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 Since in most robot applications the desired paths are determined in task 
space or Cartesian space, it is important to control the robot arm in task 
space. In this paper a fuzzy controller with modifiable scaling factors is 
proposed to control the robot end-effector in task space. The controller is a 
fuzzy system with a mechanism to change the scaling factors when the error 
is bounded under a predetermined value. The controller is designed in joint 
space and is developed to work space by using inverse Jacobian strategy. The 
simulations results on Puma 560 robot manipulator illustrate the high 
performance of presented control method. 
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1. INTRODUCTION  

In most robot applications, a desired trajectory for robot end effecter is designed in task space or 
Cartesian space. However, the joint coordinates contain the control actions. To design a joint space controller 
for task objectives, it is necessary to carry out the inverse kinematics transformation to obtain the joint space 
desired path. To avoid solving the inverse kinematic problem some researchers used inverse or transpose 
Jacobian method to control a robot end-effector to a set point or to a trajectory in task space [1, 2]. In [3] an 
adaptive Jacobian controller is proposed with uncertainty in kinematics. Several research works on 
approximate Jacobian matrix in robot control have also are presented [4-6]. It should be noticed that an 
inexact Jacobian matrix results in imprecise transformation from task-space to joint-space and it creates some 
difficulties in control design.  

The performance of control strategies has been improved by using intelligent control systems. They 
have the ability to overcome the limits of classical and adaptive methods. The model dependency is usually 
decreased by using these methods. Some of intelligent methods such as fuzzy systems have in-built adaption 
and decision making capabilities to overcome the uncertainty. As robotics problems are nonlinear, many 
research works developed intelligent methods for robot control. For example, [7] used the indirect adaptive 
fuzzy method to control the contact force. Fuzzy sliding mode control is used to control an unknown robot 
[8]. The authors in [9] proposed a sliding mode control system in which the coefficients of sliding surface are 
optimized by Particle Swarm algorithm, and the method is combined with neuro fuzzy system to guarantee 
the robustness. Type-2 fuzzy systems are also used by[10] for robot trajectory control. 

In this paper, a fuzzy system with modifiable scaling factors is proposed to control the robot in task 
space. Moreover, the motor control is used to decentralize and control the robot. Three control systems are 
designed for motors which are attached to three robot joints. Whenever the tracking error is bounded under 
fixed values, the input scaling factor is increasing linearly to effectively decrease the error. The presented 
fuzzy system is a Takagi Sugeno type with fixed values in consequent parts except in zero fuzzy set. The 
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consequent part of the rule related to zero fuzzy sets is PD controller which operates in adaptive manner due 
to scaling factor mechanism. The objective of control system is that the end-effector of robot manipulator 
track a desired trajectory in task space. The Jacobian inverse method is used for transferring the Cartesian 
tracking error to joint angles error. Simulations have been performed to investigate the performance of the 
proposed control method. The control system is applied to a 3-DOF Puma 560 robotic arm in 2 steps. At the 
first step, the model is considered completely known and precise. In the second steps up to 50 % uncertainty 
is considered in robot parameters. In both simulations, the proposed control system has satisfactory 
performance in tracking a desired trajectory in task space. 

The paper is organized as follows. Section 2 briefly introduced the Puma 560 robot manipulator. 
The problem formulation is discussed in Section 3. The control system is designed in Section 4. Section 5 
presents the simulations outcomes, and Section 6 conclude the paper. 
 
 
2. PUMA560 ROBOT 

The PUMA 560 (Programmable Universal Manipulation Arm) is an industrial robot arm with six 
degree of freedom resulted from six rotational joints. It owns three joints for arm and three joints for wrist, as 
shown in Figure 1 [11]. Since the purpose of this paper is just to control the position of robot end point in 
task space, the robot arm joints are only considered in robot model. The Denavit-Hartenberg parameters of 
Puma robot are shown in Table 1 where for the considered robot in this paper, parameters are considered as 
𝑎2 = 0.4318(m)   ، 𝑎3 = 0.0203(m)  ، 𝑑3 = 0.15005(m) and 𝑑4 = 0.43180(m). By using these parameters, 
the robot Jacobian matrix can be calculated. The Jacobian matrix represents the relation between angel 
velocities in joint space and Cartesian velocities in task space. 
 
 

 
 

Figure 1. Puma 560 robot manipulator in zero position [11] 
 
 

Table 1. Denavit-Hartenberg Parameters of Puma Robot 
Joint i θ αi ai(m) di(m 

1 θ1 90 0 0 
2 θ2 0 a2 0 
3 θ3 -90 a3 d3 

 
 
3. PROBLEM FORMULATION 

The simulated robot manipulator is a PUMA 560 robotic arm, which have three degrees of freedom 
(DOF) by three revolute joints. The robot manipulator is driven by DC motors, somehow each joint is run by 
one motor using a fuzzy controller. The method is called independent joint strategy and has been frequently 
used to apply fuzzy controllers[12]. The voltage of each motor is the output of each proposed controller for 
three joints. The differential equation of a DC motor is in the form of (1-2) 
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𝑣 = 𝑅𝑎𝐼𝑎 + 𝐿𝑎𝐼𝑎̇ + 𝐾𝑏𝑟−1𝑞̇𝑖 (1) 
 
𝐼𝑎 = 𝐾𝑚−1𝑇𝑚 (2) 

 
where 𝑣 is the motor voltage, 𝐼𝑎 is the armature current, 𝑞̇𝑖  is the velocity of ith joint. 𝑅𝑎,𝐿𝑎 are armature 
resistance and inductance, 𝐾𝑏, 𝑟 are back-emf constant and reduction gear coefficient. 𝐾m is the torque 
constant,  and  Tm is the motor torque to drive the ith joint of the robot manipulator stated as (3):  

 
𝑇𝑚 = 𝐽𝑚𝜃̈𝑚 + 𝐵𝑚𝜃̇𝑚 + 𝑟𝑇𝑖  (3) 
 
In (3), Ti is a member of 𝑇𝜖𝑅𝑛 that is the manipulator torque vector, Jm is the sum of rotor inertia 

and gear inertias, and Bm is the damping coefficient. The manipulator torque vector is given by(4) [13]  
 
𝑫(𝒒)𝒒̈ +  𝑪(𝒒, 𝒒̇) + 𝒈(𝒒) = 𝑻 (4) 
 

where 𝒒 ∈ 𝑅𝑛 are the generalized coordinates, 𝑫(𝒒) ∈  𝑅𝑛×𝑛 is the symmetric positive-definite inertia 
matrix, 𝑪(𝒒, 𝒒̇) represents the Coriolis and centripetal terms, and g(q) is a vector of gravitational torques. 

In most robot applications a desired path for robot end-effector is specified in task space. Assume 
that  𝑋 ∈  𝑅𝑛 represents the task space vector of robot end-effector. Many commercial sensors are available 
for measurement of X, such as vision systems, electromagnetic measurement systems, position sensitive 
detectors or laser tracking systems. X is related to joint variables through robot kinematics equations. 
However the task space velocity 𝑋̇ is related to the joint-space velocity 𝒒̇ as follows (5): 

 
𝑿̇ = 𝑱(𝒒)𝒒̇ (5) 
 

where J(q) is the Jacobian matrix from joint space to task space. In small errors (5) can be rewritten as (6) 
 
 ∆𝑿 = 𝑱 (𝒒) ∆𝒒 (6) 
 

where ∆𝑿 = 𝑿𝒅 − 𝑿 ,  ∆𝒒 = 𝒒𝒅 − 𝒒, and 𝑿𝒅 is the desired path in task space and 𝒒𝒅 is the desired trajectory 
for joints corresponding to 𝑿𝒅. So, ∆𝑿 can be named as task space error and ∆𝒒 as joint space error. Equation 
6 yields (7) 

 
∆𝒒 = 𝑱−𝟏 (𝒒) ∆𝑿 (7) 
 
where 𝑱−𝟏 is the inverse of the Jacobian matrix. So, a relation between task space error and joint 

space errors can be calculated. This method is called Inverse Jacobian strategy. The robot arm has three joints 
and just the position control is aimed, so the Jacobian matrix would be 3 × 3. It is assumed that the robot is 
operating in a finite task space such that the Jacobian matrix is full rank. The main difficulty of estimating the 
joint space error from task space error comes from the fact that the Jacobian matrix is uncertain in the 
presence of kinematic uncertainties. So, the transformation will be imprecise in presence of uncertainties. 
The control objective for the Puma robot manipulator is hence to drive the manipulator endpoint to follow a 
desired trajectory defined in Cartesian space, in the presence of possibly large uncertainties in system 
kinematics and dynamics. The control approach is illustrated in Figure 2. The tracking error appears in task 
space, then by use of inverse Jacobian matrix, these errors are transferred to joint space and will be used as 
joint fuzzy adaptive controllers' inputs. 
 
 

 
 

Figure 2.Inverse Jacobian strategy 
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4. CONTROL SYSTEM 
The control system is composed of a TS controller and a mechanism for regulating scaling factors. 

When the tracking error is in the acceptable rang, the scaling factors are increased linearly to reduce the 
tracking error. On the other hand, if the tracking error is beyond the predetermined range for example due to 
initial conditions, the scaling factors are set with initial values. 

Since this kind of gain rising results in sensitivity increasing of the system, the controller is designed 
in a way that whenever disturbance or any chaos increase the error of the system the scaling factors are 
reduced and back to the initial values. The TS fuzzy controller is designed with nine fuzzy rules in the form 
of (8):  

 
𝑅𝑗 ∶ 𝑖𝑓 𝑧1  𝑖𝑠 𝐴1

𝑗  𝑎𝑛𝑑 𝑧2  𝑖𝑠 𝐴2
𝑗  𝑇𝐻𝐸𝑁 𝑦 =   𝑎1

𝑗𝑧1  + 𝑎2
𝑗𝑧2 + 𝑎0

𝑗 (8) 
 

where  𝑅𝑗 denotes the jth fuzzy rule, 𝐴𝑖
𝑗 is the fuzzy set, 𝑎𝑖

𝑗  is constant, 𝑦  is the crisp output, for 𝑗 = 1,2, … ,9  
and 𝑖 = 1,2. The inputs are 𝑧1 = 𝐴1(𝑞𝑑 − 𝑞) and 𝑧2 = 𝐴2(𝑞𝑑̇ − 𝑞̇) and  𝑧 = [𝑧1, 𝑧2]𝑇, while  z are the 
transmitted errors from task space to joint space by inverse Jacobian matrix and 𝐴𝑖 is the scaling factor for ith 
controller input that is adapted during the control process. The output  𝑓(𝑧) ∈ 𝑉 ⊂ 𝑅 of the TS fuzzy system 
is in form of (9) 
 

f(z) =
∑ (a1

j z1  +a2
j z2 +a0

j )9
j=1 (∏ μ

Ai
j(zi))n

i=1

∑ (∏ μ
Ai
j(zi))2

i=1
9
j=1

 (9) 

 
When the size of joint space error becomes less than a predetermined value, increasing the scaling factors is 
runs. If the tracking error is not reduced then the scaling factor mechanism will not run. Therefore, it is 
required that the TS controllers be stable. In [14], it is shown that the stability would be obtained if for 
𝑗 = 1,2, … ,9: 
a. 𝑎1

𝑗 ≥ 0 
b. 𝑎0

𝑗  should be as same sign as 𝑧2  
Through this condition, the TS fuzzy system with fixed scaling factor is stable.  The proposed 

approach is illustrated in Figure 3. The TS fuzzy controller has two inputs: position error 𝑧1 and its derivative 
𝑧2, and the motor voltage v as output. The nine fuzzy rules are given in Table 2. Membership functions 
(MFs) for the inputs are shown in Figure 4. The fuzzy system as a nonlinear function of mapping from input 
vector to the output is shown in Figure 5. The control system with the initial scaling factors must be stable. 
When error is decreased to a predetermined value in the zero fuzzy set, the scaling factor is increased linearly 
to improve the performance of the control system. As a result, the tracking error is decreased. 
 
 

 
 

Figure 3. Control system 
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Table 2. Fuzzy rules 
Erro Positive Zero Negative Chang of error 

Positive 12 9 6 
Zero 3 9𝑧1 + 𝑧2 -3 

Negative -6 -9 -12 
 
 
5. SIMULATION RESULTS 

In this section, simulation results are provided to show the feasibility of the control scheme proposed 
in this paper. This controller is implemented on Puma560 robot arm. The control task is that the end-point of 
the robot manipulator is required to follow a circle trajectory defined in Cartesian space as (10): 

 

�
𝑥 = 0.203 sin(𝜋𝑡)
𝑦 = 0.203 cos (𝜋𝑡)
𝑧 = 0.4013             

 (10) 

 
The schematic model of Puma robot and the desired trajectory are shown in Figure 6. It totally takes 

two seconds for robot to complete the proposed trajectory. The robot model is simulated in Matlab, and the 
motor parameters of Puma robot are according to Table 3.  
 
 

 
 

Figure 4. Membership functions for inputs 
 
 

 
 

Figure 5. Fuzzy system rule surface 
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Table 3. Parameters for joint motors 
Joint 𝑹𝒂 𝑳𝒂 𝐉𝐦 𝐁𝐦 𝑲𝐦 r 𝑲𝒃 

1 1.6 0.0048 0.0002 0.00148 0.2611 62.55 0.19 
2 1.6 0.0048 0.0002 0.000817 0.2611 107.81 0.19 
3 1.6 0.0048 0.0002 0.00138 0.2611 53.15 0.19 

 
 
The initial position of robot end point is considered in [𝑥0 ,𝑦0 , 𝑧0] = [0.0097    0.15   0.42](𝑚) in 

Cartesian space .Knowing this initial condition, the initial errors in task space due to desired trajectory are  
�𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧� = [−0.00975    0.05242   − 0.02232](𝑚) .The three controllers are the same. The initial 
scaling factors for the input is set equal to 10 and for the output equal to 5. The threshold for absolute value 
of joint space error to run the scaling factor mechanisms for joints 1, 2, 3 are equal to 7.9858e-004rad, 
3.7101e-004rad and 9.3099e-004rad, respectively. It should be noticed that uncertainty in the cinematic 
parameters makes the Jacobian matrix inexact, so the transformation would be imperfect, therefore, the 
accurate error will not be transmitted to joint space. To investigate the proposed control method performance 
more deeply, two simulations have been done. In first simulation all the cinematic parameters needed for 
calculating Jacobian matrix are considered to be exact. In the second one, up to 50 % uncertainty is 
considered for robot parameters and an external disturbance is also added to system.  

 
 

 
 

Figure 6. Puma Robot schematic model and the desired trajectory 
 
 
5.1.  Simulation A 

In this part it is assumed that the cinematic parameters are certain and the Jacobian matrix is exact. 
The control objective is to track the circle in task-space. The performance of the control system is satisfactory 
as shown in Figure 7. The tracking errors are displayed in Figure 8. The steady state error is less than 0.2 
millimeter. The operation of scaling factors based on joint space errors are illustrated in Figure 9- Figure 11 
for different joints. The added arrows in the figures show the time of start of increasing mechanism. The 
input scaling factors increase linearly when the error is decreased enough. The Robot behaves very well with 
an ignorable tracking error due to the use of increasing scaling factors. 
 
5.2. Simulation B 

To show the effectiveness of the proposed controller against the uncertainty and external disturbance 
a simulation is run assuming that kinematic parameters are inexact. So the Jacobian matrix is not accurate 
and wrong error is transmitted to joint space.  
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Figure 7. Performance of control system in simulation A, the robot end-effector successfully track the desired 
trajectory 

 
 

 
 

Figure 8. Tracking error in task space in simulation A 
 
 

 
 

Figure 9. Scaling factor mechanism vs, joint1 error in simulation A 
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Figure 10. Scaling factor mechanism vs, joint2 error in simulation A 
 
 

 
 

Figure 11. Scaling factor mechanism vs, joint3error in simulation A 
 
 

An external pulse displayed in Figure 12 is also added to position x as a disturbance in time 1.2 s. 
The amplitude of pulse is 0.005(m) and its duration time is 0.1s. The disturbance signal represents a sudden 
movement in direction X. The simulation shows that the fuzzy control with variable scaling factors can 
perform well against this uncertainty. Assume that the Denavit-Hartenberg parameters used in controller have 
up to 50 % uncertainty. New parameters are thus introduced as:  
𝑎�2 = 0.5𝑎2  
𝑎�3 = 0.8𝑎3  
𝑑̃3 = 1.4𝑑3  
where 𝑎2, 𝑎3 , 𝑑3 are exact robot parameters and 𝑎�2, 𝑎�3, 𝑑̃3 are parameters that are used for calculating the 
Jacobian matrix in controller. The controller is applied to the system, and the position of robot end effector is 
displayed in Figure 13. Although, it takes more time to converge the desired path, it can be observed that 
trajectory tracking has been performed successfully. A small error is happened in bottom and left side of the 
circle caused by added external disturbance in time 1.2 s. The tracking error in task space is shown in Figure 
14. The fuzzy systems’ scaling factors for three joints are displayed in Figure 15. The increasing mechanism 
has been stopped, and the scaling factors are reset to initial values when the disturbance is added to system in 
time 1.2 s. Increasing the input scaling factors, intensify the system sensitivity to inputs. So, whenever the 
tracking error increases, the scaling factors should be reset to their initial values to reduce the sensitivity and 
to improve the system performance. From all simulations, it can be found that the proposed control system 
has acceptable performance for tracking a desired path in task space even in existence of kinematic 
uncertainties. 
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Figure 12. The external disturbance added to position x in simulation B 
 
 

 
 

Figure 13. Positon of robot end effector in task space considering up to 50 % uncertainty in parameters and 
adding an external disturbance (simulation B) 

 
 

 
 

Figure 14. Work space tracking error in simulation B 
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Figure 15. The inputs’ scaling factors in simulation B, A disturbance is added to the system in time 1.2s 
 
 
6. CONCLUSION  

A self-tuning fuzzy control system is presented in this paper with the objective to decrease the robot 
end-effector tracking error. An update mechanism is added to typical fuzzy system in which when the error is 
small enough the controller inputs’ scaling factors are increasing linearly. So there is an adaptive PD 
controller in zero sets of fuzzy inputs with the ability of decreasing the error. The control system is not 
dependent to exact model of the system. Only, the feedbacks from task space of robot are needed, and by 
using inverse Jacobian method the errors are transferred to joint space. The robot end-effector can track a 
desired trajectory in Cartesian space with uncertain kinematics. It should be noticed that the scaling factor 
update mechanism is just designed to reduce the tracking error, and overcoming the uncertainties is in-built 
ability of fuzzy control systems. The simulation results illustrate the acceptable performance of the presented 
control system. 
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