
International Journal of Robotics and Automation (IJRA)

Vol. 5, No. 3, September 2016, pp. 182~189

ISSN: 2089-4856  182

Journal homepage: http://iaesjournal.com/online/index.php/IJRA

Local Path Planning of Mobile Robot Using Critical-PointBug

Algorithm Avoiding Static Obstacles

Ajoy Kumar Dutta, Subir Kumar Debnath, Subir Kumar Das
Department of Production Engineering, Jadavpur University, India

Article Info ABSTRACT

Article history:

Received May 27, 2016

Revised Aug 18, 2016

Accepted Aug 31, 2016

 Path planning is an essential task for the navigation of autonomous mobile

robot. This is one of the basic problems in robotics. Path planning algorithms

are classified as global or local, depending on the knowledge of surrounding

environment. In local path planning, the environment is unknown to the

robot, and sensors are used to detect the obstacles and to avoid collision. Bug

algorithms are one of the frequently used path planning algorithms where a

mobile robot moves to the target by detecting the nearest obstacle and

avoiding it with limited information about the environment. This proposed

Critical-PointBug algorithm, is a new Bug algorithm for path planning of

mobile robots. This algorithm tries to minimize traversal of obstacle border

by searching few important points on the boundary of obstacle area as a

rotation point to goal and end with a complete path from source to goal.

Keyword:

Autonomous mobile robot

Bug algorithm

Path planning

Static obstacle avoidance

Sub-goal point Copyright © 2016 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Subir Kumar Das,

Department of Computer Application,

Asansol Engineering College,

Vivekananda Sarani, Asansol, Burdwan, West Bengal – 713 305, India

Email: subirkrdas@gmail.com

1. INTRODUCTION

Autonomous robots currently used in the real world have been one of the major research areas in

robotics and artificial intelligence. One of the main problems in robotics, called path planning of robot, is to

find a free path clearing obstacles for a robot from its starting position to its destination. Obstacle avoidance

is the primary requirement for any autonomous mobile robot which requires integration and coordination of

many sensors and actuators [1]. The robot acquires information about its surrounding through various sensors

mounted on the robot. The research in this field can be classified into two major areas: the global path

planning and the local motion planning. In global path planning, coordinates of the starting point, destination

point, and the obstacles are given to the robot in advance. The robot path in such applications can be

calculated using this information. Local motion planning methods require less prior knowledge about the

environment. The robot is dynamically guided on the basis of information about the locally sensed obstacles.

Therefore this approach is more practical for mobile robots [1]. In local planning, the position of target point

from its current position must be known to robot to ensure that robot can reach the destination accurately.

Several Algorithms as given by researchers include Bug Algorithms [2-4], Evolutionary Algorithms

like Artificial Bee Colony Optimization [5], Ant Colony Optimization and Scout Ant Algorithm [6,7],

Particle Swarm Optimization [8,9], Potential Functions [10-14], etc.

 In this paper, we propose a path planning algorithm called Critical-Point Bug, to make the robot

reach a specified goal point from a given start location with a target to minimize the use of outer perimeter of

an obstacle. This algorithm tries to minimize the traversal time and path of a robot than “PointBug

Algorithm” [4].

IJRA ISSN: 2089-4856 

Local Path Planning of Mobile Robot Using Critical-PointBug Algorithm Avoiding (Ajoy Kumar Dutta)

183

2. LOCAL PATH PLANNING AND BUG ALGORITHM

In local Path Planning, the area nearby the robot is unknown, or only moderately known. Sensors

are used to detect the obstacles and a collision avoidance system must be integrated into the robot to avoid

the obstacles. The goal where the robot should reach is known, but the shape and the position of the obstacles

are indefinite. The directional angle to the goal or destination point of robot (t) (0(t)2) is determined.

There may be many obstacles on the plane and the only objective is to navigate the autonomous mobile robot

to the destination avoiding those obstacles. To find out the best possible path the following navigation law is

used [1-15]. ̇(t)= - [(t)- 
*
(t)] here, (t) is current directional angle of robot, 

*
(t) is desirable direction

angle,  is a positive constant.

Several approaches have been proposed in the literature in the past to solve the path planning

problem in an unknown region. One of the widely used schemes that extensively discussed in the literature is

„Bug algorithms‟, the sensor-based path planning approach. Two algorithms namely Bug1 and Bug2 were

proposed by Lumelsky et al [3]. This algorithm operates switching between two simple behaviors: (i) the

movement towards the goal and (ii) the movement around an obstacle. Several versions of Bug algorithms

have been proposed since then. The most commonly used and referred in mobile robot path planning are

Bug1 and Bug2, VisBug, DistBug and TangentBug. Others bug algorithms are Alg1 and Alg2 Class, Rev and

Rev2, OneBug and LeaveBug [4].

Lumelsky and Skewis proposed an improvement in the Bug2 with the VisBug incorporating a range

sensor, which is an enhancement to the condition that the robot uses to stop contouring an obstacle and

resume the movement to the goal, the so called leaving condition. Such improvement generates short cuts in

the path [2].

Kamon and Rivlin created the DistBug which is characterized by another alteration in the leaving

condition. Under certain special conditions the convergence of the DistBug can be proved. The DistBug

algorithm incorporates, basically, two contributions in relation to the earlier algorithms: (i) a routine that

keeps the computation cost in range but offers more aggressive leaving condition and (ii) a method to

determine which side of the obstacle should be con-toured. It requires its own position by applying odometry,

destination and sensor data. To ensure convergence to the goal, the DistBug algorithm needs a little amount

of global information for modifying dmin (distance from robot to destination) and for determining that the

robot finished a loop around an obstacle. The value of dmin can be extracted directly from the visual

information. This convergence using updating dmin value makes problem in determining accuracy because the

value of dmin is taken directly from user.

The TangentBug improves the DistBug and Bug2 algorithm by integrating range sensors from zero

to infinity to detect obstacles. Robot will start moving around the obstacle on detection of an obstacle and as

soon as it clears the obstacle will continue motion toward target point. During following boundary, it records

the minimal distance to target dmin which determines obstacle leaving and reaching condition. The robot

constructs a local tangent graph (LTG) based on its sensors‟ immediate readings. To decide the next motion

robot continuously modified LTG and use it. The disadvantage of this algorithm is a complete 360
0

scan is

required by robot in making decision to move to the next target.

Another variation of Bug algorithm is PointBug algorithm [4] which improves the TangentBug

algorithm. This algorithm tries to minimize moving around of an obstacle (obstacle border) by considering

points on the outer perimeter of obstacle area as a rotating position to goal and finally create an entire path

from source to objective. The main idea is fewer use of outer perimeter of obstacle area minimizes total path

length taken by a mobile robot. As robot considers here the right most sudden point first, so this algorithm

may take few extra times if more than one sudden point exists in an obstacle. Fig. 1 shows the different

trajectories generated by Bug2, VisBug, DistBug, TangentBug and Point Bug.

Figure 1. Trajectories Formed by different Bug Algorithm

  ISSN: 2089-4856

IJRA Vol. 5, No. 3, September 2016: 182 – 189

184

3. CRITICAL-POINTBUG ALGORITHM

This algorithm helps to navigate a robot in a plane filled with static obstacles of unknown shape,

size and location. The robot uses range sensor to detect abrupt change in distance to detect obstacle positions.

Depending on the obstacle positions it calculates and determines the next point to move from current point to

reach the target. We consider a possibly unbounded space Q ⊂ R
2
 which is occupied by a set of bounded

static obstacles O = {O1,O2, . . .,OK}. We consider a wheeled robot which is equipped with sensors to detect

obstacles. The robot has its initial coordinates with reference to a global frame of reference. We solve the

problem in the configuration space where the robot is represented as a point.

Before proceeding to the description of the algorithms, we make some necessary and useful

assumptions and definitions for this algorithm.

3.1. Assumptions
A1. Here, the Robot is considered as Point Robot

A2. World co-ordinate system is used

A3. All points (including source and destination) are in first quadrant

A4. The velocity and angular velocity is constant in every movement and rotation respectively

A5. Surface is smooth and in same altitude

A6. All the obstacles are stationary and of any shape and size

A7. The mobile robot moves in a two-dimensional space

3.2. Sub Goal Point and Critical Point
 The massive change of distance reading from range sensor output either in increasing or decreasing

mode is considered for finding Sub goal point. It can be from infinity to a definite value or a definite value to

infinity or definite value to a definite value where the difference value, Δd is defined. Any reading from

range sensor from interval time, tn to tn+1 which detects this massive change in range is considered as Sub

goal Point.

The robot may scan the surroundings by range sensor from 0
0
 to 360

0
. The initially the robot faced

straight towards goal point and then it starts scanning for sub goal point.

A sub goal point chosen by the robot for next point to move is Critical point. Generally this point

has the lowest distance from destination within the set of sub goal and is not traversed yet.

We consider,

T= {(x1,y1),(x2,y2),...,(xi,yi)} as a set of points traversed by the robot where (xi,yi) represents the coordinate

values

SG= {(αa,da), (αb,db),....,(αk,dk)} as a set of next sub goal points detected by the sensor where α and d

represents the angles & distances of sub goals from the robot respectively

D= {((xi,yi),δi),…..,((xj,yj),δj)} as a set of sub goal points and distance from destination of that point

Here dmin is the distance from the robot to target point and  is the direction of the same.

Figure 2. Obstacles detected by Range sensor(R)

The algorithm is as follows:

1. Robot Start

2. Take input of the position co-ordinates of source and destination

3. Calculate the distance and direction from source to destination dmin and  respectively

4. WHILE not Destination

5. IF obstacle in direction

6. Find out the sub goal points using distance and angle of rotation required

IJRA ISSN: 2089-4856 

Local Path Planning of Mobile Robot Using Critical-PointBug Algorithm Avoiding (Ajoy Kumar Dutta)

185

7. Calculate the coordinates of sub goals from SG and save it in set D

8. Calculate distance of each sub goal and save it in set D

9. Select the coordinate having the lowest distance

10. IF the point exists in Traverse point set T

11. Discard the point

12. Select the next lowest distance from D

13. Follow step 7

14. ELSE Save the coordinate in traverse point set T

15. Calculate angle of rotation

16. Move towards sub goal

17. Get direction 

18. ELSE

19. Calculate the coordinate at radius towards the direction 

20. Save the coordinate in T

21. Move up to radius of vision towards direction 

22. END IF

23. END WHILE

24. Robot Stop

Figure 2. Shows how a range sensor scanning obstacles with its maximum radius. The circle is the scanned

area at any point of time. O1, O2, O3, O4, O5 are the obstacles. Thin black line shows the existence of

obstacles detected by the sensor within its radius. The end points of the each black line can be treated as sub

goal points with distance and sensor angle.

3.3. Critical-Pointbug Algorithm Analysis
Let us consider a mobile robot as shown in Figure 5, with its starting position (x0,y0). The

formulation considers evaluation of next obstacle free co-ordinate position of the robot. The robot knows its

goal position. During its motion at any instance of time:

Let,

(xi,yi) – The current position of the robot

(xi+1,yi+1) – The next possible position to move by the robot

α –Angle where sub goal point is detected by sensor

β – Robot rotation angle with respect to the line parallel to x-axis and passing through (xi,yi) before

movement

θ – Angle generated by β with respect to the line parallel to x-axis for sub goal point coordinates calculation

dk – Distance of a sub goal point from current location

v – Velocity of the robot

 – Angular velocity of the robot

Four kinds of movement are possible for the robot. These are: 1. Left UP, 2. Right UP, 3. Left

Down, 4 Right Down. Depending upon sub goal each four movement can make rotation of robot. This

rotation for next possible movement can be classified into four sub kind which can be described pictorially

Figure 3 represents the various types of movement and Figure 4 shows how robot is generating

possible next position from current position. Next point will be decided from sub goal point calculation.

Sub goal Point Coordinate Calculation:

βi= (α +βi-1)%360 where „%‟ is a modulo operator

Case 1: β<=90

 θ = β

 xs=1,ys=1

Case 2: 90≤β≤180

 θ = 180
0
-β

 xs=-1,ys=1

Case 3: 180≤β≤270

 θ = β-180
0

 xs=-1,ys=-1

Case 4: 270≤β≤360

 θ = 360
0
-β

  ISSN: 2089-4856

IJRA Vol. 5, No. 3, September 2016: 182 – 189

186

 xs=1,ys=-1

xi+1 = xi+dkcosθ(xs)

yi+1 = yi+dksinθ(ys)

xs and ys are the sign factors used in determination of the coordinates

Figure 3. Different kinds of robot movements and rotation

Figure 4. Current and next position of the robot Figure 5. Trajectory of a robot using Critical-

PointBug Algorithm

Figure 5 shows how a robot can reach to its destination. From source point it gets two sub goal point

A & B. It selects A as Critical Point (As the distance from A is lower than B). Next it selects C from next sub

goals C & D for the same reason. In this way it reaches E, F, G, H and finally destination.

 Path: sourceACEFGHdestination

Figure 6 shows Critical-PointBug algorithm can be used to handle local minima problem. The

rhombus marks shows sub goal points the robot scanned. It chooses the point i as the distance is less than the

distance of j from destination. Then it follows the process as described before.

Figure 6. Critical-PointBug Algorithm solving the Local Minima Problem

IJRA ISSN: 2089-4856 

Local Path Planning of Mobile Robot Using Critical-PointBug Algorithm Avoiding (Ajoy Kumar Dutta)

187

3.4. Total Time And Path Length Calculation
During each movement Euclidian distance traversed by the robot is from (xi,yi) to (xi+1,yi+1) is

 √

If the robot takes n intervals to reach its destination total path, P covered in n intervals is:

 ∑

In this whole path planning process other than range sensor scanning, coordinate calculation and taking

decision where to move, robot mainly takes for two purposes. 1. Time taken to move from current point to

next point and 2.Time taken to rotate the robot for proper alignment before leaving for next point.

1. Time taken in moving:
If di and vi are the distance covered and velocity at ith interval then the time taken during ith movement is

 ⁄ Total time taken in moving is:

 ∑ ⁄

2. Time taken in rotating the robot at each interval:

If i is the detection angle of critical point and i is the angular velocity then time taken for rotation at ith

interval is ⁄ Total time taken in rotation is:

 ∑  ⁄

Therefore the cost function will be sum of time taken in both cases i.e. moving time and rotation time:

 ∑ ⁄

∑   ⁄

 ∑ ⁄ ⁄

Figure 7. Path Generated by TabgentBug, PointBug

and Critical-PointBug algorithm with reference to literature [4]

  ISSN: 2089-4856

IJRA Vol. 5, No. 3, September 2016: 182 – 189

188

4. SIMULATION AND RESULTS

The simulation of Critical-Point bug algorithm is carried out using Adobe Flash. The algorithm is

simulated on environment with local minima, office like environment A and office like environment B.

Figures presented here makes comparisons between the paths generated by the Critical-PointBug algorithms

and other well known Bug algorithms, with the intention to analyze their similarity.

The Trajectories produced Critical-Point and other algorithms are plotted in different colors. The

sub goal and critical points are also plotted using specific symbols and colors. Fig. 7 shows office like

environment A with different trajectories applying Critical-Point and other bug algorithms. To complete this

simulation reference is taken from literature [4]

Figure 8 presents an office like environment B. All the obstacles in the room, such as chairs, desks

and walls, were represented in either rectangle or square shape.

This algorithm some time may generate long path compared to other existing path. In Fig. 5 robot

chooses the sub goal A & generates the trajectory as shown in the figure. Choosing sub goal B as critical

point may generate a path of comparatively shorter length. But due to lack of full information about the

environment it chooses A.

Figure 8. Trajectory generated by Critical-PointBug algorithm in office like environment B

5. CONCLUSIONS AND FUTURE WORK

We presented a simple sensor-based path planning algorithm to make a robot reach a specified

destination from a given start location, in a region occupied by unknown obstacles. In this paper other path

planning algorithms are studied and the Critical-PointBug algorithm is presented. This sensor based path

planning algorithm works without any global data.

There may not be difference in time if environment with less complexity, precisely, with few

obstacles and not many bifurcations. The algorithm considers only those obstacles‟ vertices that generate

collisions.

Amongst the advantages of the Critical-PointBug algorithms when compared to the other methods

are: (i) little iteration required to find the goal. (ii) There is no need to have knowledge about the

environment. (iii) Only those obstacles will be processed for calculating sub goal and critical point, which

may produce collision. (iv) The coordinate points can easily be calculated.

The algorithm is not designed to operate in dynamical environments, where the obstacles change its

position during the robot movement. Future work includes both theoretical studies and practical work in this

particular area.

REFERENCES
[1] R. Abiyev, D. Ibrahim, B. Erin. Navigation of mobile robots in the presence of obstacles. Advances in Engineering

Software. 2010; 41:1179–1186.

[2] Ricardo A. Langer, Leandro S. Coelho and Gustavo H. C. Oliveira K-Bug, A new bug approach for mobile robot's

path planning. 16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on

Systems and Control Singapore. 2007;MoC03.2:403-408

[3] K.R. Guruprasad EgressBug: A Real Time Path Planning Algorithm for a Mobile Robot in an Unknown

Environment. P.S. Thilagam et al. (Eds.): ADCONS 2011. 2012; LNCS 7135:228–236.

[4] Buniyamin N., Wan Ngah W.A.J., Sariff N., Mohamad Z. A Simple Local Path Planning Algorithm for

Autonomous Mobile Robots. International journal of systems applications, engineering & development. 2011; 5(2):

151-159

[5] Preetha Bhattacharjee, Pratyusha Rakshit, Indrani Goswami (Chakraborty), Amit Konar, Atulya K. Nagar Multi-

Robot Path-Planning Using Artificial Bee Colony Optimization Algorithm. Third World Congress on Nature and

Biologically Inspired Computing. 2011;

IJRA ISSN: 2089-4856 

Local Path Planning of Mobile Robot Using Critical-PointBug Algorithm Avoiding (Ajoy Kumar Dutta)

189

[6] Qingbao Zhu, Jun Hu, Wenbin Cai, Larry Henschen. A new robot navigation algorithm for dynamic unknown

environments based on dynamic path re-computation and an improved scout ant algorithm. Applied Soft

Computing. 2011;11: 4667–4676

[7] Alpa Reshamwala, Deepika P Vinchurkar. Robot Path Planning using An Ant Colony Optimization Approach: A

Survey. (IJARAI) International Journal of Advanced Research in Artificial Intelligence. 2013;2(3): 65 – 71

[8] Narendra Singh Pal, Sanjeev Sharma, Robot Path Planning using Swarm Intelligence: A Survey. International

Journal of Computer Applications (0975 – 8887). 2013;83(12): 5 – 12

[9] Chengyu Hu, Xiangning Wu, Qingzhong Liang and Yongji Wang. Autonomous Robot Path Planning Based on

Swarm Intelligence and Stream Functions. Springer Verlag Berlin Heidelberg ICES 2007, LNCS 4684. 2007;

LNCS: 277–284.

[10] Wesley H. Huang, Brett R. Fajen, Jonathan R. Fink, William H. Warren. Visual navigation and obstacle avoidance

using a steering potential function. Robotics and Autonomous Systems. 2006;54: 288–299

[11] S. S. Ge and Y. J. Cui. New Potential Functions for Mobile Robot Path Planning. IEEE Transactions on Robotics

and Automatio, 2000; 16(5):615 – 620

[12] Dusan Glavaski, Mario Volf, Mirjana Bonkovic. Mobile robot path planning using exact cell decomposition and

potential field methods. WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS. 2009;8(9):789-800

[13] S.S. Ge, Y.J. Cui. Dynamic Motion Planning for Mobile Robots Using Potential Field Method. Autonomous Robots

2002; 13: 207–222.

[14] M. Deng, A.Inoue, K.Sekiguchi, L. Jiang. Two-wheeled mobile robot motion control in dynamic environments.

Robotics and Computer-Integrated Manufacturing. 2010; 26: 268–272.

[15] Atsushi Fujimori, Peter N. Nikiforuk, Madan M. Gupta. Adaptive Navigation of Mobile Robots with Obstacle

Avoidance. IEEE Transactions On Robotics And Automation, 1997; 13(4): 596-602.

BIOGRAPHIES OF AUTHORS

Dr. Ajoy Kumar Dutta is currently a Professor in the Department of Production Engineering, Jadavpur

University, INDIA. He received his B. E. & M. E. degrees in Electronics & Tele-communication

Engg from Jadavpur University in 1983 & 1985 respectively, and Ph. D. (Engg) degree in the area of

Robotics from Jadavpur University in 1991. His Field of Specialization and Research Area are

Robotics, Sensors, Computer Vision, Microprocessor Applications, and Mechatronics. He has

teaching & research experience of 31 years.

Mr. Subir Kumar Debnath is currently an Associate Professor in the Department of Production

Engineering, Jadavpur University, INDIA. He received his B. E. degree in Mechanical Engg from

Jadavpur University in 1982 & M. Tech in Mechanical Engg in 1984 from I.I.T.- Kharagpur, INDIA.

His Field of Specialization and Research Area are Robotics, Sensors, Computer Vision, CNC

Machines and Automation. He has teaching & research experience of 31 years.

Subir Kumar Das received M.Tech Operations Research in 2010 and M.Sc. Computer Science in

2007. He is currently pursuing a Ph.D. from Jadavpur University of India. His research interests

include computer vision system, autonomous mobile robots, optimisation technique.

