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 This paper intends to propose an optimal trajectory planning technique using 

geodesic to achieve smooth and accurate trajectory for industrial robots. 

Geodesic is a distance minimizing curve between any two points on a 

Riemannian manifold. A Riemannian metric has been assigned to the 

workspace by combining its position and orientation space together in order 

to attain geodesic conditions for desired motion of the end-effector. 

Previously, trajectory has been planned by considering position and 

orientation separately. However, practically we cannot plan separately 

because the manipulator joints are interlinked. Here, trajectory is planned by 

combining position and orientation together. Cartesian trajectories are shown 

by joint trajectories in which joint variables are treated as local coordinates 

of position space and orientation space. Then, the obtained geodesic 

equations for the workspace are evaluated for initial conditions of trajectory 

and results are plotted. The effectiveness of the geodesic method validated 

through numerical computations considering a Kawasaki RS06L robot 

model. The simulation results confirm the accuracy, smoothness and the 

optimality of the end-effector motion.  
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1. INTRODUCTION 

Robots are being extensively operated in industries for material handling, machine loading or 

unloading, assembly, machining, palletizing, welding and painting etc. to achieve high productivity through 

automation. The automation process using industrial robots in manufacturing and assembly environment is a 

challenging task due to presence of several objects. Some application areas namely machining and painting 

etc. needs the trajectory to be the shortest, smooth and precise. The main purpose is to operate robot end-

effector such that its movement is smooth, accurate and continuous and faster along a trajectory to 

accomplish an intended task persistently. 

The traditional ways of finding a path or trajectory are simple processes like Configuration Space 

Obstacle (CSO) and Generalized Voronoi Diagram (GVD). Then the polynomial interpolation method is 

employed as trajectory planning method for manipulator and the interpolation revolves around the joint space 

which can also be named as the Cartesian space. Currently this rudimentary technique is vastly being 

employed for manipulation process. Since they considered the manipulator joints as linearly independent, this 

method does not give a clear view of manipulator‟s potential performance. These methods are essentially 
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graphical techniques used for obstacle avoidance. The minimum time criterion i.e. shortest path findings, 

path accuracy, smoothness of trajectory are not well defined by the traditional methods of trajectory 

planning. Earlier planning methods are prolonged process of optimization due to the nature of providing 

multiple solutions to inverse kinematics problems. Some of the alternative solutions to the above-mentioned 

problems are neural network approach, polynomial approach, and genetic algorithm and fifth order B-spline 

methods. 

The specific reason to implement geodesic approach as a trajectory planning method is its inherent 

optimizing characteristics, which reduces the process of optimization cycle time. It is a convenient tool to 

trajectory planning. Geodesic is robust i.e. minimal error trajectory can be obtained. Moreover, it results a 

shortest, smooth and accurate trajectory. 

 

 

2. RELATED WORKS 

Many researchers have worked on different aspects and possibility of robotic manipulator trajectory 

planning and optimization. Ning et al. [1] analyzed the dynamic movement of primitives and proposed a 

novel scheme for generating trajectory. They compared the position coordinates and velocity at start end 

points of a trajectory obtained from their method to that of the measured values and found it to be very 

precise and accurate. Gasparetto et al. [2] gave stress upon planning a smooth trajectory for robot 

manipulators. They modeled an objective function i.e. implicitly dependent upon the integral taken over the 

squared jerk as well as total execution time. Chiu [3] developed Asada‟s inertia ellipsoid and Yoshikawa‟s 

manipulability ellipsoid. These tools together result a performance parameter of velocity as well as static 

force. Borbow [4, 5] trajectory planning study was based on optimizing time and later on he also 

demonstrated control of his optimized path-planning result. 

Eldershaw et al. [6] used polynomial interpolation along with genetic algorithm which is based upon 

the natural selection procedure in order to tackle the trajectory planning problem. Tian et al [7] as well as 

Yun and Xi [8] also performed the same task by employing genetic algorithm. This method was further 

developed by Zha [9, 10] who compared the trajectory to a ruled surface and incorporated interpolation using 

Bezier curves between different poses. A novel scheme of trajectory planning was suggested by Olabi et al. 

[11] which considered continuous machining. A parametric speed interpolator came into picture which 

results in smooth trajectories. In order to achieve more accuracy a planning scheme with higher degree 

polynomials was incorporated by Boryga et al. [12]. Multi degree Splines was introduced to this type of 

planning methods by Liu et al. [13]. Gouasmi et al. [14] implemented dual quaternion method for kinematic 

analysis of robot manipulator. Shah et al. [15] have taken feed forward ANN and trained the data obtained for 

a 3-dof manipulator in MTALAB toolbox to show that ANN is best method to find inverse kinematic 

solution. Jha et al. [16] have proposed a structured artificial neural network approach i.e. multi-layered 

perceptron neural network (MLPNN) to solve inverse kinematics problem by considering 4-dof SCARA 

manipulator.  

When the motion actually is performed in the joint space by the end-effector through interpolating 

sequence of via points, it is not easily predictable. The nonlinearity of the inverse kinematics may indicate an 

uneven joint motion in joint space in order to achieve a smooth motion in Cartesian space, when data 

obtained from interpolation scheme are mapped into joint space. Subsequently, an uneven and inaccurate 

motion in the Cartesian space could be acquired. Rodnay et al. [17] analyzed the dynamic characteristics of 

2DOFs robot in 3D space. They signified trajectories by allowing the manipulator to perform free movement 

by introducing geodesics on the dynamic surface. Zefran et al. [18] took a Lie group approach to generate 

trajectories resulting from nonlinear motion. They chose Lie group and consequently defined a left invariant 

Riemannian metric on it to generate smooth trajectories. Selig et al. [19] steered the robot manipulators along 

helical trajectories by robotic control and trajectory planning. They used a Lie group method which made the 

planning complex, abstract, and not easy to put into real practice. Chen et al. [20] have demonstrated the 

effectiveness of geodesic planning by conducting simulation experiments. They specified a Riemannian 

metric for each of the position space and orientation space separately to accomplish the geodesic motion. The 

geodesic equalities are solved numerically and the results are used to manipulate the robot. Since the links of 

the robot manipulator are interlinked, we can‟t plan trajectories separately for each space. In order to get a 

shortest and accurate path while keeping the kinetic energy invariant, Zhang et al. [21] chose the parameters 

as arc length and kinetic energy and constructed Riemannian metric accordingly. But his method had some 

shortcomings which decreased the credibility of that method. The authors did not take more than 3 DOFs 

robot to plan trajectories and also not tackled the orientation problem. 

In previous works the authors did consider the use of geodesic, but they propose the trajectory 

planning separately for position and orientation. Practically the robot consists of the position and orientation 
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joints on a single arm. Therefore, the trajectories need to be determined by considering the combination of 

position and orientation joints in an integrated manner. In order to outrun the abovementioned drawbacks, 

this paper presents a geodesic trajectory planning method by combining the position and orientation of joint. 

Geodesic is intrinsic in nature and has no relation with the coordinates. Unlike the polynomial method which 

is a mere approximating interpolation scheme, this geodesic method provides an exact and accurate solution. 

The work volume of end-effector i.e. position and orientation space are combined together to define the 

Riemannian metric to attain geodesic motions. First, joint variables are considered as local coordinates of 

position and orientation space. Then geodesics are obtained from mathematical formulation followed by 

obtaining joint trajectories and characterizing Cartesian trajectories by joint trajectories. The nature of 

geodesic implicitly makes both equivalent trajectories (Cartesian and Joint) smooth and relatively less 

erroneous. This method implicitly filters multiple solutions resulting from inverse kinematics and results the 

optimal one. 

 

 

3. MATHEMATICAL MODELLING USING GEODESIC FOR SHORTEST PATH 

The shortest path connecting any two points on a Riemannian manifold along itself is called as the 

geodesic. It has another property that velocity along this geodesic curve remains invariant. The background 

of geodesic has been discussed in brief in the later section. 

3.1. Riemannian Manifold 

A manifold „M
n
‟ is described as a Hausdroff topological space for which any point „p‟ has a 

neighborhood U ⊂M
n
 homomorphic to an open subset of the Euclidian space „R

n
‟. If we define a function: 

 

Ф: U → Ф (U) ⊂ R
n        

(1) 

 

A Riemannian manifold is defined by (M
n
, g), where „M

n
‟ is an n-dimensional differentiable 

manifold and „g‟ is a Riemannian metric. Every Riemannian metric has a unique property that it is 

symmetric, positive definite quadratic form. Basically distance along the manifold is regarded as the metric. 

In any neighborhood U of a point in manifold we define local co-ordinates (ϴ1, ϴ2, ϴ3,….., ϴn), then the 

metric can be written as:  

 

  ∑          
 
             (2) 

 

where,        
 

   
 

 

   
  

 

If we take a curve on a Riemannian manifold: 

 

                 (3) 

 

then, its tangent vector can be defined by: 

 

   ∑    
 
   

 

   
         (4) 

 

Geodesic is described as the shortest path along the Riemannian manifold connecting any two points 

belonging to it. Hence, if arc length is considered as a variable and taken as the covariant derivative of 

equation (4) and makes it zero then equation (4) makes out the geodesic equation (5), i.e.  

 
    

   
    

    

  

   

  
          (5) 

 

where,     
  is the Christoffel symbol and is defined by: 

 

    
  

 

 
    

    

   
 

    

   
 

    

   
        (6) 

 

Where,      is a general element of inverse matrix of Riemannian metric coefficient matrix. 
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4. GEODESIC APPROACH FOR TRAJECTORY PLANNING 

The link frames of robot manipulators have been attached and the corresponding link parameters 

have been found out from the D-H representation of the link frames. The general transformation matrix 
i-1 

Ti 

for a single link can be defined as follows: 

 

 

i-1 
Ti = [

             

                              

                            

    

]    (7) 

 

Where, 

sθi = sinθi, cθi = cosθi, θi is the i
th

 joint rotation angle,  

sαi = sinαi, cαi = cosαi, αi  is twist angle, 

ai is length of link, di is offset distance at joint i. 

The forward kinematics of the end-effector with respect to the base frame is determined by 

multiplying all of the 
i-1 

Ti matrices of link frames. 

 

 
base

T end-effector = 
0 
T1*

 1
T2*

 2
T3……

n-1
Tn      (8) 

 

 

Assuming the final transformation, the T matrix of a robot end-effector as:  

 

 

T = (
  
  

) = (

        

        

        

    

)       (9) 

 

 

Where, R and P represent the orientation (n, o, a) and position (        )of the end-effector respectively. 

By combining together, R and P as orientation space and position space respectively, a Riemannian 

metric for the workspace can be constructed for the T matrix. 

 

4.1. Selection of Local Coordinates  

In order to obtain a solution to the inverse kinematic problem of the robot manipulator, an explicit 

scheme should be modeled to inter-relate joint space and Cartesian space. If all joint variables are chosen as a 

coordinate system of Cartesian space, then both the spaces can be easily inter-related. However this process 

has some shortcomings. If the joint space is to be mapped to Cartesian space, then forward kinematics has to 

be used. The intention is to map Cartesian space to joint space. Multiple solutions may be obtained instead of 

a single solution. Hence, joint variables should be treated as local coordinates instead of general coordinates 

to tackle especially the inverse kinematics problems. 

4.2. Application of Geodesic for trajectory planning 

Considering an Euclidean space with distance metric, the geodesic becomes a straight line. As 

Euclidean space is taken to be the position space, hence a Riemannian metric has been taken as distance 

metric. The Riemannian metric is given by: 

                                (10) 

 

where,    is the derivative of the position vector               and 𝑑𝑛, 𝑑𝑜, and 𝑑𝑎are the derivatives of 

the orientation vector,             ,              ,               respectively. A flow chart of the 

robotic manipulator trajectory planning using geodesic method is represented in Figure 1. 
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4.1. Riemannian Metric Selection Procedure 

The main idea of geodesic method is to assign an appropriate metric for chosen trajectory. The 

metric should be symmetric, positive definite quadratic form and it has to be a representation of distance and 

other variables which relates to the preferred motions.  

The general form of Riemannian metric, „g‟ can be defined as: 

 

                     

(

 
 
 

   

   

   

 
 

   )

 
 
 

      (11) 

 

Here, G=         is the coefficient matrix conforming to   and 𝜃i (𝑖 = 1. . .𝑛) are joint positions 

which can be linear or angular. After knowing coefficient matrix 𝐺, we can compute the Christoffel symbols 

   
  by equation (6). The geodesic equations are obtained in the form as given in equation (5). Regarding the 

Riemannian metric, a set of geodesic equations in the form of equation (5) i.e. simultaneous differential 

equations are established for the given initial conditions. The solutions to simultaneous differential equations 

provide the joint trajectories for the desired motion.  

 

4.1. Mathematical Formulation and Numerical Computation for RS06L Robot 

Kawasaki RS06L robot has been considered to demonstrate the entire trajectory planning process by 

the help of geodesic. The Kawasaki RS06L robot and its link diagram are shown in the Fig 2 (a) and (b) 

respectively. The obtained link parameters from the D-H representation of the robot manipulator are 

tabulated in Table 1. The calculated final transformation matrix, 𝑇 of the robot end-effector is with the form 

as equation (9),  

where, 

     [                        ]                  

     [                        ]                   

                             

     [                         ]                   

     [                         ]                      

                              

                              

                                   

                 

 

 

 
 

Figure 1. Flowchart showing the sequential process of manipulator trajectory planning by geodesic method. 
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2(a) 2(b) 

Figure 2a. Kawasaki RS06L robot model and 

 

Figure 2b. link diagram of RS06L [Kawasaki 

Robotics Pvt. Ltd.] 

 

 

                  

                           

               

 

 

              Table 1. Link parameters of Kawasaki RS06L robot 

 

 

 

 

 
 

 

In order to ensure the position of the end-effector, the joint variables need to be managed. For the 

linear motion of „P‟, evaluation a Riemannian metric will be done for the end-effector position as well as 

orientation. Then by generating the Christoffel symbols from the Riemannian metric, the geodesics are 

computed. The Riemannian metric can be described by: 

 

                                                

(

 
 
 

   

   

   

   

   

   )

 
 
 

         (12) 

 

Where, G=         is the coefficient matrix conforming to „g‟. 

 

 

  (   )   
=
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|

|

   
   
   
     
   

     )

 
 
 
 

     (13) 

i αi-1 ai-1 di θi Parameter value 

1 0 0 0 θ1 a2=650mm 

2 90 0 0 θ2 d4=900mm 

3 0 a2 0 θ3  

4 -90 0 d4 θ4  

5 90 0 0 θ5  

6 90 0 0 θ6  
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The geodesic, conforming to above metric is computed by the equation (5) and (6). The geodesic 

equation (5) regarding to the Riemannian metric „g‟ is a second-order differential equation group. The 

geodesic is solely determined by given initial conditions or boundary conditions. 

Considering the linear moment of end-effector that is steered from an initial point to a final point, 

the coordinates of end points in Cartesian space and joint space are given in Table 2 and Table 3 respectively. 

The robot accomplishes a linear motion according to the planned geodesic. The trajectories of the end-

effector with its position, velocity, acceleration, and jerk obtained from the geodesic solution are presented in 

Fig 3 and Fig 4. The trajectories for the orientation vector of the robot end-effector are represented in Fig 5. 

The joint trajectories of Kawasaki RS06L as obtained from geodesic method are represented in Fig 6. From 

the results as presented through figures, it can be observed that all the joint trajectories of the end-effector as 

well as position, velocity, acceleration and jerk profiles of joint motion are smooth. 

 

 

Table 2. Coordinates of end points in Cartesian space 

  Initial state in mm (t=0 sec) Final state in mm (t=5 sec) 

p (-194.1970, -1196.2542, -924.989403) (304.7006, -1247.4042, -831.73297) 

n (-8.3173297, 1.122066, -0.209403) (-0.664937, 0.969651, -0.29735) 

o (0.90235, 0.68201, -0.10494) (0.73957, 0.24437, -0.13394) 

a (-0.00457, -0.23418, -0.97218) (0.10437, -0.30897, -0.94532) 

 

 

Table 3. Coordinates of end points in joint space 

θs Initial state (t=0 sec) in rad Final state (t=5 sec) in rad 

θ1 -1.73173 -1.33122 

θ2 -0.43816 -0.38488 

θ3 -1.93838 -1.89743 

θ4 0.06514 0.05567 

θ5 -0.53183 -0.52889 

θ6 -0.65825 -0.55279 

  

 

5. RESULTS OF THE SIMULATION  

The method proposed in this paper has been verified in simulations for the Kawasaki RS06L robot. 

The simulation results confirm the accuracy, smoothness and the optimality of the end-effector motion, 

which are represented in Figure 3 and Figure 4 Similarly, the accuracy as well as smoothness of end-effector 

orientation vector is represented in Figure 5 The joint trajectories and their derivatives are found to be 

smooth, which is presented in Figure 6. Hence the method can be implemented for smooth and accurate 

trajectory planning for end-effectors and the relevant joint trajectories of the robot manipulators. 

 

 

6. CONCLUSION AND FUTURE WORK 

An optimal trajectory planning with smooth and accurate movement for robot manipulators 

combining both position and orientation space by implementing geodesic method is presented in this paper. 

The key intent is to assign an appropriate metric to acquire the necessary geodesic motion. The geodesic 

equations are solved numerically by simultaneous Runge-Kutta 4th step method and the results are used to 

control the robot. Geodesic simulations of the results using the Kawasaki RS06L robot are presented. The 

presence of obstacle in geodesic formulation extends the process of finding geodesic from initial point to 

obstacle and again from obstacle to final target point. The proposed method will have a high impact on the 

robotic welding and machining application, where the end-effector has to perform a smooth and accurate 

motion in least duration considering the trueness of geodesic method to optimization, smoothness and 

accuracy.  

The method concerns to robots with less than or equal to six DOFs and focuses exclusively on linear 

motions. Future work will be focusing on trajectory planning of complex robots having more than six DOFs 

with different types of non-linear motion.  
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