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 In this paper, nonparametric nonlinear systems identification is proposed. 

The considered system nonlinearity is nonparametric and is of hard type. 
This latter can be discontinuous and noninvertible. The entire nonlinear 

system is structured by Hammerstein model. Furthermore, the linear dynamic 

block is of any order and can be nonparametric. The problem identification 

method is done within two stages. In the first stage, the system nonlinearity is 
identified using simple input signals. In the first stage, the linear dynamic 

block parameters are estimated using periodic signals. The proposed 

algorithm can be used of large class of nonlinear systems. 

Keywords: 

Discontinuous nonlinearities 

Hammerstein models  

Nonlinear systems 

Nonlinear systems 

identification 

Nonlinear systems structured in 

blocks  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mohamed Benyassi, 

Department of Electrical Engineering, ESTM,  

Moulay Ismail University, Morocco. 

Email: benyassimohamed@yahoo.fr 

 

 

1. INTRODUCTION 

Nonlinear systems identification is an active research area in the last decades [1-4]. The actual 

systems are generally nonlinear in nature [5, 6]. Then, the nonlinear effect can not be neglected. Furthermore, 

the nonlinear systems parameters vary according to the time, temperature, etc. It is therefore necessary to 

develop a nonlinear model to take into account the real behavior of process.  

Nonlinear systems identification is a necessary step for system control [7-10]. The nonlinear 

systems structured in blocks are increasingly used. It consists of series connexion of linear and nonlinear 

blocks [5, 6] and [11, 12]. Nonlinear systems structured in blocks have been widely studied lately [13-17]. 

One the most used models of these systems are Hammerstein models. The Hammerstein models 

consist in a nonlinearity element followed by a linear dynamic block (Figure 1). These nonlinear models are 

widely studied in the last decades [18-22]. Several systems can be practically modelled by Hammerstein 

models [23, 24].  

The identification problem of these nonlinear systems is an important stage for control and  

stability [18]. The diversity of nonlinear systems and the considerable assumptions on the system has led to  

a large variety of identification solutions and approaches [9, 10] and [23, 24]. Generally, there exist 

frequency solutions [23, 24], recursive algorithms [8, 9], hierarchical and filtering approaches [25], subspace 

identification methods [26].  

In this paper, an identification method is proposed to deal in the kind of nonlinear systems 

structured by Hammerstein models. Compared to most of previous methods, the present work is more 

general. Indeed, the assumptions imposed on the linear subsystem and the nonlinear blocks are reduced. 

Presently, the considered Hammerstein model is characterized by nonparametric linear subsystem block. This 

latter can be of unknown structure and of infinite order.  
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Figure 1. Hammerstein nonlinear system 

 

 

On the other hand, the considered system nonlinearity f(.) is a function of hard type (Figure 2a-c). 

These examples of nonlinearities are a very attractive research area in the last decades [21]. In fact, it is very 

difficult to approximate these nonlinearities type by polynomial functions [21].  

Furthermore, it is assumed here that, the system nonlinearity can be discontinuous and noninvertible 

(Figure 2a-c). Finally, in order to identifiability considerations, the nonlinearity f(.) contains at least one 

segment of nonzero slope (Figure 2a-c). Presently, the system nonlinearity f(.) can contains saturation  

(Figure 2a), or discontinuity (Figure 2b), as it can contains, simultaneously, saturation and discontinuity 

(Figure 2b). Then, the present study is more general using nonparametric linear dynamic block which can be 

of infinite order. Unlike several previous works, the linear element is parametric or of known structure. 

The paper is organized as follows: the identification problem is formulated in Section 2;  

the nonlinear operator identification is coped with in Section 3; the linear subsystem frequency response 

determination is investigated in Section 4. An example of simulation is proposed with in Section 5. 

 

 

   
(a) (b) (c) 

 

Figure 2. Hard nonlinearity with (a) saturation, (b) discontinuity, and (c) discontinuity and 

saturation 

 

 

2. PROBLEM STATEMENT 

The aim in this work is to deal the nonlinear systems identification problem. The considered 

nonlinear system is structured by Hammerstein models (Figure 1). Presently, the nonlinear function f(.) is of 

hard type (Figure 2a-c) and the nonparametric linear block is of unknown structure. Furthermore, the linear 

element is characterized by the transfer function G(s). A standard Hammerstein model is analytically 

described as follows (Figure 1): 

 

 ( )   ( ( )) (1) 

 

 ( )   ( )   ( ) (2) 

 

 ( )   ( )   ( )   ( )   ( )   ( ) (3) 

 

where  ( )     ( ( )) and L 
-1 

denotes the inverse Laplace operator. Except the input and output system 

( ( ) and  ( )), all internal signals  ( ),  ( ) and  ( ) are not accessible to measurement. On the other 

hand, the extra-input signal  ( ) accounts to disturbances and measurement errors. 

On the other hand, note that Hammerstein systems problem identification doesn’t have a unique 

solution [11-12]. Indeed, if the couple ( ( )  ( )) (Figure 1) is solution of the above problem 

identification. Then, any nonlinear system of the form . ( )  
 ( )

 
/ (Figure 3) is also solution of this 

problem identification for any nonzero real K. Currently, the question that arises is how to choose  

the constant K? The problem of the judicious choice of K can be resolved in the following section. The aim  

in this paper is to develop a frequency identification method allowing the estimate the system nonlinearity 

parameters, as well as, the frequency linear subsystem estimation. 
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Figure 3. Solution multiplicity of Hammerstein models 

 

 

3. NONLINEARITY FUNCTION IDENTIFICATION 

In this section, the objective is to provide an identification solution letting the estimate of 

nonlinearity function f(.). To this end, the nonlinear system structured by Hammerstein model (Figure 1) is 

excited by a set of constant input:  
 

 ( )     for   ,(   )    - (4) 
 

where T is much greater than the system rise time (    ) and      . Note that the integer number N is 

arbitrarily chosen by the designer. Then, the internal signal w(t) is also a piecewise constant signal. 

Specifically, it follows from (1) and (4) one has: 
 

 ( )      (  ) for   ,(   )    - (5) 

 

for      . In section 2, we have shown that the Hammerstein system identification possesses a multiple 

solutions (Figure 3). Several studies were made for the choice of K. It is preferable to take the following 

factor K:  
 

   ( ) (6) 
 

Accordingly, it readily follows from (Figure 3) and (6) that the linear element to be identified is 

characterized by a unit static gain. Specifically, one has without loss of generality:  
 

 ( )    (7) 
 

Accordingly, it readily follows from (2), (5) and (7) that the steady state of undisturbed output x(t) is constant 

for any input value   (     ). Then, it can be expressed as:  

 

 ( )      (  ) for      (8) 

 

for any   *   +. Therefore, using (3) and (8) the steady state system output y(t) is close to a set of 

constant values up to noise, for any input   (     ). Specifically, the system output y(t) can rewritten as 

follows: 
 

 ( )      ( )   (  )   ( ) for      (9) 

 

where      . Presently, the difficulty is how to determine  (  ), for any input   (     ), using 

uniquely the system input u(t) and output y(t)? 

This problem can be avoided using the fact that the noise signal * ( )+ is of zero mean. Let  ̂( ) 

denotes the estimate of  ( ). Then, an accurate estimate  ̂(  ) of  (  ), for any input   (     ), can be 

obtained using the following estimator:  
 

 ̂(  )  
 

 
∑ ( )

 

   

 (10) 

 

where M is any large integer and      . Then, one immediately gets from (9) and (10) that: 
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 ̂(  )   (  )  
 

 
∑ ( )

 

   

 (11) 

 

Furthermore, noticing that the term on the right of (11) boils down to zero with probability equals to 1: 

 

 

 
∑ ( )

 

   

   (w.p.1) (12) 

 

Finally, it follows from (11) and (12) that: 

 

 ̂(  )  (  )   
      (w.p.1) (13) 

 

for any input    (     ). To conclude, an accurate estimate of  (  ), for any input         , can be 

obtained by averaging the system output y(t) over any interval ,(   )    -. 
 

 

4. IDENTIFICATION OF THE LINEAR ELEMENT 

The aim in this section is to develop an identification approach to determine the linear subsystem 

parameters. Bear in mind that the system nonlinearity is of hard type function having at least one segment of 

nonzero slope. Presently, we suggest a frequency approach allowing an accurate estimate of complex gain 

(i.e. the modulus gain and the phase) of linear dynamic element.  

Then, using the nonlinearity estimator performed in section 3 and excite the Hammerstein system by 

the sine input signal:  

 

 ( )              (  ) (14) 

 

where V is amplitude of sinusoidal part of  ( ) and         is the offset value. Recall that the system 

nonlinearity has at least one segment of nonzero slope (for identifiability reasons). Accordingly, the couple 

(         ) is chosen such that the input signal  ( ) remains belonging to one segment having a nonzero 

slope. The problem that currently arises is how to make sure that  ( ) remains belonging to one segment (of 

nonzero slope)? 

This question will be dealt using the system nonlinearity estimator (section 3). Accordingly, by 

making a linear connection of all estimated points in section 3. Some of candidate segments are deduced and 

let take one. On the other hand, starting from any amplitude V and choosing an offset value         near of 

the segment center. Then, the amplitude V can be adjusting until the system output  ( ) becomes sine signal 

up to noise. If this latter no longer becomes sinusoidal (up to noise), then another candidate segment can  

be considered. 

Therefore, let     and b designates the parameters of this segment having a nonzero slope.  

The parameters couple (   ) is already determined in section 3. Under these conditions, it readily follows 

that the internal signal  ( ) and the input signal  ( ) are related by the following relationship:  

 

 ( )    ( )    (15) 

 

Then, it readily follows from (1), (14) and (15) that, the internal signal  ( ) is also sine signal. This latter 

can be expressed as: 

 

 ( )       (  )             (16) 

 

On the other hand, use the fact that the stability assumption of the linear block, then the undisturbed 

system output  ( ) is also sine signal. Specifically, one immediately gets from (1), (7) and (16) that  

the signal  ( ) can expressed as follows: 

 

 ( )    | (  )|    (    ( ))             (17) 

 

Finally, from (3) and (17), one has the resulting system output  ( ): 
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 ( )    | (  )|    (    ( ))              ( ) (18) 

 

Accordingly, this latter equation shows that the steady state of system output  ( ) is a sine signal up to noise. 

Further, the unique unknowns in the amplitude and phase of sinusoidal term are the modulus gain | (  )| 
and phase  ( ) of linear block.  

Then, by filtering the sinusoidal term in (18), the frequency parameters of linear subsystem can be 

easily obtained. To this end, the noise part in (18) is filtered as follows. Let  ̂( ) denotes the undisturbed 

output estimate. The estimator of  ( ) can be obtained using the following T-periodic average:  

 

 ̂( )  
 

 
∑ (    )

 

   

 (19) 

 

where        is the period of the input  ( ) and output  ( ) signals. Indeed, using the fact that  

the undisturbed system output  ( ) is periodic signal of same period of the input  ( ). Then, one 

immediately gets from (3) and (19) that the estimate  ̂( ) can be expressed as: 

 

 ̂( )  
 

 
∑( (    )   (    ))

 

   

 

  ( )  
 

 
∑ (    )

 

   

 

(20) 

 

Accordingly, the last term in the right side of (20) vanishes with probability equal to 1. Then, it follows from 

(20) that: 

 

 ̂( )   ( ) (21) 

 

 

5. SIMULATION 

The nonlinear system of Hammerstein models considered in simulation is characterized by  

the system nonlinearity shown in Figure 4. Then, the transfer function of linear element is given as follows:  
 

 ( )  
   

(     )(     )
 (22) 

 

In the first stage and using the identification method presented in section 3, the system nonlinearity 

parameters can be obtained. Then, the nonlinear system is excited by the constant input of Figure 5.  

The corresponding system output  ( ) is displayed by Figure 6. Furthermore, the nonlinear system of 

Hammerstein model is excited by others constant inputs. The system output  ( ) for  ( )        is 

shown in Figure 7. 

 

 

 
 

Figure 4. The system nonlinearity f(.) 

 
 

Figure 5. The input v(t) 
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Figure 6. The resulting output signal y(t) 

 
 

Figure 7. The resulting output signal y(t) 

 

 

In the second stage and using the frequency algorithm presented in section 4, the linear block 

parameters can be identified. To this end, the nonlinear system is excited by the sine input (14). Then, for  

an arbitrarily amplitude V and offset        , the system output  ( ) is shown in Figure 8. It is clear that  

the system output  ( ) is not a sine signal. Then, by adjusting the parameters couple (         ) of the input 

(14) and observing the system output  ( ) until that this latter becomes sine signal. This result is shown  

in Figure 9. 

This result (Figure 9) shows that the output signal  ( ) is close to a sine signal up to noise. Then, 

the estimate  ̂( ) of inner signal  ( ) using the estimator (19) is represented by Figure 10. Then, by 

representing the output  ( ) according to the signal  ( ). The corresponding locus for any phase   is shown 

in Figure 11. 
 

 

 
 

Figure 8. The output y(t) for an arbitrarily V and         

 
 

Figure 9. The system output signal y(t) 
 

 

 
 

Figure 10. The estimate of inner signal x(t) 

 
 

Figure 11. The locus (z(t), y(t)) 
 

 

It is clear that the undisturbed system output  ( ) is very close to a sine signal. Accordingly, to 

determine the linear block parameters, let consider the following reference signal having the same frequency 

of input  ( ):  
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 ( )      (    ) (23) 

 

This result points out that this locus is different from a straight line. Then, adjusting the parameter   

in (23) until the locus ( ( )  ( )) becomes straight line up to noise. One immediately concludes that this 

value of   is the phase estimate of linear element. This case is shown in Figure 12. Then, the modulus 

frequency gain | (  )| can be estimated by representing the filtered locus ( ( )  ̂( )) using the estimator 

(19). This result is shown in Figure 13. Finally, the linear block parameters (i.e. the phase  ( ) and  

the modulus frequency gain | (  )|) can be determined for any frequency  . 
 

 

 
 

Figure 12. The locus (z(t), y(t)) 

 
 

Figure 13. The filtered locus ( ( )  ̂( )) 
 

 

6. CONCLUSION  

In this work, the identification problem of nonlinear systems is dealt. The nonlinear system is 

structured by Hammerstein models. The considered nonlinear system is more general. The system 

nonlinearity can be discontinuous and noninvertible function. Presently, this latter is a function of hard type. 

Furthermore, the dynamic linear block can be nonparametric and of unknown structure. Then, in this work  

a new two stages solution is proposed. In the first stage, an identification method is proposed to estimate  

the system nonlinearity parameters. In the second stage, the frequency gain of the linear element can  

be identified. 
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