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ABSTRACT

This paper investigates the lane keeping control and the lateral control of autonomous
ground vehicles, robots or the like considering the RAFU functions. A strategy based
knowing the real position of several points of the trajectory is proposed to achieve
the lateral control purpose and maintain the lane keeping errors within the prescribed
performance boundaries. The RAFU functions are applied to achieve these goals. The
stability of these functions, their applicability to approach any arbitrary trajectory and
the easy control of the possible error made on the approximation are useful advantages
in practice.
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1. INTRODUCTION
Intelligent transport systems (ITS) vary in technologies applied: basic traffic signal control systems,

automatic number plate recognition, speed cameras to monitor security systems and the like. Mechatronics sys-
tems (MS) include a combination of mechanical, electrical, telecommunications, control and computer science
technologies. The robotics (R) involves design, construction and use of robots and draws on the achievement
of computer, mechanical or electronic engineering and mathematics.

In particular ITS, MS and R include management metods such as automatic navigation systems, vehi-
cle control and automatic driving. This work is conncerned about these topics, specifically about lane keeping
control and lateral control.

There is a wide of literature on current developments in the field of lateral and lane keeping control
of autonomous vehicle motions [1–3]. In robotics, for example, the concept of lane-keeping motion planning
algorithms for mobile robots in order that the robot does not leave the lane if collision-free motion is available
introduced in [4].

The RAFU functions have been studied in Approximation Theory (the interested reader can see [5–
11]). In this paper, the RAFU functions will be called the Taxi functions.

As when we use a taxi, the taxi driver take us to the destination, from knowledge of the exact positions
of several points of the road centerline and a width of the route, our main goal in this work is to obtain RAFU
continuous functions that connect the initial point with the final point of a certain trajectory without touching
the sides of the road. To achieve this aim, we only need that the robot has the necessary technology to know the
exact positions of some points of the route that it needs to follow at any time. In this work we are not concerned
about what the machine must do in case of any obstacle appears on the road.

Until now, RAFU functions have not been employed for this purpose. But given the ease and the
accuracy with which these continuous functions approximate any step function and, therefore, any continuous
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trajectory, we think that the use of these functions in ITS, MS and R could be useful, specifically in lane keeping
and lateral control. Moreover, the easy control of the possible error made on the approximation of the exact
route is another advantage in practice.

In Section 2 we solve the lane keeping and lateral control problems in case of the routes are straight
and perpendicular all of them. Section 3 is devoted to solve the same problems in case that the trajectory
is a continuous function. The lane keeping and lateral control problems in case of an arbitrary trajectory on
the plane is studied in Section 4. Concluding remarks are in Section 5. This paper is illustrated with some
examples.

2. TRAJECTORY WHERE ALL ROUTES ARE STRAIGHT AND PERPENDICULAR
Definition 1 Given an arbitrary function f defined in [a, b] and let Ps = {x0 = a, x1, ..., xs = b} be a parti-
tion, we define the RAFU Method on approximation to the function function f to all approximation procedure
that uses functions Cn defined in [a, b] to approach the function f where the functions Cn(x) are defined by

Cn(x) = f(x1) +

s∑
i=2

[f(xi)− f(xi−1)] · Fn,p(xi−1, x) (1)

being

Fn,p(xi−1, x) =
2np+1
√
xi−1 − a+ 2np+1

√
x− xi−1

2np+1
√
b− xi−1 + 2np+1

√
xi−1 − a

(2)

with p ≥ 1 a natural number. The functions Cn(x), n ∈ N are called RAFU Functions.

Suppose we know that (x0, k1), (x1, k1), (x1, k2), (x2, k2), (x2, k3), (x3, k3),..., (xs−1, ks), (xs, ks)
are the exact positions of the vertices of a trajectory Es(x) in which all streets are straight and perpendicular
and suppose that it verifies that xi < xj for all 0 ≤ i < j ≤ s. With this notation, the following Proposition
can be established.

Proposition 1 Let Ps = {x0 = a, x1, ..., xs = b} be a partition of [a, b] and let Es(x) be a step function
defined in [a, b] by

Es(x) = k1 · χ[x0,x1] +

s∑
i=2

ki · χ(xi−1,xi] (3)

with ki real numbers and χ[c,d](x) the function defined by χ[c,d](x) = 1 if x ∈ [c, d] and χ[c,d](x) = 0 if
x /∈ [c, d].

For all n ≥ 2, if 3(b−a)
nK ≤ δ (s), being δ (s) = min

1≤i≤s
|xi − xi−1| and K ≥ 2 a positive integer, it

follows that

1. |Cn(x)− Es(x)| ≤ 2K(Ms−ms)
n
√
n

if x ∈ [a, b]−
⋃s−1
i=1

(
xi − δ(s)

3 , xi + δ(s)
3

)
2. |Cn(x)− [ki (1− αx) + ki+1αx]| ≤ 2K(Ms−ms)

n
√
n

if i = 1, ..., s− 1 and x ∈
(
xi − δ(s)

3 , xi + δ(s)
3

)
where Ms and ms are the maximum and the minimum of the ki , αx ∈ (0, 1) is a real number which depends
only on x and (Cn)n is the sequence of RAFU functions associated to Es according with (1) and defined as

Cn(x) = k1 +

s∑
i=2

[ki − ki−1] · Fn,2(xi−1, x) (4)

being Fn,2(xi−1, x) for each i = 2, ..., s the functions defined in (2) for p = 2.

A proof of Proposition 1 can be seen in [11].
The expression Error (n) = 2K(Ms−ms)

n
√
n

give us the maximum distance between the Taxi Function
Cn(x) and the real trajectory Es(x) along the road centerline. In this sense, fixed a certain K, for any n ≥ 2
we can know Error (n) and reciprocally.
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Figure 1. Approximation to a step function

In practice we would work in this way: first consider a maximum error bound Error (n), then we
calculate δ(s) and K = Int[log2

3(b−a)
δ(s) ] and finally we find the value of n in order to determine the Taxi

function Cn(x) that the robot must follow.

Example 1 Suppose that the trajectory that a car must follow consists of 13 straight and perpendicular streets
of 2275m long in total and it is given by means the step function

E7(x) =



40 if 20 ≤ x ≤ 150

350 if 150 < x ≤ 600

200 if 600 < x ≤ 750

10 if 750 < x ≤ 925

80 if 925 < x ≤ 1100

250 if 1100 < x ≤ 1200

75 if 1200 < x ≤ 1400

In this case δ (s) = 100 and

3 (b− a)

nK
≤ 3 (b− a)

2K
≤ 100 = δ (s)

holds for all n ≥ 2 when K = 6

According to Proposition 1, for all x ∈ [20, 1400],

|Cn(x)− E7(x)| ≤ Error (n) =
2K (Ms −ms)

n
√
n

=
26 (350− 10)

n
√
n

In Figure 1 we represent the exact trajectory E7(x) (red color) and its continuous approximations
C40(x) respectively (blue color).

In this Section we have applied the result to the particular case in which the journey is defined by a
step function, but in [5] we studied how the RAFU functions can be used to approach an arbitrary discontinuous
function.

3. TRAJECTORY DEFINED BY A CONTINUOUS FUNCTION
Suppose that inside a machine we know the exact positions of some points (x0, f(x0)), (x1, f(x1)),

..., (xn−1, f(xn−1)) and (xn, f(xn)) of a continuous trajectory f(x).

Definition 2 Let f be a function defined in [a, b]. The modulus of continuity of f , ω (f, h), is the maximum of
|f(x)− f(y)| for all a ≤ x, y ≤ b, |x− y| ≤ h .

The taxi function (Alicia C. Sánchez)
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3.1. Case of a uniform net
Let [a, b] be an interval and suppose the case in which the values xi verify xi = a + i · b−an for each

i = 0, ..., n.

Proposition 2 Let Pn = {x0 = a, x1, ..., xn = b} be a partition of [a, b] with xj = a + j · b−an , j = 0,1,...,n
and let En be the step function defined by

En(x) =


k1 x ∈ [a, x1]

k2 x ∈ (x1, x2]

...

kn x ∈ (xn−1, b]

kj ∈ R, j = 1, ..., n

Let Cn be the RAFU function associated to En defined as (4) by Cn(x) = k1 +
∑n
j=2[kj − kj−1] ·

Fn,2 (xj−1, x). Then, for all n ≥ 2 it follows that:

1. |Cn(x)− En(x)| ≤ 2(Mn−mn)
n
√
n

if x ∈ [a, b] \ ∪n−1k=1

(
xk − b−a

3n , xk + b−a
3n

)
2. |Cn(x)− [kj(1− αx) + kj+1αx]| ≤ 2(Mn−mn)

n
√
n

if x ∈
(
xj − b−a

3n , xj + b−a
3n

)
and j = 1,..., n− 1

beingMn andmn the maximum and the minimum of the kj respectively and αx ∈ (0, 1) a number that depends
upon x.

Theorem 1 Let f be a continuous function defined in [a, b] and let Pn = {x0 = a, x1, ..., xn = b} be a parti-
tion of [a, b] where xi = a + i · h for each i = 0, ..., n and h = b−a

n . Then there exists a sequence of radical
functions (Cn)n defined in [a, b] as (1) such that

|Cn(x)− f(x)| ≤ 2 (M −m)

n
√
n

+ ω (f, h)

for all n ≥ 2 beingM andm the maximum and the minimum of f in [a, b] respectively and ω (f, h) its modulus
of continuity.

The proofs of Proposition 2 and Theorem 2 can be seen in [11].
According to these proofs, we define the functions En(x) as in Proposition 1 but taking into account

that k1 = f(x0) = f(x1) and ki = f(xi) for all i = 2, ..., n and then its corresponding Taxi functions Cn(x)
as in (4). In practice we would work in the same way that we have mentioned in Section 2.

Example 2 Given a route defined by the continuous function f(x)

f(x) =



75 if 20 ≤ x ≤ 80
(x−200)2

288 + 25 if 80 < x ≤ 200
5x−850

6 if 200 < x ≤ 350

150 if 350 < x ≤ 500
−(x−500)2

750 + 150 if 500 < x ≤ 800

Under the hypothesis of Theorem 1, we know that

2 (M −m)

n
√
n

+ ω (f, h) ≤ 2 (150− 25)

n
√
n

+
5

6
· 800− 20

n
≤ 952

n
√
n

In Figure 2 we show the results for n = 100.

It is important to observe that it is not easy to find the error Error (n) in Theorem 1 because
of he difficulty to obtain the term ω (f, h). So, what can we do? In practice, we can calculate ∆(f) =
max
1≤i≤n

|f(xi+1)− f(xi)| and we could take this value instead of ω (f, h).

Some advantages of the use of the Taxi functions:
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Figure 2. Approximation to a continuous function

• The value of n for the functions En(x) and Cn(x) is the same.

• The stability of the Taxi functions improves the instability of other families of approximating functions
and this is an important contibution of this work. This can be inferred from Proposition 2 where we
can deduce that between each two consecutive values xr and xr+1 the Taxi functions Cn(x) take values
between kr and kr+1.

• The functions Fn,p in (2) do not depend on the points xi but only on the subindices i (see p. 114 [6]).
So, this reduces the calculations involved.

• The Taxi functions Cn(x) can be obtained with the only condition that the trajectory to approach is a
continuous function.

• According to Proposition 2, the maximum error bound made with the Taxi functions depends only on
parameters that are known.

3.2. Case of a non uniform net
Suppose the case in which the values xi form a non uniform net. In this case an analogous result to

the Teorem 3.1 can be obtained.

Theorem 2 Let Pn = {x0 = a, x1, ..., xsn = b} be a partition of [a, b] with δ (sn) = min
1≤i≤sn

|xi − xi−1| and

∆ (sn) = max
1≤i≤sn

|xi − xi−1| such that for all n ≥ 2, 3(b−a)
nK ≤ δ (s) ≤ ∆ (sn) ≤ h being h = b−a

n and

K ≥ 2 a positive integer. Let f be a continuous function defined in [a, b]. Then, there exists a sequence (Cn)n
defined in [a, b] as (1) for p = 2 such that

|Cn(x)− f(x)| ≤ 2K (M −m)

n
√
n

+ ω (f, h)

for all n ≥ 2 and x ∈ [a, b] being M and m the maximum and the minimum of f respectively and ω (f, h) its
modulus of continuity.

A proof of Theorem 2 can be seen in [11].
To obtain the Taxi function Cn(x) we woul work as in the previous subsection. The same advantages

hold in this case too.

4. CASE OF AN ARBITRARY TRAJECTORY ON THE PLANE
Suppose the information we know inside a machine is the exact position of some values (x0, T (x0)),

(x1, T (x1)), ..., (xs−1, T (xs−1)) and (xs, T (xs)) that belong to a continuous trajectory on the plane (x, T (x)).
Here we study what we can do when this trajectory is not a function.

As (x, T (x)) is not a function, without loss of generality we can suppose that x0 < ... < xi > xi+1

for a certain i. There are two possible cases.

1. Case 1. It verifies that x0 < ... < xi ≥ xi+1 and T (xi+1) < T (xi). Then we use the equations of the
rotation around the center (xi, T (xi)) and through the angle α = 90º to turn the points (xi+1, T (xi+1)),

The taxi function (Alicia C. Sánchez)
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..., (xs, T (xs)) into (xi+1,2, T (xi+1,2)), ..., (xs,2, T (xs,2)) respectively 1
xj,2

T2(xj,2)

 =

 1 0 0
xi + T (xi) 0 −1
−xi + T (xi) 1 0

 ·
 1

xj
T (xj)


for all i+ 1 ≤ j ≤ s.

2. Case 2. It verifies that x0 < ... < xi ≥ xi+1 and T (xi+1) > T (xi). Then we use the equations of the ro-
tation around the center (xi, T (xi)) and through the angle α = −90º to turn the points (xi+1, T (xi+1)),
..., (xs, T (xs)) into (xi+1,2, T (xi+1,2)), ..., (xs,2, T (xs,2)) respectively 1

xj,2
T2(xj,2)

 =

 1 0 0
xi − T (xi) 0 1
xi + T (xi) −1 0

 ·
 1

xj
T (xj)


for all i+ 1 ≤ j ≤ s.

In this way, we will reproduce the cases 1 and 2 as many times as necessary until the initial points (x0, T (x0)),
(x1, T (x1)), ..., (xs, T (xs)) have been turned into other points (x0, T (x0)), ..., (xs,q, Tq(xs,q)) in which
x0 < ... < xs,q . So, the initial trajectory (x, T (x)) becomes a continuous function F (x) to which we can
apply the explained in Section 3. After then, we obtain the Taxi function Cn(x) associated to F (x) for a
certain n and then we recalculate for each x ∈ [a, b] its the corresponding point of the real trajectory according
to all the inverse rotations that this x has tested in order to give to the robot the real information to follow.

5. CONCLUSION
The RAFU method on approximation is an original approximation procedure. In this work we have

showed how this method can be used to solve the lane keeping and the lateral control problems in intelligent
transport systems, specifically in robot navigation. Given a trajectory on the plane, the Taxi functions can be
useful to provide the necessary information to a vehicle in order to go from a place to another one autonomously.

The proposed method holds for any trajectory and it does not depend on its regularity. Moreover the
error bound that the Taxi function provides does not depend on any unknown parameter or of the regularity
of the trajectory. Given the conciseness of the results of this paper, we believe that these avenues of research
deserve some attention.
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