solutions will never 

deteriorate. Furthermore, the computational requirements of the algorithms will not be significantly affected 

because the natural selection operator does not involve fitness comparison between the particles, which 

requires additional particle fitness evaluation in every iteration. The DE operation with natural selection 

increases the diversity and the evolutionary rate of the entire swarm by eliminating the least desirable 

solutions, hence leading to a faster and better global convergence theoretically.  

The selective DE hybridization was applied to PSO and QPSO algorithms to develop the SDEPSO 

and SDEQPSO algorithms in this paper. In addition, another algorithm, namely SDEAPSO, was developed 

by adding an adaptive mechanism to the control of inertia weight and acceleration coefficients in PSO 

algorithm, similarly to the APSO algorithm. The implementation of SDEPSO, SDEAPSO and SDEQPSO 

algorithms in AUV path planning can be conducted as described in the following pseudocode. 
 

Step 1. Input the algorithm parameters and environmental information of the ocean field. 

Step 2. Initialize particles with random positions in (1) to represent an initial group of 

candidate paths. Set pbest to be the current particle positions. 

Step 3. While the stop criteria is not met,  

Step 3.1 For t = 1, 2, …, tmax, 

SDEPSO SDEAPSO SDEQPSO 

Evaluate the cost 

function f (Xi 
t
). 

Update pbest and gbest 

according to (4) and 

(5) respectively. 

Update w according to 

(6). 

Evaluate the cost 

function f (Xi 
t
). 

Update pbest and gbest 

according to (4) and 

(5) respectively. 

Update w, C1 and C2 

according to (14) and 

(15) respectively. 

Compute mbest according  

to (8). 

Evaluate the cost function 

f (Xi 
t
). 

Update pbest and gbest 

according to (4) and (5) 

respectively. 

Update  according to (9). 
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Step 3.2 For each particle i = 1, 2, …, N, 

SDEPSO SDEAPSO SDEQPSO 

Update particle velocity and 

position according to (2) 

and (3) respectively. 

Update particle velocity 

and position according to 

(2) and (3) respectively. 

Update particle 

position according 

to (7). 

End 

Step 3.3 Sort all particles according to the fitness of their personal best positions. 
Step 3.4 For k = 1, 2,…, NS

th
 best performing particle, 

Mutation: Generate mutated vector Uk
t
 according to (10). 

Crossover: Generate trial vector Tk
t
 according to (11). 

Natural selection: Replace k
th
 worst performing particle with trial vector 

Tk
t
. 

End 

End 

Step 4. Output gbest that holds the optimal path when the stop criteria is met or when tmax 

is reached. 

 

3.1. Complexity Analysis 

The time complexity of the proposed algorithms can be measured by counting the number of 

primitive operations in the algorithm. By referring to the pseudocode of the proposed algorithms, the number 

of operations can be counted as follows: 

- In Step 2, initialization contributes one operation for N times. 

- In Step 3.1, cost function evaluation contributes one operation for N times; finding pbest requires  

N⋅ log(N) operations; finding gbest requires log(N) operations; updating coefficients contributes one 

operation; SDEQPSO requires N additional operations to calculate mbest. 

- In Step 3.2, SDEPSO and SDEAPSO perform N loops with 14 operations; SDEQPSO perform N loops 

with 12 operations. 

- Step 3.3 contributes log(N) operations. 

- Step 3.4 performs NS loops with 8 operations. 

Steps 1 – 3.2 are the standard operations in basic PSO, APSO and QPSO, whereas Step 3.3 and 3.4 

are the additional operations introduced by the selective DE operator. O-notation is used in this work to 

denote the asymptotic upper bound of time complexity, which indicates the computational time of the 

algorithm in the worst case scenario. When computing the O-notation, the lower order terms in the number of 

operations is negligible because their impact on computational time are relatively insignificant for large input 

[28]. The highest order term in the operation is N⋅ log(N) in Step 3.1, and it performs tmax times to check  

the termination condition. The operations added by the selective DE operator (Step 3.3 and 3.4) are of lower 

order and do not have significant impact on the time complexity. Thus, the complexity of the proposed 

algorithms in linear form is O(N⋅ log(N)⋅ tmax), similar to the standard PSO algorithm. PSO-based algorithms 

have two inner loops when going through the population of N particles, and one outer loop for tmax iterations; 

this renders the time complexity to be O(N
 2⋅ tmax) in the extreme case. The spatial complexity of  

the algorithms is O(N
 2
), which depends on the population size. 

 

3.2. Benchmark Functions 

Metaheuristic algorithms such as the PSO-based algorithms can be evaluated empirically by 

comparing their performance in solving a set of objective function problems. In addition to the AUV  

path planning problem, a number of non-linear continuous function problems were used to study and 

benchmark the characteristics of the proposed algorithms. According to the “no free lunch” (NFL)  

theorem [29], the development and evaluation of an algorithm for a specific problem should be based on  

the benchmark function problems of similar class and properties, because the algorithm performance will not 

be consistent for every kind of problem. Thus, these benchmark functions were selected based on their 

resemblances to the properties of path planning problem. The selected benchmark functions should have  

the following properties: 

- Multimodal with deceptive local minima and one global minimum, because the path planning problem 

usually consists of multiple suboptimal paths and an optimal path. 

- Multi-dimensional, because the dimensionality of the path planning problem is dependent on the number 

of control waypoints along the path. 

Four test functions were chosen for benchmarking in this study. These minimization problem 

functions, which are commonly used to evaluate the characteristics of optimization algorithms, were found to 

exhibit the abovementioned properties. The information on the selected benchmark functions are given in 

Table 1. The dimensions of all functions are set to 20 in this study.  
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Table 1. Benchmark functions 
Notation Name Function formulation Boundary interval Global minimum 

F1 Griewank [30]  ( )  ∑
  

 

    

 

   

 ∏    (
  

√ 
)   

 

    

 [-600, 600] 
f (x) = 0, at 

x = (0,…,0) 

F2 Rastrigin [31] 
 ( )      ∑,  

       (    )-

 

   

 

 

[-5.12, 5.12] 
f (x) = 0, at  

x = (0,…,0) 

F3 Ackley [32]  ( )      
 

 
√∑   

  
     

 

 
∑    (    )

 
         

[-32, 32] 
f (x) = 0, at 

 x = (0,…,0) 

F4 Schwefel [33]  ( )           ∑     .√|  |/

 

   

 [-500, 500] 

f (x) = 0, at x = 

(420.9687,…, 

420.9687) 

 

 

3.3. Empirical Study on Parameter Selection 

In SDEPSO, SDEAPSO and SDEQPSO, the number of best performing particles that undergo  

the DE operation and the number of worst performing particles that will be replaced during the natural 

selection are determined by the selective factor S. Thus, S can be manipulated to control the diversity of  

the population. In order to study the effects of S on the algorithm performance, an empirical study is 

conducted on SDEPSO by using a range of S. The selective factor S is a positive number that is less than 1.0. 

Note that when S = 0, the algorithm will not be hybridized with DE at all; while S = 1 means the DE 

operation will be conducted on the entire swarm, and the entire swarm will be replaced during the natural 

selection, meaning all the solutions generated from the PSO operation will be discarded, which is 

undesirable. Therefore, the empirical study includes S values ranging from 0 to 0.9, meaning that 0%–90% of 

the particles will undergo the DE operation; the results for S = 0 are included for comparison purposes.  

Through a 1000-run Monte Carlo simulation with 100 (max) iterations and a population size of  

150 particles, the performance of SDEPSO under different S settings is evaluated by solving the optimization 

problems of the benchmark functions and the path planning problem in 2D and 3D scenarios; the formulation 

of the path planning problem is described in Section 4. 

Prior to evaluating the algorithm performance, Shapiro-Wilk test was performed to examine  

the normality of the obtained simulation data. The normality test revealed that the data was not normally 

distributed. Hence, the median was used as the indicator for solution quality. The median of fitness obtained 

(Med.) and the best known fitness (Best) for each setting of S were obtained for all problems and tabulated in 

Table 2. A lower fitness value indicates a higher solution quality and hence a stronger search ability. 
 
 

Table 2. Empirical study results 

Selective  
factor, S 

F1 F2 F3 F4 
2D path planning 

(×102) 

3D Path planning 

(×102) 

Med Best Med Best Med Best Med Best Med Best Med Best 

0 0.86 0.25 1.28 0.41 0.19 0.06 2.61 1.54 3.07 2.97 3.36 3.30 

0.10 0.58 0.13 1.22 0.42 0.15 0.06 2.22 1.20 3.06 2.99 3.20 3.14 

0.20 0.56 0.13 1.20 0.50 0.15 0.07 2.08 0.69 3.01 2.97 3.34 3.13 

0.30 0.63 0.19 1.15 0.21 0.17 0.05 1.89 0.85 2.98 2.91 3.18 3.14 

0.40 0.68 0.34 1.29 0.51 0.23 0.08 1.90 0.81 3.06 2.96 3.30 3.15 

0.50 0.66 0.30 1.27 0.40 0.26 0.12 1.71 0.65 3.12 3.02 3.44 3.15 
0.60 0.73 0.14 1.41 0.52 0.32 0.11 1.70 0.63 3.05 2.98 3.42 3.18 

0.70 0.80 0.34 1.61 0.50 0.47 0.10 1.71 0.60 3.00 2.98 3.33 3.19 

0.80 0.87 0.43 1.59 0.84 0.74 0.26 1.51 0.57 3.05 2.97 3.22 3.19 
0.90 1.00 0.85 1.77 0.61 1.67 0.43 1.27 0.48 3.08 2.97 3.35 3.25 

 

 

The best-performing results for each of the problems are in bold in Table 2. It can be observed from 

the results that the behaviour of the algorithms varies greatly as S increases, and the variations are not 

consistent for all problems. The best results for the majority of the problems are identified to be in the range 

of S = 0.1 – 0.3, except for problem F4. Such results can be explained by the geometry of the Schwefel 

function F4, which has all its local minima and the global minimum spread far apart from one another. 

Effective optimization of this function requires an algorithm that promotes larger solution diversity (higher 

S), so that it provides a jumping-out ability to prevent trapping in deceptive local minima. This actually 

complies with the NFL theorem, which suggests that no single algorithm can generate better performance 

than any other algorithms for every problem. In fact, the improved algorithm performance in one class of 

problem is not necessarily consistent in all kinds of problems; instead, it is exactly traded with performance 

in another class of problem [29]. Although all the function problems selected for benchmarking purposes 
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have similar properties (they are all multimodal and multi-dimensional), the geometry of the problems are 

different. Therefore, the setting of S should be adjusted accordingly for different optimization problems. 

Based on this empirical study, it can be deduced that the optimal setting of S for the majority of the tested 

problems is in the range of 0.1 – 0.3. More specifically for the path planning problem, the setting of S = 0.3 

was found to be appropriate and effective. 

 

3.4. Benchmark Study 

The benchmark functions were used to evaluate and benchmark the proposed algorithms in this 

study. Through a 1000-run Monte Carlo simulation with 100 (max) iterations and a population size of 150 

particles, the performances of the proposed algorithms in solving the optimization problems of the four 

benchmark functions were compared with other existing PSO-based algorithms. At each run, the initial 

particle positions for all problems were randomly generated based on the uniform distribution within  

the boundary intervals given in Table 3.  

As the data was not normally distributed according to the Shapiro-Wilk test, the Kruskal-Wallis test 

[34], which is a non-parametric ANOVA (analysis of variance), was used with a significance level of 0.05 to 

rank the algorithm performance based on the solution qualities (fitness obtained). The ranking procedure 

used the Holm–Bonferroni „stepdown‟ approach [35], which is best suited for all pairwise comparisons when 

the confidence intervals are not needed and sample sizes are equal [11]. The algorithms are given the same 

rank if they are not statistically different from one another. The medians (Med.) of fitness obtained,  

the ANOVA ranks (#R) and the medians of computational time required were tabulated in Table 3.  

The medians of the top two best-performing results for each problem are in bold. The overall performances 

of the algorithms are given by their total ranks, which are calculated from the summation of the ranks of  

the algorithm for all problems. 

Based on the results, it can be seen that there is no single algorithm that can achieve the best results 

for all problems; this observation agrees with the NFL theory. For the Griewank function (F1), DEQPSO 

produced the best result. In fact, APSO, SDEAPSO, QPSO, DEQPSO, and SDEQPSO algorithms were 

found to be producing satisfactory results, indicating that the adaptive mechanism and quantum behaviour of 

the particles are beneficial for solving this problem. DEPSO and SDEPSO algorithms produced equally good 

performance for the Rastrigin function (F2). For the Ackley function (F3), the QPSO-based algorithms,  

i.e. QPSO, DEQPSO and SDEQPSO produced the best performance, followed by the adaptive PSO-based 

algorithms, i.e. APSO and SDEAPSO. As far as the Schwefel function (F4) is concerned, only DEPSO, 

SDEPSO and SDEAPSO are able to generate satisfactory results, while all the other algorithms seem to have 

inferior performances.  

The total ranking of the algorithms reveal that DEQPSO achieved better overall performance than 

other algorithms. The second-best performing algorithms are found to be DEPSO and SDEAPSO. Most 

importantly, the results for all problems show that the fully DE-hybridized algorithms, i.e. DEPSO and 

DEQPSO required significantly higher computational time to obtain the solutions, while the selectively  

DE-hybridized algorithms are able to maintain a reasonably similar computational requirement as the PSO, 

QPSO and APSO algorithms. 

 

 

Table 3. Benchmark study results 

Algorithm 
F1 

 
F2 

 
F3 

 
F4 Total  

Med #R T(s) Med #R T(s) Med #R T(s) Med #R T(s) Rank 

PSO 0.658 8 0.102  1.372 5 0.123  0.453 8 0.104  3.617 5 0.125 26 

QPSO 0.089 3 0.160  1.791 6 0.150  0.005 1 0.166  4.555 8 0.187 18 
APSO 0.100 4 0.155  1.219 4 0.162  0.041 5 0.177  3.606 5 0.202 18 

DEPSO 0.634 6 0.427  1.140 1 0.548  0.166 6 0.419  1.781 1 0.470 14 

DEQPSO 0.064 1 0.510  2.092 7 0.502  0.002 1 0.490  3.023 4 0.555 13 
SDEPSO 0.629 6 0.108  1.149 1 0.135  0.172 6 0.177  1.891 2 0.199 15 

SDEAPSO 0.098 4 0.161  1.196 3 0.157  0.035 4 0.181  2.031 3 0.273 14 

SDEQPSO 0.072 2 0.177  2.125 7 0.181  0.002 1 0.191  3.594 5 0.271 15 

 

 

4. PROBLEM FORMULATION FOR PATH PLANNING 

The AUV path planning problem is formulated in this section. Throughout the formulation,  

the AUV is assumed to have constant thrust, and hence constant water reference velocity. 

 

4.1. Path Formulation 

In this paper, the primary objective of the AUV path planner is to solve a multimodal non-linear 

optimization problem, in which the optimal path among a group of potential paths for the AUV to travel 
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towards a target location through the ocean environment is required to be determined. Each potential path of 

the AUV comprises a series of nodes along the path from the start point to the target (end) point. Controlling 

and optimizing the coordinates of the path nodes will yield the optimized path for the AUV. The start point 

and the endpoint of the path are not involved in the optimization because all the potential paths share  

the same start and end locations. 

In PSO-based algorithm, each potential path solution for the problem is modelled as an individual 

particle in the swarm population. The swarm population is denoted by a matrix X = [X1, X2,…, XN]
T
, where X 

is the position vector of the particles and N is the number of particles in the swarm. The entries of the 

position vectors for the particles represent the coordinates of the path nodes. Assuming every path consists of 

n+2 nodes including the start point and endpoint, the number of nodes involved in the optimization is n. In 

order to record the coordinates of n nodes, the entries of the position vector for a particle in 2D problem 

space will have 2n dimensions, while a particle in 3D will have 3n dimensions. Thus, the respective position 

vectors of the i
th

 particle at t
th

 iteration for 2D and 3D problems are: 

 

  
  [    

      
        

        
         

 ]        *       + (17) 

 

  
  [    

      
        

        
         

 ]        *       + (18) 

 

Based on the path nodes including the start and end points, B-spline geometry is used to construct 

the AUV path. B-spline are parametric curves generated from a series of connected piecewise polynomials 

[36], which are suitable for modelling the AUV path because of its continuity for smooth path and locality 

for path alteration without loss of continuity. The path nodes act as the control points for the B-spline curve 

according to the following curve function, which gives the output vector P(u) representing a B-spline curve 

with k+1 order in the form of discretised waypoints. Given the total number of control points is n+2, the total 

number of piecewise polynomials is one less than the number of control points, which is n+1. 

 

 ( )  ∑   

   

   

    ( )        *           + (19) 

 

where xi are the control points, u is the non-decreasing knot sequence contained in a knot vector  

U = [u0, …, ui, …, un+k+2], and Bi,k (u) are the piecewise polynomial basis functions of k degree defined by 

Cox de Boor recursion [37] as follows. 

 

    ( )  {
               

                       
 (20) 
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      ( )  
        

           

        ( ) (21) 

 

The continuity of the spline is fully dependent on the basis functions. Hence, it can be noted from (19) that 

the control points, i.e. path nodes can be adjusted during the path optimization process without affecting  

the spline continuity.  

 

4.2. Evaluation Functions 

When implementing PSO-based algorithms in an optimization problem, it is critical to develop  

the suitable cost evaluation functions to measure the fitness of the particles based on their respective 

solutions. Due to the high computational efficiency of PSO-based algorithms, the evaluation functions 

usually contribute to the majority of the computational time [11]. The functions are developed based on  

the optimization criteria of the problem. They must closely resemble the physical conditions of the problem 

space to provide an accurate cost representation model for finding the optimal solution. For path planning, 

which is a minimization problem, a lower cost/fitness indicates a better solution. The main criteria for 

evaluating the AUV path are:  

- Minimum length or travel time required to reach the target  

- Minimum exposure to the threats 

- Compliance with physical motion limitations of AUV 

As the optimum of all criteria does not necessarily coincide, a trade-off between these criteria can be 

established using a weighting scheme with multiple evaluation functions, which include a main evaluation 

function to measure the path length/time cost, a function to measure the threat cost along the path, and 
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functions to measure the compliance of the path with respect to the AUV motion limitations. Thus, the fitness 

of a particle/path Xi can be given by a combination of several evaluation functions Fk for different criteria, 

with each criterion weighted by a cost factor fk. 

 

 (  
 )  ∑     

 

   

(  
 )        *       + (22) 

 

where k refers to different evaluation functions and K is the total number of functions for the problem. 

 

4.3. Path Travel Time Cost 

The main evaluation function for path planning problem is to measure the path cost based on its 

length or time to travel on the path. This study focuses on finding an optimal path that is capable of taking 

advantage of favourable current to assist the AUV motion, while avoiding the less favourable current to 

achieve a shorter travel time. For this purpose, a travel-time-based evaluation function is developed in  

this study.  

Based on previous formulation, a given path Xi can be represented as a series of path nodes or 

alternatively in the form of discretised waypoints P = [pi,1, pi,2, … , pi,m ], where P is the output from B-spline 

function and m is the total number of discretised waypoints. The travel time cost F1 along a path can be 

determined by finding the sum of discretised time required to travel on each small path segment that connects 

the consecutive discretised waypoints in P.  

 

  (  )  ∑
‖           ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

|  |

   

   

         *         + (23) 

 

where Vg is the ground reference velocity of the AUV, which is the resultant AUV velocity under the effect 

of surrounding ocean current. The contribution of current on the AUV can be obtained by projecting  

the current velocity Vc in the direction of the AUV water reference velocity Va, which is essentially the 

direction of the path vector. Thus, Vg is given by the sum of Va and the contribution of Vc as shown in (24). 

 

      
  ⋅            ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖           ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
 (24) 

 

4.4. Threat Cost 

The obstacles avoidance ability of the path planner relies on the threat cost evaluation function, in 

which the exposure of the path to threats/obstacles is measured. All threats in the problem space are modelled 

as ellipses (or circles if the major axis and minor axis are equal) under 2D condition, and as ellipsoids (or 

spheres if all the principal axes are equal) under 3D condition with their principal axes aligned with the 

coordinate axes. A threat cost evaluation method based on the intersection between the path and the threats is 

employed in this study. 

Assuming a threat h in 3D problem space with centre Oc,h = (Ocx, Ocy, Ocz) and semi principal axes 

Or,h = (Orx, Ory, Orz), its parametric equation can be expressed in (25). The parametric equation of a path 

segment that connects two consecutive waypoints pi, j = (x1, y1, z1) and pi, j+1 = (x2, y2, z2) can be written as 

(26). The cost evaluation in 2D takes a similar approach, except that the dimension reduction in 2D reduces 

the number of variables and hence simplifies the computation. 
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Substituting (26) into (25) yields the following equations, which are expressed in terms of s. The intersection 

of the path with the threat can be evaluated by obtaining the discriminant ξ of (27) according to (31). 

 

           (27) 
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         (31) 

 

A safety margin is added to the principal axes of all threat regions so that the AUV will not conflict 

with the threat when ξ = 0, i.e. the path is tangent to the threat region. When ξ > 0, the path will conflict with 

the threat if the roots s1 and s2 given by (32) are within the range of 0 ≤ s1, s2 ≤ 1. 

 

      
   √ 

  
 (32) 

 

If the path conflicts with the threat, the threat cost will be proportional to the length of the path 

segment contained in the threat region as given in (33). The intersection points, S1 and S2 can be determined 

by solving (27) using the obtained s1 and s2, and substituting them back into (26). 
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4.5. Physical Motion Limitations 

The considerations for physical motion limitations of AUV should include its yaw (turning) and 

pitch motions at a given forward speed. Evaluation functions are developed to check the compliance of  

the path with respect to these limitations, and to penalise the cost if any of the limitations is violated. To 

check the path compliance with the yaw limitation, the turning angle of the path in the x-y plane is measured 

and compared against the maximum allowable turning angle ψmax. Considering two consecutive path 

segments that consist of three waypoints pi, j , pi, j+1 and pi, j+2 (refer to Figure 1), the turning angle ψ can be 

obtained from the cosine function as shown in (34). The first part of the function is the scalar projection of 

the second path segment on the first segment in the x-y plane, while the second part is the length of  

the second path segment in the x-y plane. 
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Figure 1. Yaw angle and pitch angle of a path 



Int J Rob & Autom ISSN: 2089-4856  

 

Particle swarm optimization algorithms with selective differential evolution... (Hui Sheng Lim) 

105 

The cost F3 for violating the yaw limitation is obtained from the calculated turning angle as  

shown in (35). 

 

  (  )   ∑   (    )
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(35) 

 

For the pitch motion, the instantaneous pitch angle θ and the change in pitch θ of the AUV at any point 

should not exceed their respective maximum values (θmax & θmax). Referring to Figure 1, θ can be 

determined using the basic tangent function as shown in (36). Next, θ can be calculated using (37). 
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            (37)  

 

From the calculated pitch, the cost F4 for violating θmax and the cost F5 for θmax can be obtained as 

shown in (38) and (39) respectively. 
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5. SIMULATIONS 

The performance of the proposed algorithms is evaluated in the AUV path planning problem under 

different scenarios in this section. 

 

5.1. Simulation Setup 

The path planning of the AUV was conducted in a 1000-run basis Monte Carlo simulation under  

a 2D scenario, followed by a 3D scenario. The machine used has Intel Core i5-6300U CPU @ 2.4GHz with 

8GB RAM. The problem spaces of the simulations were assumed to be a current field that consists of 

500×500 square grids for 2D, and 500×500×500 cube grids for 3D, with each side of the grid equivalent to 1 

metre. Non-uniform ocean current and static obstacles of different sizes are present in the problem space.  

The current field was generated based on the data obtained from the field experiment conducted at Beauty 

Point, Tasmania, Australia. 

The AUV is required to travel from a starting point to a target with a pre-set water reference velocity 

of 1.5m/s. Based on the properties of REMUS 100 AUV, the safety margin used in the threat computation is 

set to 1 metre, while the angles ψmax, θmax and θmax are set to 30, 45 and 10 respectively. The cost factor 

for the path travel time f1 was set to be 1.0, and the other cost factors f2 – f5 were all set to be 0.25, so that all 

costs except the travel time cost have similar impact on the solutions. Hence, when the path solution is not 

violating the threat exposure (f2) and the physical motion limitations (f3 – f5), the fitness value of the solution 

directly represents the time required for the AUV to travel on the corresponding path. 

In each simulation run, the maximum number of iterations for the algorithm was set to 100 with  

a pre-defined stopping threshold. This means the algorithm will be iterated up to a maximum number of 100, 

but will be stopped whenever the solution difference between iterations is less than the pre-set threshold.  
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The population size of all algorithms was set to 150 particles, with each particle consisting of 5 path nodes, 

meaning each particle has 10 dimensions for the 2D problem and 15 dimensions for the 3D problem. All 

algorithm parameters were set to be their respective suggested values as discussed in Section 2. For 

comparison purposes, another path planning technique, RRT* and other metaheuristic algorithms, including 

Ant Colony Optimization (ACO) [38], Firefly Algorithm (FA) [16], Differential Evolution (DE) and Genetic 

Algorithm (GA) [9], are also tested in this study. 

 

5.2. Simulation Results 

The performances of the algorithms are compared based on the following properties: solution 

qualities, stabilities, convergence behaviours, and computational requirements. These properties can be 

evaluated by studying the fitness values of the solutions obtained and the computational time required to 

obtain the solutions. The fitness value of a solution is simply the time required (cost) for the AUV to reach 

the endpoint from the starting point by travelling on the path corresponding to the solution. Therefore,  

a lower fitness value indicates a higher solution quality and hence a stronger search ability.  

The Monte Carlo simulation results of the 2D and 3D scenarios are graphed and compared  

in boxplots as shown in Figure 2 and Figure 3. The data was not normally distributed based on  

the Shapiro-Wilk normality test. In the boxplots, the medians of the data are represented by the red horizontal 

line; the blue boxes indicate the range of 25th to 75th percentile; the black whiskers indicate the acceptable 

data range. For the boxplots of fitness values, the extreme lowest end of each whisker gives the individual 

best fitness obtained by each algorithm over the 1000-run simulation, and the green cross sign represents  

the best known (lowest) fitness value among all algorithms in the simulations. The acceptable data ranges 

and percentile ranges are indicators for the stabilities of the algorithms performances, while the medians give 

information about the solution qualities and search abilities of the algorithms.  

 

 

 
 

Figure 2. Boxplot of fitness values in 2D scenario 

 

 

 
 

Figure 3. Boxplot of fitness values in 3D scenario 
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The Kruskal-Wallis ANOVA procedure with a significance level of 0.05 was used to rank  

the solution qualities (fitness values) based on the Holm–Bonferroni stepdown method. The algorithms are 

given the same rank if they are not statistically different from one another. Detailed results of the path 

planning simulation, including the median of fitness obtained (Med.), the best known fitness (Best),  

the interquartile range (IQR), the ANOVA rank (#R), the median of computational time (T) and the total 

ranks, are tabulated in Table 4. The total ranks are calculated from the summation of the ranks for the 2D and 

3D scenarios. The ranking of the algorithms does not consider the impact of computational time.  

Based on Figure 2, Figure 3 and Table 4, almost all the PSO-based algorithms have better solution 

quality than RRT* and other metaheuristic algorithms, with the exception of standard PSO being 

outperformed by FA. Despite having lower solution quality, RRT* has the shortest computational time in 

both 2D and 3D scenarios. It can also be seen that all variants of PSO and QPSO produced better solution 

qualities than the standard PSO and QPSO. DEPSO and DEQPSO outperformed all other algorithms by 

achieving the lowest medians for fitness value in both 2D and 3D. The total ranks of DEPSO and DEQPSO 

suggest that the two fully DE-hybridized algorithms are able to produce the top two best solution qualities for 

path planning problem. However, the computational time of DEPSO and DEQPSO are significantly higher 

than all the other algorithms due to the high computational requirements of the greedy selection operator. 

 

 

Table 4. Path planning simulation results 

Algorithm 

2D  3D 

Total Rank Med. 

(×102) 

Best 

(×102) 
IQR #R T(s) 

 Med. 

(×102) 

Best 

(×102) 
IQR #R T(s) 

RRT* 3.25 3.14 9.4 11 4.8  3.48 3.37 10.9 11 14.3 22 
ACO 3.24 3.12 8.0 13 9.4  3.46 3.29 17.6 11 41.3 24 

FA 3.11 3.02 6.2 8 9.2  3.28 3.21 7.7 7 41.2 15 

GA 3.13 2.98 6.3 10 12.3  3.33 3.23 11.7 9 48.3 19 
DE 3.21 3.05 6.7 11 12.8  3.41 3.34 15.5 11 53.6 22 

PSO 3.10 3.00 5.4 8 10.7  3.35 3.21 12.1 9 34.6 17 

QPSO 3.09 3.00 6.4 7 9.9  3.27 3.19 13.2 7 30.9 14 
APSO 3.01 2.92 1.3 5 10.8  3.20 3.17 2.6 5 37.7 10 

DEPSO 2.90 2.85 5.9 1 22.4  3.09 3.04 5.9 1 69.0 2 

DEQPSO 2.89 2.85 3.7 1 20.8  3.07 3.03 3.7 1 76.7 2 

SDEPSO 2.98 2.91 7.7 6 12.8  3.18 3.14 8.8 5 35.7 11 

SDEAPSO 2.99 2.92 6.2 3 14.9  3.14 3.10 3.7 4 38.8 7 

SDEQPSO 2.94 2.90 7.8 3 13.7  3.13 3.10 4.7 3 37.6 6 

 

 

The solution qualities of SDEAPSO and SDEQPSO are second to the fully DE-hybridized 

algorithms; they are ranked similarly in 2D based on the ANOVA ranking. APSO has better solution quality 

than SDEPSO in 2D. It is worth noting that APSO has the lowest interquartile range is both 2D and 3D, 

indicating the highest stability among all the algorithms. In the 3D scenario, SDEQPSO is ranked slightly 

higher than SDEAPSO, while SDEPSO is ranked similar to APSO. The total ranks of the overall 

performance in both 2D and 3D reveal that SDEQPSO and SDEAPSO are ranked as the third and the fourth 

respectively. More importantly, the computational times of the two selectively DE-hybridized algorithms are 

significantly lower than the fully DE-hybridized algorithms and very close to other PSO-based algorithms. 

These indicate the higher computational efficiency of SDEQPSO and SDEAPSO in solving the path planning 

problem because they are able to produce solution quality that is very close to DEPSO and DEQPSO, while 

having a significantly lower computational requirement. In terms of problem size, the computational time 

required by the path planner is considered short, particularly in comparison to the computational time 

required for estimating the ocean environment based on the AUV sensory measurements. 

 

 

6. VEHICLE PATH VALIDATION 

For validation purposes, the path solutions generated by the AUV path planner were used as  

a reference trajectory for a dynamic model of REMUS 100. This section briefly explains the dynamic model 

and the path following controller used. 

 

6.1. Dynamic Model 

Based on Fossen‟s vectorial representation [39] and SNAME (Society of Naval Architects and 

Marine Engineers) standard formulation, the 6 DOF equation of motion for a typical AUV can be modelled 

as shown in (40) and (41). 
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where R (η2) and T (η2) are the rotation matrices between inertial and body-fixed reference frames for  

the translational velocities and angular velocities respectively. η includes the position η1 and the orientation 

η2 of the vehicle with respect to the inertial reference frame, while the derivative of η in (40) represents its 

rate of change.   includes the translational velocities    and the rotational velocities    of the vehicle with 

respect to the body-fixed reference frame as described in the vectors in (42). 
 

  ,    -  ,      - , 

  ,    -  ,      -  
(42)  

 

In (41), M and C( ) describe the inertial and Coriolis matrices (including rigid body and added 

mass) respectively, D( ) is the hydrodynamics damping matrix, g(η) is the hydrostatics restoring forces,  

and τ describes the control forces from the actuators. This study uses the REMUS 100 model derived from 

(40)–(42) by [40]. The hydrodynamics coefficients calculated in [40] are used in the vehicle model. 

 

6.2. Path Following Controller 

The path following controller of the AUV model used the integral line-of-sight (iLOS) guidance law 

to set the yaw and pitch angles for following the trajectory generated by the path planner. The iLOS guidance 

law described by [41] allows the AUV to shape the convergence towards the path in the presence of ocean 

current and environmental disturbance. The desired iLOS yaw angle (heading) ψd and pitch angle θd can be 

given as follows: 
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where e is the cross-track error, h is the vertical-track error, Ki,y and Ki,z are the integral gains, and Δy and Δz 

represent the look-ahead distances for iLOS heading and pitch respectively. The integral terms of cross-track 

error eint and vertical-track error hint will produce non-zero ψd and θd even when the AUV is on the planned 

path, allowing the vehicle to counteract any effects of ocean current with the necessary side-slip and  

pitch angles. The rates of integral terms ėint and  int will reduce the integral action with large cross-track  

and vertical-track errors (i.e. vehicle is far from the planned path), in order to minimize the risk of  

integrator wind-up. 

 

6.3. Validation Results 

The feasibility of the path solutions is first checked by comparing against the motion limitation of 

REMUS 100, which has a minimum turning radius of 8.1 metres in the worst case scenario [42].  

The curvature radius of a feasible path must be higher than the minimum turning radius. The paths generated 

by SDEQPSO satisfy the AUV motion limitation as shown in Figure 4. 

Next, the 2D and 3D solutions generated by SDEQPSO were validated by comparing against  

the simulated paths in Figure 5. The AUV is required to travel from the starting point (green square) to  

the target (pink star) without running into obstacles, while trying to take advantage of the favourable current 

to assist the AUV motion. In the 2D results, the blue-coloured regions indicate the favourable current while 

the red-coloured regions denote the less favourable current. In both results, the solid sections of the planned 

paths indicate that the favourable ocean current has a positive effect on the AUV motion while the dashed 

sections suggest otherwise. It can be observed that the paths are able to follow the favourable current and 

avoid the less favourable current to achieve a shorter travel time. The simulated paths closely resemble  

the planned paths in both scenarios. 
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(a) 

 
(b) 

 

Figure 4. Curvature radius of planned path for (a) 2D and (b)3D 

 

 

 
(a) 

 
(b) 

 

Figure 5. Validation of path solution in (a) 2D scenario and (b) 3D scenario 

 

 

The cross-track errors of the simulated paths relative to the planned paths for the 2D and 3D 

scenarios are graphed in Figure 6. The errors for both scenarios are well below 1 metre, proving that  

the AUV was able to follow the planned paths closely. Hence, the simulation results showed that the path 

solutions generated by the proposed algorithm are smooth and feasible for the path planning application. 
 

 

 
 

Figure 6. Cross-track error of simulated path relative to planned path 
 

 

7. CONCLUSION 

By selectively hybridizing with differential evolution, this paper presents new variants of PSO 

algorithm with improved search ability for the global minimum path of an AUV without increasing  

the computational requirements. The proposed algorithms were benchmarked against other algorithms in  

an offline AUV path planner because if the proposed algorithms can provide better computational efficiency 
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to demonstrate the minimum capability of a path planner, then they will outperform the tested algorithms in 

the online path planner. Based on the Monte Carlo simulations and ANOVA procedures, the SDEAPSO and 

SDEQPSO algorithms were able to achieve a similar performance to DEPSO and DEQPSO algorithms in 

terms of solution quality and stability, while having a significantly lower computational requirement. Most 

importantly, the simulation results showed that the planned paths in both the 2D and 3D scenarios are 

smooth, feasible and able to account for a priori known environment. 

The PSO-based algorithms proposed in this study are most efficient for solving nondeterministic 

polynomial time (NP)-hard problem, such as the path planning problem. Although the simulation assumed  

a priori known environment to represent the minimum capability of a path planner, the algorithms can be 

adapted to a more realistic operational condition in future work due to the demonstrably high computational 

efficiency, which is suitable for solving compute-intensive problems such as path re-planning in highly 

dynamic environments. The future extension of this work will include developing a path re-planning 

algorithm that can deal with a priori unknown environment. 
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