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 This paper presents an Enhanced Teaching-Learning-Based Optimization 

(ETLBO) algorithm for solving reactive power flow problem.  

Teaching-learning process is an iterative process where in the continuous 

interaction takes place for the transfer of knowledge. Movements of trial 

solutions will investigate the internally final stages. Up gradation of  

the algorithm has been done through by adding weight in the learner 

values. Projected ETLBO algorithm has been tested in standard IEEE 

57,118 bus systems and power loss has been reduced efficiently. Keywords: 
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1. INTRODUCTION  

Optimal reactive power dispatch problem is one of the difficult optimization problems in power 

systems & various mathematical techniques [1-9] have been utilized to solve the problem. Recently many 

types of Evolutionary algorithms [10-15] have been used to solve the reactive power problem. This paper 

presents an Enhanced Teaching-Learning-Based Optimization (ETLBO) algorithm for solving reactive 

power flow problem. Basic Teaching-Learning-Based Optimization [16] successfully solved various 

optimization problems. In this projected work new learner values the part of its previous value  

is considered and it has been decided by a weight factor “wf’. During the early stages of the search 

Individuals are encouraged to sample diverse zones of the exploration space. Projected ETLBO algorithm 

has been tested in standard IEEE 57,118 bus systems and real power loss has been reduced. 

 

 

2. PROBLEM FORMULATION 

Reduction real power loss is the key goal of the work and the objective function has been written  

as follows (1): 

 

F = PL = ∑  gkk∈Nbr (Vi
2 + Vj

2 − 2ViVjcosθij) (1) 

 

Voltage deviation mathematically written as (2-3),  
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F = PL + ωv × Voltage Deviation (2) 

 

𝐕𝐨𝐥𝐭𝐚𝐠𝐞 𝐃𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧  = ∑ |𝐕𝐢 − 𝟏|𝐍𝐩𝐪
𝐢=𝟏  (3) 

 

Constraint (Equality) (4): 

 

 PG = PD + PL (4) 

 

Constraints (Inequality) (5-9): 

 

Pgslack
min ≤ Pgslack ≤ Pgslack

max  (5) 

 

Q
gi
min ≤ Q

gi
≤ Q

gi
max , i ∈ Ng (6) 

 

 Vi
min ≤ Vi ≤ Vi

max , i ∈ N (7) 

 

Ti
min ≤ Ti ≤ Ti

max , i ∈ NT (8) 

 

Qc
min ≤ Qc ≤ QC

max , i ∈ NC (9) 

 

 

3. ENHANCED TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM 

Basic Teaching-Learning-Based Optimization Algorithm consist of first part “Teacher Phase” 

and the second “Learner Phase”. Learning from the teacher is the “Teacher Phase” means and learning 

through the interaction between learners is the “Learner Phase”. In search space bounded the population Y 

is arbitrarily initialized by (10-11): 

 

𝑦(𝑖,𝑗)
0 =  𝑦𝑗

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑦𝑗
𝑚𝑎𝑥 − 𝑦𝑗

𝑚𝑖𝑛) (10) 

 

𝑌(𝑖)
𝑔

= [𝑦(𝑖,1)
𝑔

, 𝑦(𝑖,2)
𝑔

, 𝑦(𝑖,3)
𝑔

, . . , 𝑦(𝑖,𝑗)
𝑔

, . . , 𝑦(𝑖,𝐷)
𝑔

] (11) 

 

 

3.1.  Teacher phase 

At generation g the mean parameter Eg of each subject learners in the class is given as (12): 

 

𝐸𝑔 =  [𝑒1
𝑔

, 𝑒2
𝑔

, . . , 𝑒𝑗
𝑔

, … , 𝑒𝐷
𝑔

] (12) 

 

A new-fangled set of improved learners is added to the existing population of learners (13-14). 

 

𝑌𝑛𝑒𝑤(𝑖)
𝑔

= 𝑌(𝑖)
𝑔

+ 𝑟𝑎𝑛𝑑 × (𝑌𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑔

− 𝑇𝑒𝐹𝐸𝑔) (13) 

 

𝑇𝑒𝐹 = 𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑎𝑛𝑑 (0.1) {2 − 1}] (14) 

 

3.2.  Learner phase 

Knowledge of the learner is improved by (15), 

 

𝑌(𝑖)
𝑔

= {

𝑌(𝑖)
𝑔

+ 𝑟𝑎𝑛𝑑 × (𝑌(𝑖)
𝑔

− 𝑌(𝑟)
𝑔

)  

𝑖𝑓 𝑓(𝑌(𝑖)
𝑔

) < 𝑓(𝑌(𝑟)
𝑔

)

𝑌(𝑖)
𝑔

+ 𝑟𝑎𝑛𝑑 × (𝑌(𝑟)
𝑔

− 𝑌(𝑖)
𝑔

)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15) 

 

3.3.  Algorithm termination  

After MAXIT conditions satisfied the algorithm is terminated. Value of the weight factor reduced 

linearly with time from a maximum to a minimum value by (16), 

 

𝑤𝑓 = 𝑤𝑓𝑚𝑎𝑥 − (
𝑤𝑓𝑚𝑎𝑥−𝑤𝑓𝑚𝑖𝑛

max 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) ∗ 𝑖 (16) 
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Enhanced learners in the teacher phase can be (17), 

 

𝑌𝑛𝑒𝑤(𝑖)
𝑔

= 𝑤𝑓 ∗ 𝑌(𝑖)
𝑔

+ 𝑟𝑎𝑛𝑑 ∗ (𝑌𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑔

− 𝑇𝑒𝐹𝐸𝑔) (17) 

 

And in learner phase a set of improved learners are (18), 

 

𝑌𝑛𝑒𝑤(𝑖)
𝑔

= {

𝑤𝑓 ∗ 𝑋(𝑖)
𝑔

+ 𝑟𝑎𝑛𝑑 × (𝑌(𝑖)
𝑔

− 𝑌(𝑟)
𝑔

)  

𝑖𝑓 𝑓(𝑌(𝑖)
𝑔

) < 𝑓(𝑌(𝑟)
𝑔

)

𝑤𝑓 ∗ 𝑌(𝑖)
𝑔

+ 𝑟𝑎𝑛𝑑 × (𝑌(𝑟)
𝑔

− 𝑌(𝑖)
𝑔

)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

 

 

4. SIMULATION RESULTS 

At first Enhanced Teaching-Learning-Based Optimization (ETLBO) algorithm has been tested in 

standard IEEE-57 bus power system. 18, 25 and 53 are the reactive power compensation buses. PV buses 

are 2, 3, 6, 8, 9 and 12 and bus 1 is slack-bus. In Table 1 The system variable limits are given.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 

 

Pload =12.126 p.u. Qload=3.064 p.u. 

 

The total initial generations and power losses are obtained as follows: 

 

∑ 𝑃𝐺 = 12.478 p.u. ∑ 𝑄
𝐺
=3.3165 p.u. 

 

Ploss = 0.25886 p.u. Qloss=-1.2081 p.u. 

 

Table 2 shows the comparison of optimum results. Table 3 shows the various system control variables. 

 

 

Table 1. Variable limits 
Reactive power generation limits 

Bus no  1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage and tap setting limits 

vgmin Vgmax vpqmin Vpqmax tkmin tkmax 

0.9 1.0 0.91 1.05 0.9 1.0 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 

 

 

Table 2. Comparison results 
S.No. Optimization algorithm Finest solution Poorest solution Normal solution 

1 NLP [17] 0.25902 0.30854 0.27858 

2 CGA [17] 0.25244 0.27507 0.26293 

3 AGA [17] 0.24564 0.26671 0.25127 

4 PSO-w [17] 0.24270 0.26152 0.24725 

5 PSO-cf [17] 0.24280 0.26032 0.24698 

6 CLPSO [17] 0.24515 0.24780 0.24673 

7 SPSO-07 [17] 0.24430 0.25457 0.24752 

8 L-DE [17] 0.27812 0.41909 0.33177 

9 L-SACP-DE [17] 0.27915 0.36978 0.31032 

10 L-SaDE [17] 0.24267 0.24391 0.24311 

11 SOA [17] 0.24265 0.24280 0.24270 

12 LM [18] 0.2484 0.2922 0.2641 

13 MBEP1 [18] 0.2474 0.2848 0.2643 

14 MBEP2 [18] 0.2482 0.283 0.2592 

15 BES100 [18] 0.2438 0.263 0.2541 

16 BES200 [18] 0.3417 0.2486 0.2443 

17 Proposed ETLBO 0.22048 0.23012 0.22282 
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Table 3. Control variables obtained after optimization 
Control Variables ETLBO 

V1 1.1 

V2 1.0350 

V3 1.0340 

V6 1.0280 

V8 1.0200 

V9 1.0090 

V12 1.0160 

Qc18 0.06620 

Qc25 0.2000 

Qc53 0.04710 

T4-18 1.0090 

T21-20 1.0460 

T24-25 0.8640 

T24-26 0.8720 

T7-29 1.0500 

T34-32 0.8700 

T11-41 1.0120 

T15-45 1.0300 

T14-46 0.9100 

T10-51 1.0200 

T13-49 1.0600 

T11-43 0.9100 

T40-56 0.9000 

T39-57 0.9500 

T9-55 0.9500 

 

 

Then Enhanced Teaching-Learning-Based Optimization (ETLBO) algorithm has been tested in 

standard IEEE 118-bus test system [19]. The system has 54 generator buses, 64 load buses, 186 branches 

and 9 of them are with the tap setting transformers. The limits of voltage on generator buses are  

0.95-1.1 per-unit., and on load buses are 0.95-1.05 per-unit. The limit of transformer rate is 0.9-1.1,  

with the changes step of 0.025. With the change in step of 0.01the limitations of reactive power source are 

listed in Table 4. The statistical comparison results of 50 trial runs have been list in Table 5 and  

the results clearly show the better performance of proposed Enhanced Teaching-Learning-Based 

Optimization (ETLBO) algorithm in reducing the real power loss.  

 

 

Table 4. Limitation of reactive power sources 
BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

 

Table 5. Comparison results 
Active power loss (MW) BBO [20] ILSBBO/strategy1 [20] ILSBBO/strategy1 [20] Proposed ETLBO 

Min 128.77 126.98 124.78 116.120 

Max 132.64 137.34 132.39 120.340 

Average 130.21 130.37 129.22 117.040 

 

 

5. CONCLUSION 

In this work Enhanced Teaching-Learning-Based Optimization (ETLBO) algorithm solved  

the optimal reactive power problem. A parameter called as “weight” has been included in the basic  

Teaching-Learning based algorithm. The performance of the proposed Enhanced Teaching-Learning-

Based Optimization (ETLBO) algorithm has been has been tested in standard IEEE 57,118 bus systems 

and real power loss considerably reduced. 
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