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 Structural Health Monitoring (SHM) represents a critical appurtenance to 
modern engineering that amalgamates the skills and techniques from various 
disciplines of engineering and computational science. Modern civil 
architectures, involving high-rise buildings, complex structural designs, and 
innovative shapes, on one hand represent the urban development, but at the 
same time is a challenge from sustainability perspective. In order to ensure 
the tenability of such structures, advanced SHM procedures need to be 
developed. The presented work in this paper is an effort on these lines. The 
wear and tear in the buildings related to weather, as well as other natural 
disasters, needs to be monitored regularly and systematically in order to 
prevent any serious structural damage. In current SHM practices, human 
experts are deployed at various structurally critical places on these buildings 
to perform specific measurements and analyze them to decide on the 
structural health condition. This simple approach is becoming more and more 
complicated as well as perilous for the human personnel involved, due to the 
modern architecture that involves greater heights, and complex structures. 
The proposed system utilizes flying and crawling/roving robots for this 
purpose. The flying robots, first, scan the surface of the building to any 
height needed, and then the custom-designed algorithms analyze the images 
from these scans in order to discern the possible defects/anomalies in the 
structure. Using these defect pointers, the custom-designed rover robot on 
top of the structure lowers a robotic probe that scans only those areas for 
substantiating the anomalies and the degree of defects present. 
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1. INTRODUCTION 

Modern urban skyline is marked by streaks of sky-scrappers with more and more complex designs 
than before. These marvels of civil and structural engineering are an integral component of the development 
and progress in a country. However, the size and locations of majority of such structures are exposed to the 
natural elements and, consequently, have to face various forms of natural disasters, such as storms, strong 
winds, earthquakes, etc. The strength of such structures can weaken over the years due to wear and tear; 
hence, a constant health monitoring system is essential for the sustainability and safe operation of these 
structures. With the rise in natural disasters, as reported by the special commission on disaster and recovery 
under UNISDR [1], including 6,457 weather related incidents during 1995-2015. These numbers are rising 
during recent years and has created even more urgent need for better systems for structural health monitoring 
(SHM) [2]. SHM is not a new area of expertise and many current standards outline a number of procedures 
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for conducting such inspections on complex civil and mechanical structures, such as ASTM 2983-14 [3]. 
However, almost all of the standards, laid out in current practice, either require a complex paraphernalia of 
sensory nodes embedded in the structure [4-7], or manual inspection methods requiring human experts to go 
to hazardous and dangerous locations and heights to perform the structural health inspection. In case of 
embedded sensors, the most common approach is the use of accelerometers, which are connected to various 
critical joints in the structure. These sensors provide the vibrational activity data, which was found to be very 
affective with earthquakes, and other tremors and convulsions related to the construction activities. However, 
these systems were not found to be very useful in detecting slow degradation in the structure due to factors 
such as weather-related stresses, humidity and temperature-based structural decay, etc. [8, 9]. 

With respect to the external inspection systems, the Magnetic Flux Leakage (MFL) and Acoustic 
Emission systems have been in practice for decades, both for metallic as well as concrete structures [10]. 
Most of the modern structures have predominantly metallic infrastructure with concrete and glass coverings. 
This instigates a natural reason for using the MFL based inspection systems. In such inspection systems, a 
strong magnetic field is passed through the metallic surface being inspected and its strength is measured in 
the vicinity of this field-concentration. When there are no defects, the magnetic circuit remains homogenous 
and most of the flux is contained inside the metal. However, when there is a defect, the flux tends to ‘leak’ 
out of the sample and is measured proportionally by the inductive sensing elements [10, 11]. These are 
usually deployed manually in case of external structural inspections, or through specialized tools for 
inspection from inside, such as PIG (pipeline inspection gauge) for inspecting petroleum pipelines. However, 
when the structure is very high, and of complex geometry, the usual method is to position a human inspector 
to the location using tethered harnesses or hoisting cranes. 

Another recent approach for external structural monitoring utilizes Digital Imaging in which a 
number of fixed cameras take high definition images of the structure from various angles. These images are 
then combined (or stitched) together to provide a complete picture of the structure’s surface. Upon further 
analysis, the variations in building angles, defected surfaces, cracks, corrosion, missing artifacts, etc. can be 
detected through historical comparison of such temporal image sets. Such Vision Based Inspection (VBI) 
systems are gaining popularity [12, 13], however, their performance is highly dependent on the image capture 
system, its locations, and illumination conditions during the inspection. Zhu et al. [14] report one such work, 
where similar images of a bridge were processed with the Hough transforms and resulting additional or 
missing edges were reverse mapped onto the recent images to locate the defects. Due to the limitation of 
Hough transform, textured surfaces were not analyzed very accurately, but the results were very encouraging 
for the plain colored surfaces. In order to overcome these limitations, several researches attempted a variety 
of techniques including aerial imaging by Ellenberg et al. [15], as well as the use of scale invariant features 
for defect detection using SURF and SIFT algorithms [16]. In a limited zone of applications, the VBI 
approaches are very promising and further efforts are being made to improve and standardize such 
methodologies. 

This leads to two interesting observations: (1) VBI approaches cover a larger area for inspection in a 
short time, but cannot provide a definitive defect classification that can be authentically used for maintenance 
planning [17, 18, and 19]. (2) The MFL system provides accurately-localized information about the defects 
but cannot be used on larger surfaces due to time and personnel related constraints [10]. 

At the same time, it is also observed from the trends in applications that, the use of robotic 
inspection is gaining a lot of interest in the scientific community in recent years. Robotic probes can be safer 
and lower cost solutions to the localized as well as birds eye view inspections of complex structures. In this 
paper, VBI and MFL based inspections are performed through a set of coordinated robots in a hierarchical 
manner with VBI performed first through UAVs followed by tethered robotic probes to perform the 
inspection of the detected suspicious locations from the VBI system. UAVs provide a plethora of surface 
images obtained through flying from predefined starting points around the structure. These images are then 
stitched together using a customized algorithm and are then compared with the previous scans to locate the 
defects. The MFL inspection is done by a set of modular robots. One of them is on the roof of the structure 
and performs all the calculations related to the positioning and localizing on the roof in parallel to the defect 
location as identified by the VBI system. This robot will then lower a tethered probe robot to perform the 
local inspection. 
 
 
2. EXPERIMENTAL SETUP 

An experimental setup was developed, at lab scale, in order to integrate the VBI and robotic MFL 
sub-systems to work together and perform the necessary inspections. This setup was composed of the 
following components: 
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2.1.  UAV Specification 
For the VBI system, the images can be obtained by any means possible as long as the images are 

obtained with fixed initial reference positions for appropriate registration of successive images. Hence, 
images can be obtained from static cameras located at pre-defined places [14], or they can be movable [15]. 
Since the target of this work is related to a perpendicular image scan of the structure in order to develop the 
best surface scan, the cameras must be as perpendicular to the surface as possible. Hence, a commercially 
available UAV, Phantom Pro III UAV [20] as shown in Figure 1, has been used for providing the VBI 
component of the system with its stabilized 4K camera. 

 
 

 
 

Figure 1. Phantom Pro III UAV used in this work for VBI part 
 
 
The high-resolution images from the UAV provide a coarse map of possible changes that have 

happened during the current and previous scans. The VBI system generates a coordinate set for each defect 
location, comprising of (longitude {L}, latitude {D}, and height from the base of the structure {H}). This 
information is passed on to the MFL inspection system once the visual scans are finished. 
 
2.2.  Hall Effect Based Verification 

In the Nondestructive Testing (NDT) industry, two magnetic techniques are very commonly used 
for specialized testing. The most established method is known as Magnetic Penetrant Inspection (MPI). In 
this method, the surface to be inspected is first painted with a magnetic ink that spreads evenly on the whole 
area. Then, hand-held electromagnetic poles (called yoke) are placed around the specific location on the 
surface and a strong Alternating Magnetic field is generated through them. Due to the vibrational effect of the 
field, the eddy currents are produced on the surface causing the magnetic particle to align with the field. 
However, if the surface has any crack or discontinuity, then these particles would concentrate in that defect 
region due to mutually attractive magnetic dipoles produced in the ink [21]. This concentration appears in a 
darker color and reveals the crack location. However, performing this test on a huge structure is not practical. 
The other commonly used technique is called Magnetic Flux Leakage (MFL) based defect scanning, and is 
one of the most commonly used approaches for inspecting the metallic structures with larger structures such 
as pipes or tanks [11]. Usually, these devices are used with flowing form factors. This means that the 
inspection hardware moves in the structure either with the fluid (for pipeline inspection) or with robotic 
scanners (for tanks). The size and system requirements for such devices render them impractical for most of 
the structural health monitoring applications being focused in this work. The structural inspection (SI) 
architecture presented in this paper also includes the in-house design of an alternative solution; a robotic 
MFL scanning system which is small, flexible, remotely controlled and enables the inspection of difficult or 
inaccessible structures. 

Other than the UAV, the localized and more detailed inspection was done through custom-designed 
rover robots comprising of two tethered robotic modules as shown in Figure 2. These were named as First 
Robotic Module (FRM) and Second Robotic Module (SRM) for the sake of simplicity. FRM is the main 
localization robot which was placed in the beginning of the experiment at the roof of the building. The FRM 
is responsible for assisting the SRM in performing the actual inspection function through all the necessary 
computational tasks enabling the SRM to reach the correct height on the vertical surface of the building and 
perform the inspection. In addition, FRM also acquires the collected data from SRM and communicates 
between VBI base computer and SRM. The SRM is the designed robotic probe to perform the MFL 
measurements through custom-designed sensor head and tethered position control through FRM. The SRM 
has on-board data acquisition hardware that hosts the MFL scanning sensors comprising of Neodymium 
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magnets, Hall-effect sensors, and signal conditioning electronics. The permanent magnets produce very 
strong magnetic field to generate the necessary magnetic circuit for the sensor operation. At the same time, 
the magnetic pull also keeps a uniform contact distance and attraction force between SRM and the structure. 

 
 

 
 

Figure 2. The modular robots for MFL and their deployment scenario (a) FRM and (b) SRM and 
Actual robotic probe positioning scenario 

 
 

Figure 2 shows the two robots in the MFL inspection system. The FRM, Figure 2(a), has been 
designed using several off the shelf component modules, and is strong enough to position the SRM in its 
required inspection location and, at the same time, sustain other environmental effects like winds, altitude, 
etc. The FRM has precision motion control, GPS coordinates-based localization, obstacle avoidance 
strategies, and control for correct height selection for the SRM probe robot. The main computing hub for 
FRM is built around the Arduino platform, Mega 2560 Microcontroller, which is strong enough for FRM-
SRM and FRMVBI system communication as well as for localization computations. The SRM is also 
custom-designed using VEX Robotic kit [22], with possibility of size modification in order to reciprocate the 
area to be inspected and to be able to move on a variety of structural sections of the target structure. Figure 
2(b) shows the heart of the sensing system; the rectangular Neodymium permanent magnets along with the 
MFL sensor that are placed at the base of the robot. Actual flux sensing is done using the SS495A2 Halleffect 
sensors. The signals from the sensors were received wirelessly and then recorded in the FRM storage 
interface to a tablet PC. As shown in Figure 3, the PC provided a graphical user interface (GUI) in LabVIEW 
environment for easy monitoring and access. 

 
 

 
 

Figure 3. LabVIEW graphical interface for real time MFL Scan (a) front panel as seen by the user, 
and (b) actual programming blocks for the interface 
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The set of coordinates, representing possible defect locations on the surface of the structure that 
were generated by the VBI system were provided to FRM located on the rooftop of the structure in order to 
coordinate the motion trajectories for the SRM, based on the corresponding longitude and latitude values. 
Once reached at the shifted longitude and latitude location due to the building structure (Figure 2(c)), a 
modified winch motor lowers the robotic probe (SRM) on the surface of the structure to a height that 
corresponds to M-H, where M is the height of the structure. Once, the probe has reached near the suspected 
defect location, the sensor robot using the custom-designed MFL sensing head performs the necessary scan in 
the vicinity of the target location. 

 
2.3.  Testing Condition and Structure Used 

The selection of structure and the testing conditions is one of the critical tasks in the design of this 
SI system, since it must emulate the main challenges of the real world structures to as greater degree as 
possible. A test structure was built for performing various initial tests in the laboratory. The structure consists 
of four homogenous metallic cubes placed sequentially on top of each other, as shown in Figure 4. 

 
 

 
 

Figure 4. Structure (a) Cubical block and (b) final design 
 
 

The reason of selecting such a structure is to ensure that the conclusions obtained from this research 
address most of the typical civil structure problems without being loaded down with other uncertainties or 
scaling factors. Several experiments were in this environment in such a manner that the parameters modified 
by the environment, e.g., wind, camera drifts or zooming issues etc. can be avoided at first and then added in 
a controlled manner to test the limits of operation of the system. 

 
2.4.  Sample Defects 

The primary aim of this research is to analyze the mechanical defects, such as the structural 
displacements, cracks, and voids. These kinds of defects are mainly caused in structures by the earthquakes, 
storms and strong winds. However, these defects are also the major signs of the structural-degradation caused 
by the passage of time and other environmental conditions. Usually, a subsurface defect is manifested one 
way or the other on the surface due to the inter-related effects; such as surface cracks due to sub-surface 
stresses, color changes due to corrosive activity underneath the surface, etc. A good example for such defects 
can be observed in the structures near sea or in areas where there is significant moisture in air for most of 
time throughout the year. Such structures will badly suffer with the corrosion, which ultimately results in 
forming progressing cracks or erosions and can be detected using the proposed method. The sample defects 
used in the lab experiments, reported in this work, have been induced artificially in the metallic structure so 
that the changes in the structure can be easily visualized using the proposed inspection system. 
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3. PROPOSED APPROACH 
The deployment of MFL and VBI subsystems in the above-mentioned hierarchical approach enabled 

the whole SHM system to function in appropriate period. The coarse-level monitoring was done first with 
VBI, followed by the detailed and more localized MFL inspection. This provided a good match of larger 
coverage area and better defect detection. The overall inspection process and the deployment scenario is 
depicted in Figure 5 [23]. 

 
 

 
 

Figure 5. Overall Inspection approach (a) Flow chart and (b) Deployment scenario [23] 
 
 
3.1.  Visual Inspection 

The visual inspection entails acquiring two databases of the surface images through the UAV-based 
vertical scans of the structure. The first database represents images of the structure surface taken under 
normal, no-defect conditions. This marks the Reference images to be compared with a successive scan with 
defects induced on the surface of the structure. Images in the first database are named as Images-withOut-
Cracks (IoC). Similarly, the images in the second database were named Images-With-Cracks (IwC) since 
they were acquired after inducing defects, such as imitated cracks, etc. In order to make the images 
acquisition more similar to the actual image scanning process, the two databases were acquired in slightly 
different illumination conditions.  

For both the above acquisitions, the drone was made to fly vertically upwards only from the same 
fixed location in front of the structure. During the flight, the UAV camera kept taking high quality images at 
fixed displacements. The flight was kept as vertical as possible such that the GPS coordinates of the UAV at 
various imaging stops remained the same as that of the take-off coordinates (only Longitude and Latitude are 
considered). The same vertical strip-scan can be continued until the whole structure is completely scanned. 

Once images were acquired, an image stitching (IS) algorithm was applied on each individual set of 
images in the vertical scans. The IS is comprised of a sequence of hierarchical operations applied on the 
consecutive/adjacent images of a particular image set. In the algorithmic setting, one of the two images being 
stitched together was named, reference image (RI), and the adjacent image was named, current image (CI). 
The resultant stitched image consequently became RI for the next consecutive adjacent image and the same 
procedures continues until all images in the vertical strip are completed. The process was then repeated 
horizontally in order to stitch the vertical images with their horizontal neighbors until a complete surface 
image is obtained. The stitched images were then saved in the database with their corresponding GPS values 
obtained through the UAV during its flight. Due to its vertical flight only, the variations in longitude and 
latitude are minimal and average GPS coordinates are used as representative of the completely stitched 
image. More importantly, the actual structural height (M) is mapped onto the image as well. This is done in 
order to locate any specific section on the image onto the actual structure. 

Although, IS is a fairly standard operation in image processing community, the presented algorithm 
has tackled a more challenging problem where the images of the same structure are not registered due to the 
camera movement (being on UAV). The algorithm has integrated two main techniques; Speeded Up Robust 
Features (SURF) [17], and RANdom SAmple Consensus (RANSAC) [24]. The algorithm starts to stitch the 
images after locating the Points of Interest (POI) in both RI and CI based on scale and rotation-invariant 
SURF features. The size of the feature vector (FV) size was set to 64, which was the lower available limit in 
the SURF function. The common POIs between RI and CI were then determined by computing a distance 
matrix (DM) for each FV of RI with all possible FVs of CI. The distance less than the defined threshold 
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value (THV) in the resultant matrix was used for determining the FV of CI which was similar to the 
corresponding vector of RI. In this work, the THV was selected to be a percentage of the computed distance 
with respect to the perfect match. The term perfect match refers to the least value among all the computed 
distances for each possible pair of FVs. 

It is possible that a single DM can have multiple instances where the computed value is less than the 
THV. Thus, a single FV of RI can have more than one common FVs in CI and/or vice versa. In order to 
avoid this problem, the forward-backward crosschecking approach was used. In this approach, after matching 
FV of RI with all FVs of CI, the whole process was repeated in reverse direction by means of matching FV of 
CI with all FVs of RI. The matches with the least distance were selected as the final common feature points 
(CFP). For this CFP, an index-matrix (IM) was consequently generated which contains the original indices 
for each similar FV. 

Let  and  be the extracted features with respect to the POIs of RI and CI, 
respectively. Where, 64 represents the FV length, while are the number of POIs for RI and CI 
respectively. The DM generated for the of RI is shown in (1), where  represents the union of all 
distances of FVs of CI with the  of RI. Let Lmin be the distance of the perfect match then the 
percentile distance (PD) matrix is generated by dividing each distance value with the Lmin, as shown in (2). 
Thereafter, the set of distances with values less than THV were stored in MinDistance as given by (3). 

 

 (1) 
 

 (2) 
 

 (3) 
 
Where y represents the percentage distances with values less than THV. Let Pth, Qth and Rth FVs of 

CI; whose corresponding distances with the ath FV of RI satisfy the conditions for MinDistance set, then the FV 
of CI, which corresponds to the ath FV of RI, can be described as a correspondence set as shown in (4). 

 

 (4) 
 
Where, similar feature vectors (SFV) is the FVs common between RI and CI. After computing SFV 

for FRI, the whole process was repeated for FCI such that each FV of RI corresponded to a unique FV of CI 
in the final CFP. The final IM based on CFP is shown in (5). 

 

 (5) 
 
It should be noted that indR and indC are the index values of CFP for RI and CI respectively. The 

matrix IM had a dimension of k × 2 where k is less than or equal to the minimum of i and j. This was due to 
the fact that not all extracted features were common in both images. Moreover, CFP has a unique pair of FV 
such that repetition of FV was not permitted for either of the images. 

Since the extracted features represented the SURF based POIs, therefore, the POI’s of each image 
with respect to the CFP were determined by using feature points indices in IM. These points were termed as 
Matched Points (MP) and were shown in (6). 

 

 (6) 
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The most critical part of image stitching was to align both images and then merge them together. 
The calculated MPs were then used for orienting CI with respect to RI, similar to a dot product method. 
However, this could still have a number of outliers, which could produce unwanted overlaps in the image 
transformation. Therefore, RANdom SAmple Consensus (RANSAC) algorithm [25] was utilized in order to 
exclude the outliers and compute the homogeneity between the two images [26, 18]. RANSAC algorithm 
estimated the image transformation parameters which best suited the MPs of images. The POIs obtained after 
performing RANSAC were termed as inliers. These points were pivotal in image stitching because they were 
used to estimate the transformation parameters, which were required to align both the images. Therefore, it 
can be concluded that the stitching results depend on the information provided by the inliers. Consequently, 
greater the number of inliers, the probability to achieve reliable image registration would be higher. 

Furthermore, RANSAC is an iterative process and it is generally stated that the probability to get the 
correct transformation is directly related to the number of trials (NTs) [26]. However, increasing the NTs will 
also increase the overall computational time of the algorithm. Moreover, it has been observed in this research 
that the impact of NTs after a certain point becomes negligible. Simulations were performed on a selected 
pair of images, with THV = 4, five times for each value of NTs and the average values of these five 
simulations, computed by (7), was taken as the final representative value for the scenario under study. The 
standard deviation for each simulation was also recorded, using (8), in order to verify the obtained results. 

 

 (7) 
 

 (8) 
 

where xs = Parameter value at each simulation; 
 Mean values of all simulations; 

and K = number of simulations 
 
It was observed that the number of trials also has a limiting effect as shown in Fig. 5, which shows 

that the obtained number of inliers on each simulation run is showing negligible deviation after 1700 NTs. 
Furthermore, it has also been observed for the given data that after 1500 NTs, the number of inliers show 
very small difference of 5 to 7 inliers above and below the average number of inliers as shown in Figure 6. 
The number of inliers, along with transformation details obtained after the RANSAC operation, was used to 
determine the orientation of CI with respect to RI. Hence, CI can be easily transformed in such a manner that 
both RI and CI have same orientation and were also positioned with respect to each other. These newly 
aligned images for RI and CI were termed as aligned reference image (ARI) and aligned current image 
(ACI), respectively. 

 
 

 
 

Figure 6. Average inliers for different NTs as obtained through various simulation iterations 
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In order to fuse the images, a reference-based-blending approach was utilized. In this technique, 
only those portions of ACI were added to ARI where the corresponding pixel values were zero. This implies 
that the resultant image would share a major portion from RI. In addition, an external rectangular frame was 
also added for standardization of the stitched images for further processing. The external frame was defined 
from top-left corner to bottom-right corner by the corresponding coordinates (0, 0) and (xmf, ymf). Similarly, 
the position of ARI in the frame corresponds to (Xlr, Ylr) and (Xmr, Ymr). In the same manner, the transformed 
image ACI corresponds to (Xlc, Ylc) and (Xmc, Ymc), respectively. In addition, let Z be a set of all pixels in 
ARI which have non-zero values then the image fusion (IF) was carried out using (9). Figure 7 summarizes 
the complete image-stitching algorithm as a flowchart. 

 

 (9) 
 
 

 
 

Figure 7. Image stitching algorithm used in this work, once image fusion is completed, the anomalies were 
detected using absolute difference of the current and reference fused images 

 
 
At this point, the relative defects can be found by using absolute difference between ARI and ACI 

images. The probable anomaly locations thus found, were thresholded into a binary image, which provided 
the locations of these anomalies in the image. Mapping actual height of the structure to the image height 
results in actual altitude coordinate for the inspection robots in order to deploy the MFL probe at these 
locations. 

 
3.2.  The MFL Inspection Process 

The GPS module present in the FRM guides the robot to its new desired location and how to reach 
the vicinity of the anomalies detected by the VBI system. The trajectory control module of the FRM code 
calculates the resultant trajectory based upon the received GSM coordinates from the VBI system. An offset 
translation is added to the coordinates because UAV coordinates were outside the building being inspected, 
while the FRM and SRM robots are on the rooftop of the same building. In order to obtain a correct 
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translation the drone should remain at particular distance from the structure during the scanning process 
completely. The robot takes its direction based on the comparison result between its current GPS coordinates 
and the translated received GPS coordinates. Since, there can be several temporary or permanent obstacles 
present on the roof due to its design. Therefore, an ultrasonic range sensor was also on-board FRM in order 
to provide obstacle avoidance capabilities to the robot. 

As FRM reached the extended target coordinates, a modified winch motor was activated that 
lowered the SRM with a tethered/wireless data connection to reach the required location of the anomaly. The 
SRM, a robotic probe with custom-designed MFL sensing system, obtained the MFL measurements of the 
anomaly location through localized scanning of the anomaly location given by the VBI system. The scan was 
done on a square area of typically 100cm × 100cm with center on the calculated anomaly location. The 
readings were sent to the LabVIEW interface present in the Base Computer System for storage and further 
processing. The procedure of FRM-SRM coordination was repeated as many times as the anomalies 
identified by the VBI sub system earlier. 

 
3.2.1. Sensor Calibration 

In designing the robotic MFL scanning probe, the first challenge was to select the type of magnet to 
be used along with its appropriate placement so that the performance remain comparable with the 
commercially available hand-held MFL inspection systems. In common Nondestructive Testing (NDT) 
practice, an electromagnetic yoke is used with a magnetic penetrant paint for inspection purpose. The 
magnetic field produced by the yoke is powerful enough to cover a relatively large area; however, the 
operational power requirement along with the weight of the yoke makes it impractical for scanning high-rise 
buildings. The proposed robotic scanner can fill this void for such applications. 

In this work, a number of neodymium permanent magnets (NPM) with the size of 2.5 × 1.2 × 0.5 
cm3 were used. These magnets are strong enough to be used for inspection. However, the magnetic field of a 
single NPM was not comparable with the magnetic yoke. Therefore, it was inevitable to determine the 
appropriate number of permanent magnets (PM), and their distance from the structure surface such that the 
performance of NPM approaches the standard magnetic yoke field strength. It should be noted, that the 
distance between the NPMs and structure remains fixed i.e. 2 cm to ensure that the robot will remain in 
uniform contact with the structure in all experiments. The performance with different number of NPM was 
compared with the standard electromagnetic yoke using MPI approach. For this purpose, a standard welded 
iron-steel defect plate was used with a known small crack on the periphery of the weld. The initial testing 
was performed using the standard electromagnetic yolk by spraying magnetic ink on sample plate such that 
the particles were accumulated on the crack position as can be seen in Figure 8(a). After analyzing the crack 
in weld using electromagnet, a pair of NPM were placed around the crack and the same paint was utilized. In 
addition, the magnetic flux was progressively increased by adding more NPM pairs until the crack became 
visible to the same degree as in case of the electromagnetic inspection. This led to the use of a stack of 
minimum of 5 NPM pairs can provide the same impact as that of the electromagnet yoke and can be observed 
in Figure 8(b). 

 
 

 
 

Figure 8. The crack visualization using (a) Electromagnetic Yoke and (b) with a set of NPM 
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A Hall-effect sensor was then used to detect the same crack with five NPM magnets, in the form of 
voltage values proportional to the magnetic flux, and the observations are shown graphically in Figure 9(a). 
The Signal to Noise Ratio of the observed signal was improved through deploying discrete wavelet 
transforms. The Wavelets used in this work include “symlet” (‘sym4’), “daubechies” (‘db6’), and “coiflet” 
(‘coif2’). After analyzing all the possibilities of WT on different MFL observations obtained, ‘coif2’ in both 
1st and 2nd decomposition levels produced maximum enhancement and best performance in all cases, as 
shown in Figure 9(b) and (c), respectively. 

 
 

 
 

Figure 9. Crack identification using MFL (a) without applying any DWT (b) after filtering the signal using 
COIF2 and (c) after consecutive filtering using COIF2 

 
 
It can be observed that all the graphs shown in Figure 9 have three peaks. This represents the 

situation where the robot has passed over the target crack location three times in order to verify that the 
detection is not due to some other form of uncertainty or artifact, rather it is an actual defect. It should also be 
noticed that although all peaks represented the same crack, every second peak has lower magnitude value 
than the previous one and the first peak is the highest peak. This is due to the magnetic hysteresis in the 
defective metallic surface. When the magnet moves over a region on the plate, it also renders that portion 
magnetized and in the next successive scan, a magnetic field with opposite polarity tends to resist the 
magnetic field of the permanent magnets. Thus, the net effect of flux leakage detection by the sensor is 
reduced. 
 
3.2.2. Sensor Testing 

After selecting the appropriate parameters required for the MFL sensor design, extensive testing was 
done on a standard metallic plate with welding defect, as shown in Figure 10(a). For each scan of the 
defective area, the COIF2 WT has been applied and a 3-D plot view of the obtained results was re-
constructed as shown in Figure 10(b). 

 
 

 
 

Figure 10. MFL scanning of (a) Metallic plate and (b) the corresponding results 
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4. SIMULATION RESULTS  
The design for VBI and MFL based inspections; both were first individually tested and verified 

successfully. Thereafter, the coordinated robotic system design based on these two approaches was tested on 
the sample metallic structure. 
 
4.1.  Results for UAV 

Multiple images were taken using UAV by flying it from the same reference location with respect to 
the test structure before and after inducing anomalies in specific areas of the structure. These images were 
subjected to IS algorithm and the final stitched image of IoC and IwC were aligned automatically. 
Afterwards, the absolute difference was calculated between the aligned images to detect the presence of 
anomaly. 

The selected anomalies in this work were artificial artifacts in the structure namely; an induced 
displacement between the block of the structure, and a missing screw, as described in the Section 2 (D). The 
stitched results for IoC and IwC along with the difference between them are shown in Figure 11. It can be 
easily visualized that both anomalies were successfully identified. 

 
 

 
 

Figure 11. Stitching results using flying UAV for (a) IoC (b) IwC, and the crack identification (c) after 
filtering the subtraction result of (a) and (b) 

 
 

4.2.  Results for MFL 
After detecting the presence of anomaly, the expected height of the defected location was sent to the 

FRM, which directed the SRM connected to the deployment motor, to move to that location and verify the 
presence of anomaly using MFL probe. The obtained results are shown in Figure 12. It should be noted that 
the graph has two peaks in positive direction (i.e. increased magnetic field) while before each positive peak 
there is a negative peak (i.e. reduction in the magnetic field leakage). The reason of positive peak is that both 
the defects created an open space, which reduces the material resistance and thus increases the leakage in the 
magnetic field. Whereas, the negative peak is because of the edge-effect, i.e. the magnetic lines dispersed at 
the edges, thereby, reducing the MFL values. 

It can be observed that the negative peak values of induced gap is more than the missing screw. This 
is due to the fact that the edges in case of induced gap were not sharp as in the case of missing screw. Since 
the block was lifted only from the front for inducing the gap, the boundary wall took the form of an inclined 
edge. Whereas in case of screw, the boundary wall was not changed in its shape and the location of the hole 
was composed of thin sharp edges. 
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Figure 12. Structural scan for crack identification using MFL (a) without applying any DWT (b) after 
filtering the signal using COIF2 and (c) after consecutive filtering using COIF2 along with the demonstration 

of peaks w.r.t the structure 
 
 

5. CONCLUSION 
In this paper, a scaled-down version of a promising SHM system has been presented. The system is 

composed of hierarchical and reconfigurable robotic modules to acquire structural health data to locate and 
discern anomalies in the structure that might have occurred due to environmental and weather-related factors. 
From a non-destructive testing perspective, robotic probes could be deployed on the surface as a trivial 
solution to the SHM problem. However, when the structure is prodigious, then the mere probing solution will 
not be very practical due to the time it takes to complete the inspection. The presented work has evaded this 
challenge through a hierarchical inspection approach. In this approach, a visual scan is first performed by 
UAVs with common reference point of launch over two consecutive occurrences of SHM scans. UAVs can 
be configured for and specific height and imaging quality, however, the presented work has shown initial test 
results based on commercially available UAV with 4K imaging system on-board. The custom-designed 
intelligent stitching algorithm aligns and registers these consecutive-run images and, after comparison of the 
images, identifies the locations of possible anomalies. This significantly reduces the search space for the 
NDT probe robots to locally-scan these locations for detailed defect elucidations. The lab-scale initial design 
has shown very promising results. Tests were also performed on two-story building as well for scalability 
confirmation; and the technique has been found to produce equally reliable defect detection. 

Several computational techniques have been amalgamated into the underlying system presented in 
the paper. Robotic design and control was done entirely based on the problem-specific scenarios. This way, 
even the commercially available modules, were integrated into the robotic rover and robotic probes to 
perform the imperative inspection functions. On the soft side of the design, well-known image registration 
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algorithms; SURF and RANSAC, were combined with modified image transformations in an amicable 
manner that resulted in extremely aligned images with precise defect localizations based on spatial gradients 
of the registered images. Moreover, in this paper, different WTs have been applied on the MFL waveforms in 
order to improve the signal to noise ratio and, more importantly, distinguish the undistorted signals. It has 
been concluded experimentally that by applying COIF2 on two consecutive stages will provide the most 
refined output waveform, suitable for defect detection and, to some extent, its depth grading. 
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