
International Journal of Robotics and Automation (IJRA) 

Vol. 5, No. 3, September 2016, pp. 213~222 

ISSN: 2089-4856      213 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJRA 

A New Approach to the Solution of Robot Kinematics Based on 

Relative Transformation Matrices 

 

 

Mohammad Reza Elhami, Iman Dashti 
Departement of Mechanical Engineering, Imam Hosein University, Iran 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 2, 2016 

Revised Aug 6, 2016 

Accepted Aug 20, 2016 

 

 In analyzing robot manipulator kinematics, we need to describe relative 

movement of adjacent linkages or joints in order to obtain the pose of end 

effector (both position and orientation) in reference coordinate frame. 

Denavit-Hartenberg established a method based on a 4×4 homogenous 

matrix so called “A” matrix. This method used by most of the authors for 

kinematics and dynamic analysis of the robot manipulators. Although it has 

many advantages, however, finding the elements of this matrix and 

link/joint‟s parameters is sometimes complicated and confusing. By 

considering these difficulties, the authors proposed a new approach called 

„convenient approach‟ that is developed based on “Relative Transformations 

Principle”. It provides a very simple and convenient way for the solution of 

robot kinematics compared to the conventional D-H representation. In order 

to clarify this point, the kinematics of the well-known Stanford manipulator 

has been solved through D-H representation as well as convenient approach 

and the results are compared. 
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1. INTRODUCTION 

Kinematic analysis is a fundamental part of mechanism design and analysis that has a long history 

of establishment. Reuleaux [1] developed a symbolic method of describing the kinematic properties of a 

mechanism. Denavit and Hartenberg [2] subsequently obtained a new form of kinematic notation 

representing all possible forms of lower-pair mechanism. This new representation expressed in terms of a 

4×4 homogeneous transformation matrix and the effect of a number of coupled links was determined from 

the product of a number of matrices. Paul and Shimano [3] recognized that the effect of a single joint and its 

associated link on a robot could be described by four parameters and obtained a single homogenous matrix 

(the A matrix) representing these parameters. Forward and inverse kinematic solutions derived for the 

Stanford Arm. Subsequently Paul, Shimano and Mayor [4] illustrated the method by deriving solutions for 

Puma manipulator. Lee [5] and Fu, Gonzalez and Lee [7] used the similar method to determine coordinate 

transformations for a Puma robot to perform kinematics and dynamics analysis. This transformation method 

then established as a standard tool for all authors in robot kinematics. This standard homogenous 

transformation approach has established four parameters describing each joint and the associated link I as 

follows: the joint angle i , the link length ia , the link offset id , the joint twist i  

Determination of these parameters could be difficult, particularly for ones who unfamiliar with 

robotics, this problem becomes worse in determining the joint twist while one or more link lengths are zero. 

This paper is intended to suggest a simplified method to obtain the A matrices based on “Relative 

Transformations Principle”.  The application of this convenient approach is illustrated by performing the 

forward kinematic analysis on Stanford manipulators to obtain the end effector position and orientation 

vectors. 
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2. DENAVIT-HARTENBERG METHOD 

Explaining research chronological, including research design, research procedure (in the form of 

algorithms, Pseudocode or other), how to test and data acquisition [1]-[3]. The description of the course of 

research should be supported references, so the explanation can be accepted scientifically [2], [4]. 

Denavit-Hartenberg method represents each transformation by a specific convention established by 

a series of definitions. Consider a robot manipulator with n kinematic pairs (rotated and prismatic). Let Li the 

i-th link and ji the i-th kinematic pair between Li-1 and Li, i = 1, 2, …, n. L0 is the link between base and the 

first kinematic pair. After defining a reference coordinate system, one coordinate system assigned for each 

joint of robot manipulator, also in the end-effector, in order to establish the coordinate transformation 

between links, and solve the robotic kinematics. In summary, Denavit-Hartenberg method defines a frame Fi, 

i = 0, … , n, by: 

 zi-axis: axis of the i + 1 joint; 

 xi-axis: is parallel to the common normal: 1i i ix z z  ; 

 yi-axis: follows from right-hand rule; 

 Oi: intersection between zi axis and common normal; 

 '

iO : intersection between zi-1 axis and common normal; 

Then, a transformation from frame Fi to frame Fi-1 defined by DH parameters: 

 ai: distance from Oi and 
'

iO  measured along common normal; 

 di: distance from Oi-1 and 
'

iO , measured along zi; 

 i : angle between axes zi-1 and zi about axis xi to be taken positive when rotation is made 

counter-clockwise; 

 i :angle between axes xi-1 and xi about axis zi-1 to be taken positive when rotation is made 

counter-clockwise; 

 

 
Figure 1. D-H parameters definition 

 

 

More about Denavit Hartenberg convention can be found in [6,12,14]. 

In general, D-H parameters can be tabulated, leaving the transformations as functions of the variable

 , in the revolute case, or d, in the prismatic case. Homogeneous coordinates allow establishing the relation 

between two adjacent links, connected by a kinematic pair, following four steps: 

 

Rotate  in xO   Translate a by xO   Rotate  in zO   Translate d in zO  

The steps above express the product of four homogeneous transformation matrix from frame Fi to frame Fi-1, 

i = 1, …, n, that is, 
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3. THE CONVENIENT APPROACH 

3.1.  Coordinate Frames 

A homogenous transformation matrix can be used to describe ( )oxyz   frame with respect to a 

reference coordinate frame ( )oxyz  . The first three rows of this 4*4 matrix are composed of a 3*1 O vector 

(denoting the position of ( )oxyz   origin in ( )oxyz frame) and a 3*3 rotation R matrix (denoting the 

orientation of ( )oxyz   axes in ( )oxyz frame).  

' '
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R O
T

 
 
  

 (2) 

                                           

This is illustrated through an example. Consider a coordinate frame, i.e. '( )oxyz , specified by: 

 

'
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The rotation and position matrices are as follows: 
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Thus, the position and direction of ( )oxyz   frame with respect to ( )oxyz frame are expressed as: 
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And therefore, the origin of ( )OXYZ  is located on the point of (-1,3,2) and direction of , ,X Y Z  

axes are along Y,-Z,-X direction of original frame, respectively. Consequently, ( )OXYZ   frame could be 

outlined in a very simple manner. 
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3.2.  Geometric Interpretation of homogenous Transformation Matrix (HTM), T: 

 Describing geometric interpretation of Homogenous transformation matrix, T, let‟s have a look at 

preceding example from another angle. Consider the ways which ( )OXYZ  frame is reached to its current state 

from its initial state with respect to the base frame (OXYZ). There are two ways for the solution of this 

problem: we can either first translate the origin of ( )OXYZ   frame to the desired position i.e.  1 3 2 1
T

 , 

then rotate it about Y  and Z axes of current frame respectively; Or first rotate it about Y and X axes of base 

frame respectively, then translate it to the desired position, i.e.  1 3 2 1
T

 . 

Since these two ways lead to different order of matrix multiplication and matrix multiplication is 

non-commutative, there comes a main problem that in what order these matrices are multiplied in order to get 

the same result. 

 

3.3.  Relative Transformations Principle (RTP) 

There is a fundamental rule behind the order of multiplication, which is called “Relative 

Transformation Principle” [8]. This principle states where we can multiply the matrices in the order of 

transformation operation or do it in the reverse direction. 

Multiplication of the matrices in the order of transformation operation so called Post-multiplication, 

means that transformation refers to the Current Coordinate Frame; and multiplication in the reverse order of 

operations is called Pre-multiplication and means that transformation referred w.r.t. Base or Reference 

Coordinate Frame. Therefore, there is a “Pre-Base; Post-Current” resolution for this principle. To clarify this 

point, let‟s have a look at the previous example again. There are two approaches for frame (XYZ) or Base-

Frame to reach frame ( ) 'XYZ or Current Frame as shown in figure 2. 

 

 Post-Current  
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 
 

 

(8) 

 

It is shown that although there are two different approaches and eventually two different matrix 

equations, however, the results are the same. (See Figure 2). 
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Figure 2. Relative Transformation Principle 

 

 

3.4.  The Convenient Approach 

In analysis of robot kinematics, every link/joint pair attributed with a 
1i

iA
 matrix, which describes 

its pose (both position and direction) relative to the previous one. In the previous section, the “Pre-Base Post-

Current” resolution introduced. To derive a 
1i

iA
 matrix there are only two rules to be applied: 

1) The iZ  axis lies along the axis of joint i‟s movement, iX and iY axes directions are optional, just satisfy the 

right-hand rules 

2) By using relative transformations principle, transformation matrix of link/joint i with respect to joint i-1 , 

which is composed of fixed and variable kinematic parameters, could be obtained directly and very 

straightforward. 

In fact, every A matrix is produced by multiplication of two matrices. One is a fixed HTM matrix 

and the other is a variable HTM matrix. The fixed HTM matrix describes the original geometric structure of 

the link and is derived by substituting the relative direction of X, Y and Z axes and relative position of joint i 

origin frame‟s (P vector) into i-1 coordinate frame. Just like equations (3)-(6) in the previous section 

example, we can derive them instantly and put them in the same order of columns very simple.  

Another one, the variable HTM matrix is a function of joint variable parameter and characterizes the 

relative movement allowed at each joint and is only a rotation or translation about/along Z axis that covers 

i  and id  parameters in revolute and prismatic joints, respectively. The transformation matrix for each joint 

is then obtained by multiplication of these two matrices, which in post-current approach is as: 

 

*A F V  (9) 

and in pre-base approach is: 

*A V F  (10) 

Considering F and V as fixed and variable HTM of each joint respectively. It is worth to notice that 

for convenience usually “Post-current” part of the resolution is used to derive the A matrix for entire 

kinematic equations from base frame to end effector to describe the forward kinematic of robot arms. 

 

 

4. COMPARISON OF THE TWO METHODS: D-H NOTATION AND CONVENIENT 

APPROACH 

D-H notation has established a very efficient and extensive method to describe the HTM of every 

link in any manipulator. It is also a concise model of every kind of link/joint pair in any mechanism. 

Although it has some advantages so that has become the most popular robot kinematics analysis method in 

literature, there are many difficulties and complications in the process of parameters determination. 
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The main difficulties arises in recognition of the difference between id and ia or i  and i  as well 

as ambiguity in the definition of the sign of i , especially when robot has different configurations which 

makes the substitution of parameters in A matrix a time-consuming calculation. These disadvantages cause 

major problems for development of robot dynamic control system in industry and popularity of robotics in 

education system, mainly for the students who are in the first stages of learning robotics. 

The Convenient Approach, which is proposed in this paper has considered these problems and 

offered a simplified method to obtain the A matrix to determine kinematic configuration of each link/joint 

pair of robot arms. This method is straightforward, has more clarity in concept and less complexity in 

computation; therefore it has easy implementation in kinematic control and easy understanding for education 

of robotics. 

To get familiar with this method, it is only required to understand the core concept of Relative 

Transformations Principle (RTP) and its Pre-Current Post-Base resolution to derive A matrix very easily and 

directly. There is no more anxious about identification and determination of those four link/joint parameters. 

For computation matter there is merely the need to know the rotation/translation matrices about Z-axis and 

matrix multiplication rules.  

The main privilege of this method can be shown in most robots, especially industrial robots for 

convenience in analysis, especially dynamic analysis, and eventually simplicity in manufacturing, they are 

designed with 0i   or   in robot arms. Therefore, derivation of fixed HTM of A matrix becomes very 

handy and straightforward. However, for i  in any condition, thanks to the concept clearness and algorithm 

simplicity, this approach is still applicable compared to D-H notation. 

 

 

5. THE ILLUSTRATION METHOD 

To show that the convenient approach is applicable to the real and standard industrial robots, the 

implementation of this method is illustrated by analyzing the forward kinematic to obtain the end effector 

pose vector for Stanford manipulator. This manipulator is an example of a spherical (RRP) manipulator with 

a spherical wrist. It has an offset in the shoulder joint that slightly complicates both the forward and inverse 

kinematics. 

 

5.1. D-H Representation 

We first establish the joint coordinate frames using the D-H conventions as shown in Figure 3. The 

1
i

iA   matrix for each joints in D-H method is as follows: 

 

1
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i i i i i i

i i

i

ii
i

i

C C C S S a C

S C C S C a S
A

S C d

     

     

 



 
 

 
  
 
 
 

 (11) 

 

 
Figure 3. Stanford Robot and D-H Representation for its Link Coordinate System 

 

D-H parameters for Stanford link coordinate system shown in Table1.  
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Table 1. Establishing link coordinate system for Stanford Manipulator[6] 

Joint i i  i  ia  id  

1 
1  90  0 

1h  

2 
2  90  0 

2h  

3 90
 

0 0 
3d  

4 
4  90  0 0

 

5 
5 90   90  0 0 

6 
6 90   0 0 

6h  

 

 

Transformation matrices from the base to the end effector i.e.
1i

iA
 of   link/joint  i  relative to joint 

i-1 could be obtained as (12): 

 

1 1 2 2

1 1 2 20 1 2
1 2 3

1 2 3
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, ,
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C S C S

S C S C
A A A

h h d
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Hence, the HTM of end effector  
0

6T  is: 

0 0 1 2 3 4 5
6 1 2 3 4 5 6
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x x x x

y y y y

z z z z
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5.2. The Convenient Approach 

The coordinate frame system used for Post-current resolution of convenient method shown in Figure 

4. Notice that we have a different frame at each joint, as zi axis must lie along the joint i  or di for revolute 

and prismatic joint, respectively. 

 
Figure 4. Stanford Link Coordinate System in Post-current Approach 

 

Transformation matrices obtained as follows: 

 

1 1 1 1
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3
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1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1

C S S C

h S C h
A

C S





     
     

   
      
       
     
     
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and the HTM of end effector 
0

6T  is calculated as: 

 

0 0 1 2 3 4 5
6 1 2 3 4 5 6

0 0 0 1

x x x x

y y y y

z z z z

n s a p

n s a p
T A A A A A A

n s a p

 
 
  
 
 
  

 (16) 

Where, 

 

6 4 1 4 2 1 6 5 4 1 1 2 4 1 5 2

6 5 1 4 1 2 4 5 1 2 6 4 1 2 1 4

6 2 5 2 4 5 2 4 6

[ ] [ ] ,

[ ] [ ],

[ ]

x

y

z

n C S S C C C S S C S C C S C C S

n S S C C S C S C S S C S C C S C

n S C C S S S S C C

    

    

   
       

 

 

 

 

 

(17) 

6 5 4 1 4 1 2 1 5 2 6 4 1 1 2 4

6 5 4 1 4 2 1 2 5 1 6 4 1 4 2 1

6 2 5 2 5 4 2 4 6

[ ( ) ] [ ],

[ ( ) ] [ ],

[ ]

x

y

z

s C S C S S C C C C S S S S C C C

s C S C C S C S S C S S S C C C S

s C C C S S S S C S

     

    

   
 

5 1 4 1 4 2 1 2 5

1 2 5 5 1 4 2 1 4

2 4 5 2 5

( )

( )

x

y

z

a C S C C S C C S S

a S S S C C C C S S

a S S C C S

  

  

 
 

2 1 6 5 4 1 1 2 4 1 2 5 3 1 2

2 1 6 5 1 4 2 1 4 1 2 5 3 1 2

1 6 2 5 5 2 4 3 2

[ ( ) ]

[ ( ) ]

( )

x

y

z

p h S h C C S C C S C S S d C S

p h C h C C C C S S S S S d S S

p h h C S C S S d C

    

     

   
 

 

5.2. Comparing the Results 

We employed both D-H and Convenient approach to compare the two methods in kinematics 

analysis of Stanford manipulator and indicate the advantages of our proposed method clearly. Comparing the 

homogenous transformation matrix of the end effector, 
0

6T  in equations (14), (17) and, we can see that all 

elements forming the matrix are exactly equal in all equations. 

It proves a significant meaning that regardless of what coordinate system is used, the end-effector 

position and orientation would be the same using both methods.  

Using a different coordinate system in convenient approach, although the individual HTMs for 

joints 1 to 6 are different, as long as the first and last coordinate systems are similar, their multiplication 

forming the end effector HTM is the same as previous. It means that in convenient approach we have the 

freedom to choose our own arbitrary coordinate system with only one simple rule to be implemented: the Zi 

axis must lie along the movement of joint i degree of freedom. Therefore, the devastating steps of coordinate 

system assignment and link/joint parameters extraction in D-H method will no longer is needed. This is a 

prefect reason for priority of “the Convenient Approach” over the conventional D-H representation 

 

 

6. CONCLUTIONS 

In this paper, Relative Transformation Principle (RTP) has been thoroughly introduced with clear 

concept and example, then a new simplified and accessible method called “The Convenient Approach” for 

the solution of robot kinematics has been developed. The advantages of this approach has been discussed by 

comparing with the well-known D-H representation through performing the forward kinematic on Stanford 

industrial robot. The results showed the consistency of the new method with much more simple assignment 

of the coordinate framed. The authors believe that by strong basis of principle and easy approach of 

assignment, this method would become a very helpful tool in robotics education and engineering. 
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