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 In this paper, an evolutionary computing approach for determining  

the optimal values for the proportional-integral-derivative (PID) controller 

parameters of load frequency control (LFC) of two area power system is 

presented. The proposed approach employs a particle swarm optimization 

technique to find optimum parameters. The state space model of two area 

power system and an Eigen value based objective function is considered.  

The effectiveness of the proposed approach is compared with integral 

control. Simulation results justify the proposed approach in terms of damping 

the oscillations, improved settling time, less over/under shoots. 
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1. INTRODUCTION 

In power systems, both active and reactive power demands are never steady and continuously 

change with rising or falling trend. Steam input to turbo generators (or water input to hydro generators) must 

therefore, be continuously regulated to match the active power demand, failing which the machine speed will 

vary with consequent change in frequency, which may be highly undesirable. In brief, the changes in real 

power affect the system frequency, while reactive power is less sensitive to changes in frequency and is 

mainly dependent on changes in voltage magnitude. The quality of power supply must meet certain minimum 

standards with regard to constancy of voltage and frequency [1].  

The operational objective of LFC is to maintain reasonably uniform frequency, to divide load 

between generators and to control the tie-line interchange schedules. The change in the frequency and tie-line 

power are sensed, which is a measure of the change in rotor angle, i.e., the error to be corrected. The error 

signal, i.e., ∆f and ∆Ptie, are amplified, mixed, and transformed into a real power command signal ∆Pv, 

which is sent to the prime mover to call for an increment in the torque. The prime mover, therefore, brings 

change in the generator output by an amount ∆Pg which will change the values of ∆f and ∆Ptie within the 

specified tolerance. 

In this paper mathematical model for the two area system is developed in order to analyses and 

design the control system. A state space model is developed by linearizing the mathematical equations of 

different components and thus the state matrix is formed. An Eigen value based objective function to place 

the modes in better region on the complex plane is considered and optimum controller parameters are found. 
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2. SYSTEM INVESTIGATED 

During normal operation, the real power transferred over the tie-line is given by (as shown in Figure 

1 and 2), 

 

1 2

12 12sin
T

E E
P

X
=  (1) 

 

Where, 
12 1 2  = − .  

For a small deviation in the tie-line flow from the nominal value: 
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Where Ps is the slope of power angle curve at initial operating angle called synchronizing power coefficient. 
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Figure 1. Two area system 
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Figure 2. Electrical equivalent for a two area system 

 

 

A block diagram representation of two area system with LFC containing only primary loop is shown 

in Figure 3 with each area represented by an equivalent inertia M, load damping constant D, turbine and 

governing system with an effective speed droop R. Tie-line is represented by synchronizing torque 

coefficient. A positive represents an increase in power transfer from area 1 to area 2 and it is equivalent to 

increasing load in area 1 and decreasing load in area 2. 
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Figure 3. Two area system with primary LFC loop 

 

 

 Both areas will have a same steady state frequency deviation for a load change of in area 1.  

 

1 2   =  −  and 
1 12 1 1m LP P P D − − =   (5) 

 

2 12 2mP P D + =    (6) 

 

From the governor speed characteristics the change in mechanical power is: 
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Where, 
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In normal operating condition power system is operated so that demand of areas is satisfied at 

nominal frequency. A simple control strategy should include the following functions: 

‐ Frequency approximately at nominal value. 

- Maintaining the tie-line flow at about schedule. 

- Each area should absorb its own load changes. 

 

2.1.  Tie-line bias control 

Conventional LFCs are based on tie-line bias control where each area tends to control its area 

control error (ACE) to zero. The control error consists of linear combination of frequency and tie-line  

error [2]. 
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1

n

i j ij iACE P K ==   +   (11) 

 

The area bias factor Ki determines the amount of interaction during the disturbances in the 

neighboring area. In order to get satisfactory performance area bias factor is selected as: 
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12P  and 
21P  are the deviations from the scheduled interchanges. ACEs are the actuating signals that are 

used to change the reference set points, and when the steady state is reached and will be zero. The block 

diagram of two area system LFC with integral control is shown in Figure 4. 
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Figure 4. Block diagram of two area system LFC with integral control action 

 

 

In this paper the integral control block is replaced by PID controller and state space model of the 

system Ẋ=AX is obtained. State matrix of order 11⨯11 is formed with state variables
1gP ,

1vP , 
1mP , 

1 , 
1ACE ,

12P ,
2gP ,

2vP ,
2mP ,

2 ,
2ACE respectively. The parameters of the system which are 

to be optimized using PSO are
1pK , 

1lK , 
1DK , 

1R ,
1B , 

2pK , 
12K , 

2DK , 
2R , 

2B  respectively [3]. Block 

diagram of two area system with PID controller is shown in Figure 5. 
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Figure 5. Block diagram of two area system LFC with PID control action 
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3. PARTICLE SWARM OPTIMIZATION 

The PSO algorithm was first introduced by Dr. Russel C. Eberhart and Dr. James Kennedy (1995), 

inspired by social behavior of bird flocking or fish schooling. The system is initialized with a population of 

random solutions and searches for optima by updating generations [4]. However, unlike GA, PSO has no 

evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly 

through the problem space by following the current optimum particles. Each particle keeps track of its 

coordinates in the problem space which are associated with the best solution (fitness) it has achieved so far. 

(The fitness value is also stored) this value is called pbest. Another "best" value that is tracked by the particle 

swarm optimizer is the best value, obtained so far by any particle in the neighbors of the particle. This 

location is called lbest. When a particle takes all the population as its topological neighbors, the best value is 

a global best and is called gbest. 

In the numerical implementation of this simplified social model, each particle has three attributes; 

the position vector in the search space, the current direction vector, the best position in its track and the best 

position of the swarm. The process can be outlined as follows [5]: 

Step 1.  Generate the initial swarm involving N particles at random. 

Step 2.  Calculate the new direction vector for each particle based on its attributes. 

Step 3.  Calculate the new search position of each particle from the current search position and its new 

 direction vector. 

Step 4.  If termination condition is satisfied, stop. Otherwise, go to step 2. 

As the particle can fly in D-dimension search space, the position and velocity of i-th particle can be 

represented as: 

 

Xi=[xi1,xi2,xi3,xi4,…….xiD] (16) 

 

Vi=[vi1,vi2,vi3,vi4,……viD]  (17) 

 

With increased iteration, the swarm will move towards its global best position by keeping track of 

their personal best. In D- dimensional search space the pbest of i-th particle can be represented as: 

 

Pbest=[pi1,pi2,pi3,pi4,……..piD] (18) 
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and gbest of the whole swarm is presented as: 

 

gbest=[g1,g2,g3,g4,………..gD] (19) 

 

The new direction vector of the i-th particle at time t, is calculated by the following scheme 

introduced by Shi and Eberhart. 
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1

tR  and 
2

tR  are random numbers between 0 and 1. t

idv  and t

idx  is the velocity and position of the i-th 

particle in d-th dimension at its time track t. t

idpbest  is the best position of the i-th particle (personal best) in 

d-th dimension in its track at time t and t

dgbest  is the best position of the swarm in d-th dimension at time t. 

There are three parameters such as the inertia of the particle t  , and two parameters c1 and c2. c1 and c2 are 

the learning factors which determines the relative influence of the cognitive and social components to update 

the position and velocity component.  

Then, new position of the i-th particle at time t, 1t

idX +  , is calculated from: 

 
1 1t t t

id id idX X V+ += +  (21) 

 

Where t

idX  is the current position of the i-th particle at time t. After the i-th particle calculates the next 

search direction vector 1t

iV +  in consideration of the current search direction vector t

idv  ,the direction vector 

going from the current search position t

idX  to the best search position in its track t

idpbest  and the direction 

vector going from the current search position t

idX  to the best search position of the swarm t

dgbest , it 

moves from the current position t

idX  to the next search position 1t

idX +  calculated by Equation (21). In 

general the parameter t is set to large values in the early stage for global search, while it is set to a small 

value in the last stage for local search. 

The inertia weight is used to control the impact of the previous velocities on the current velocity, 

influencing the trade-off between the global and local experience. Although Zheng claimed that PSO with 

increasing inertia weight performs better, linear decreasing of the inertia weight is recommended by Shi and 

Eberhart. 
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Where
maxw and

minw are maximum and minimum of inertia weight value respectively, 
maxiter is maximum 

iteration number and iter is the current iteration. A so-called constriction factor K, is factor that increases the 

algorithm’s ability to converge to a good solution and can generate higher quality solution than the 

conventional PSO approach. In this case, the expression used to update the particle’s velocity becomes 
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4. PROBLEM FORMULATION 

Provide a statement that what is expected, as stated in the "Introduction" chapter can ultimately 

result in "Results and Discussion" chapter, so there is compatibility. Moreover, it can also be added the 

prospect of the development of research results and application prospects of further studies into the next 

(based on result and discussion). 

 

4.1.  Objective function 

According to appendix B the equation of D-contour is given by 

 

F(z) =Re(z)–min[-ζ⃓Img(z)⃓, a] = 0 (25) 

 

Where z ϵ A is a point on the D-contour and A represents the complex plane. 

Defining J as: 

 

J=max[Re( i )–min(-ζ|Im i |,a)]  (26) 

 

i = 1,2,3......n 

 

Where n is the number of Eigen values.
i is the i-th Eigen value of the system at an operating point. A 

negative value of J implies that all the Eigen values lie on the left of the D-contour. If J is positive that 

implies Eigen value is lying on the right of contour. 

On these facts objective function F can be defined as: 

 

F= 0

0

J if J

if J






 (27) 

 

Where ⍺ is a large positive number. 

 The optimization problem can now be stated as: 

 Minimize F Subject to, 
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1

i i

i

B D
R

= +  (29) 

 

Where Kpi, Kli, KDi are PID controller parameters Ri and Bi are speed characteristics and area bias factor 

respectively. i=1, 2 for control area first and second respectively. 

 

4.2.  Algorithm 

Step1. Initialize the set of particles with position value (population), its upper limit and lower limit, random 

 velocities, inertia weight, acceleration constants, itermax, etc. 

Step2.  Linearize system and calculate the eigen values for each particle from the system modelling. 

Step3.  Calculate the objective function J. 

Step4.  Set all position values as local best values and fitness values of objective function as local fitness. 

 Find global fitness and its corresponding position value. 

Step5.  Set iter=1 and compute inertia weight by 

 

max min
max

max

*
w w

w w iter
iter

 −
= − 

 

  (30) 

 

 Update velocity using velocity update equation for all particles by 
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 Also check its upper and lower limits. 

Step6.  Update position value of particles by 

 
1 1t t t

id id idX X V+ += +   (32) 

 

 Also check its upper and lower limits. 

Step7.  Linearize system and calculate Eigen values for each particle and corresponding fitness values of 

 objective function. 

Step8.  Now compare these fitness values to the previous fitness values. Minimum fitness values will be 

 selected as local fitness values and its corresponding position values as local best values. Find 

 minimum of all fitnesses, e.g. global fitness value and its corresponding position value. 

Step9. If number of iteration reaches itermax go to step 10, otherwise go to step 5. 

Step10.  Particle with minimum fitness value is the optimum particle. 

 

4.3.  Result 

 PID parameters and speed characteristics of both areas are allowed to vary within following ranges: 

 

5.00 5.00

5.00 5.00

5.00 5.00

0.02 0.08

p

l

D

K

K

K

R

−   


−   


−   
  

 (33) 

 

Time constants of different model components associated with both areas are given in appendix A. 

 The desired PSO parameters are given in Table 1. with the desired setting of damping ratio ‘ζ’ (0.5) 

and reference line value ‘a’ (-1.5) algorithm is run several times. Among all the runs most optimum run and 

its corresponding parameters are selected. Optimized parameters and corresponding Eigen values as shown in 

Table 1-3. 

 

 

Table 1. Optimized parameters 

Kp1 -1.8787 

Kl1 -2.3640 

KD1 -0.9364 

R1 0.0652 

B1 15.9301 

Kp2 -0.1353 

Kl2 -0.5873 

Kd2 -0.5212 

R2 0.0653 

B2 16.2087 

 

 

Table 2. Optimized Eigen values (oscillatory mode) 

Eigenvalues Damping 

-1.4953 + 2.4192i, -1.4953 - 2.4192i 0.5258 

-1.4934 + 1.3570i, -1.4934 - 1.3570i 0.7401 

-1.4762 + 0.8555i, -1.4762 -  0.8555i 0.8652 

-1.4887 + 0.5015i, -1.4887 - 0.5015i 0.9477 

-0.2653,  -0.0600, -0.1125 1 
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Table 3. PSO parmeters 

C1  2 

C2  2 

Wmax  0.90 

Wmin  0.10 

Vmax 100% of Pmax 

Vmin 100% of pmin 

Population  500 

Iterations  1000 

C1  2 

 

 

5. SIMULATION STUDY 

The system is simulated in MATLAB environment for step change in load (0.2 pu) in area first, 

given at one second and is checked out for 50 seconds. Comparison of responses of
1w ,

12P ,ACE1, 
1mP

,
2w , ACE2, 

2mP between conventional integral control and PIDPSO is carried out as shown in  

Figure 6-12. 

 

 

 
 

Figure 6. Frequency deviation response of area first with integral control (dashed line) and PID control  

(solid line) 

 

 

 
 

Figure 7. Power interchange response of area first with integral control (dashed line) and PID control  

(solid line) 
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Figure 8. Area control error (ACE) response of area first with integral control (dashed line) and PID control 

(solid line) 

 

 

 
 

Figure 9. Deviation in mechanical power response of area first with integral control (dashed line) and PID 

control (solid line) 

 

 

 
 

Figure 10. Frequency deviation response of area second with integral control (dashed line) and PID control 

(solid line) 
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Figure 11. Area control error (ACE) response of area second with integral control (dashed line) and PID 

control (solid line) 

 

 

 
 

Figure 12. Deviation in mechanical power response of area second with integral control (dashed line) and 

PID control (solid line) 

 

 

6. CONCLUSION AND FUTURE WORK 

The target of the developed work is to improve the control performance of two area power system 

using a controller based on evolutionary algorithm. PIDPSO shows the better control performance than 

conventional integral control in terms of settling time, over/under shoots. The discussed formulation can be 

extended to multiarea power systems. 

 

 

APPENDIX A 

From the block diagram shown in Figure 5. the state space equations can be written as: 

 

( )
1

( )
1 ( )

g v

g

P s P s
T s

 = 
+

 (34) 

 

( )
1

( )
1 ( )

v m

t

P s P s
T s

 = 
+  (35) 
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12

1
( ( ) ( )) ( )

(2 )
mP s P s s

H D
 − = 

+  (36) 

 

1 12( ) ( ) ( )s B P s ACE s − =
 (37) 

 
1

( )( ) ( ) ( )l
p D g

K
ACE s K K s P s

s R
+ + −  = 

 (38) 

 

System data- as shown in Table 4. 

 

 

Table 4. System parameters 

Tg1 0.2 sec 

Tg2 0.3 sec 

Tt1 0.5 sec 

Tt2 0.6 sec 

          H1  5 

          H2  4 

          D1 0.6 

          D2  0.9 

    Base power 1000    MVA 

Ps (synchronizing power 

coefficient) 

2.0 pu 

 

 

APPENDIX B 

From Figure 13. the equations of line ABM and DCM in x-y plane can be written as: 

 
1

x y
k

= −  (39) 

 
1

0y x
k

+ =
 (40) 

 

Where is the modulus of the slope of line. The equation of the line BC can be written as: 

 

x-a=0 (41) 

 

Combining Equations (39) and (40) the equation of D-contour ABCD can be written as: 

 

x–min(-⃓y⃓/k, a)=0  (42) 

 

If -1/k=ζ, then in reference of complex plane the equation (41) becomes: 

 

Re(z)–min(-ζ ⃓Img(z)⃓, a)=0 (43) 

 

Where x=Re(z), and y=Img(z). z=x+iy 
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Figure 13. D-contour in x-y plane 

 

 

Dii;63. 
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