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 Fault detection in robotic manipulators is necessary for their monitoring and 

represents an effective support to use them as independent systems. This 

present study investigates an enhanced method for representation of the 

faultless system behavior in a robot manipulator based on a multi-layer 

perceptron (MLP) neural network learning model which produces the same 

behavior as the real dynamic manipulator. The study was based on 

generation of residue by contrasting the actual output of the manipulator with 

those of the neural network; Then, a time delay control (TDC) is applied to 

compensate the fault, in which a typical sliding mode command is used to 

delete the time delay estimate produced by the belated signal in order to 

obtain strong performances. The results of the simulations performed on a 

model of the SCARA arm manipulator, showed a good trajectory tracking 

and fast convergence speed in the presence of faults on the sensors. In 

addition, the command is completely model independent, for both TDC and 

MLP neural network, which represents a major advantage of the proposed 

command. 
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1. INTRODUCTION 

In various industrial processes robot manipulators have invaded the mode of technology; they are 

used to carry out complex and repetitive tasks quickly and efficiently. They are connected to each other by 

joints so that the manipulators follow the reference trajectory, where articulations must be precisely 

controlled. To perform these tasks, the manipulators are usually quite complex which increases their factor 

for fault. Thus, in order to have a good fault diagnosis on a manipulator, it is necessary to have a precise 

knowledge of its mathematical model. However, it is very difficult to obtain a precise of model as the 

modeling of dynamic robot which is not always an obvious task. For this purpose, various problems can arise 

such as uncertainties, external disturbances, uncertain dynamics, and measurement noises, which cause 

deterioration of the fault detection performance by causing false alarms [1-3]. In this respect, fault detection 

in a robotic manipulator is necessary for monitoring and effective support in utilize of a manipulators as 

independent systems [4, 5]. Methods of defects detection and isolation are generally founded on the concept 

of production and residual analysis of the residuals. Many techniques have been assessed in order to be 
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successfully applied. Taking into account the reliability which must be the most important criterion of the 

operation. These techniques allow reliable decisions to be made without knowledge of the mathematical 

system model. In this respect, artificial neural networks (ANNs) are suitable for such problems. One of this 

remarkable cleanliness is their ability to learn from their environment and improve their behavior from 

learning, in addition to the learning results in an adaptation (adjustment) of the weights and bias of the neural 

network [6, 7]. Ideally, after each learning step (iteration), performance improves. There are different 

learning approaches which differ from each other by the way of adjusting the weights and their structure 

depends on the architecture of the neural network and the task to be performed. Besides, neural networks 

have been searched and carried out in real systems [8, 9]; there are many ANN applications in data analysis, 

identification, and model control [10]. Amid various types of ANN, a multi-layer perceptron (MLP) is quite 

popular and used extensively in research. In order to achieve good fault compensation, controllers capable of 

effectively compensating for faults are necessary to enable them to perform their task independently and 

realistically. In this regard, numerous works have been developed to compensate for defects such as robust 

control algorithms, including synchronization control [11], ANN [12, 13], sliding mode control (SMC) [14, 

15] and time delay control (TDC) [16, 17]. SMC are well known for their robustness against unknown 

systems dynamics. 

To eliminate external perturbations and nonlinear dynamics with delay signal, handy nonlinear 

control strategies for unmodeled disturbances have been developed, for example TDC. This last, its principal 

objective is to use past observation of the system response as a control input at the present time to 

immediately change the control actions instead than identify the parameters or adjust the controller gain of 

the control system, which leads to an independent model controller i.e., compensation without any use of 

dynamic model [18]. On the other hand, the big disadvantage of TDC is undesirable tracking errors and time 

delay estimation (TDE) errors. To compensate errors for TDE, many procedures have been tested by 

combining commands with a TDC. An auxiliary control [16-19] has been selected to settle its gains 

adaptively in order to have a switching control scheme. In [20] an auxiliary control in fuzzy sliding mode has 

also been chattering using fuzzy rules. In general, we caused that several works were realized by combining 

TDC and neural networks [21]. 

In other words, in order to eliminate TDE errors, a SMC [22] has been consolidated to allow quick 

tailoring of switching gains, which improves tracking performance compared to a conventional TDC. 

Especially, the use of fixed control gains from the TDC allows to ameliorate a performance of the system and 

the rapid adaptation of the gain [23]. TDC control combined with sliding mode [24], requires a gain 

adjustment. However, the TDCs adaptation law does not directly reflect current tracking errors or sliding 

variables, which leads to a slow convergence rate. Thus, it would be useful to develop a TDC control 

combined with sliding mode, which compensates for the fault with a fast convergence speed, while 

suppressing TDE errors and avoiding. 

In this paper, a methodology has been developed in order to detect, estimate, and compensate for 

sensor defects in a robot manipulator, which is based on the concept of residual generation with neural 

network and compensation with a TDC controller. The network learning is based on nonlinear modeling and 

allows the approximation of the real model in the absence of defects. The principal target behind this 

approach is to employ neural networks to observe the robotic system to detect all modification in system 

dynamics owing to faults. By utilizing the approximation capabilities of neural network, the network can be 

used for residue generation, in which trained trajectories are considered to perform system operation training. 

Another trajectory is used to test the efficiency of the network; as a result, the MLP network has the same 

operation as the faultless system. 

The difference between the output of the manipulator with fault and that of the neural network gives 

us an error which will then be compensated. In other words, from these compared results, a global command 

switch between two commands has been developed. The first command is applied to the manipulator without 

fault with a low TDC gain, the result, shows immediate continuation of the trajectory, then, with the same 

command (law gain), we introduce some default on the manipulator. The results show a divergence (failure 

of the tracking of the trajectory). For the second command, we use TDC with a high gain in the existence of 

fault on the robot manipulator. Thus, the robot manipulator successfully tracks the desired trajectory even 

though the measures are faults. The TDC command used in this paper is free model, that is; it does not use 

required model, as well as the neural network. This presents a major advantage of the developed command. 

The simulation results indicate the effectiveness of the proposed controller, which is capable to accurately 

path the reference trajectory and be robust versus uncertain dynamics and external perturbation. The rest of 

the paper is organized as follows: Section II describes the formulation of the problem and presentation of the 

ANN and TDC. Section III deals with control design and convergence analysis, section IV introduce the 

simulation results. In the end section V concludes the article. 
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2. RESEARCH METHOD 

2.1.  Problem formulation 
Because of robots are usually involved in remote or dangerous environments; they are faced with 

external disturbances, uncertain dynamics, and uncertainty. This is why researchers are stimulated to work 

for solving these problems. For this, we will propose an effective method for detecting and compensating 

sensor faults, which is: Switched TDC based on neural network for fault detection and compensation in robot 

manipulators. 

 

2.2.  Artificial neural network 

In this paper, we are interested in MLP correction of algorithm learning error, the difficult with 

MLP is to efficiently calculate the weight of hidden layers which give a minimal output error (or zero) as a 

result, where the augmentation of hidden layers increasing calculation difficulty. The MLP structure made up 

of three layers: input (M), hidden (N) and output (O) as it shown in Figure 1 [8, 9]. 

 

 

 
 

Figure 1. MLP feed-forward neural network 

 

 

The input vector𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑀]𝑇 , is changed to an intermediate vector of the hidden variables 𝑈 

by utilizing activation function𝑓𝑗, 𝑢𝑗
 
the output of 𝑗𝑡ℎ neurons of the hidden layer is acquired as (1) [8, 9]: 

 

𝑢𝑗 = 𝑓1(∑ 𝑤𝑖,𝑗
1 𝑥𝑖

𝑀
𝑖=1 + 𝑏𝑗

1)        (1) 

 

where 𝑏𝑗
1 and 𝑤𝑖,𝑗

1  represent the bias and the weight respectively, between the 𝑗𝑡ℎ

 
neural of the hidden layer 

and the 𝑖𝑡ℎ neural of the input layer. The upper index 1 represents the (first) connection between the neural of 

the input / hidden layers. The desired output vector 𝑦 = [𝑦1, 𝑦2, … , 𝑦0]𝑇  of the network is get from, the vector 

of intermediate variables 𝑈, by an activation function 𝑓2 of output layer. For example, the output of the 

neuron 𝑘 can be expressed as follows [8, 9]: 

 

𝑦𝑘 = 𝑓2(∑ 𝑤𝑙,𝑘
2 + 𝑏𝑘

2𝑁
𝑙=1 )        (2) 

 

where the upper index 2 denotes the (secondary) connection between neural of the hidden / output layers. 

There are several forms of the activation functions 𝑓1 and 𝑓2, such as the sigmoid function, the hyperbolic 

tangent, and the linear function. In MLP, the hyperbolic (tansig) and linear (purelin) tangent activation 

functions have been used in the hidden layer and the output layer, respectively. 

 

2.3.  Dynamic model of a robot manipulator 
The dynamic equation of robot manipulator is as (3): 

 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏       (3) 

where 𝑀(𝑞)the inertia matrix, 𝐶(𝑞, 𝑞̇) is the matrix of Coriolis, and centrifuge 𝐺(𝑞) is the vector of 

gravitational force, 𝑞𝜖𝑅𝑛, 𝑞̇𝜖𝑅𝑛 , 𝑞̈𝜖𝑅𝑛are the angle, the angular velocity, and the angular acceleration of the 
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joints, respectively, and 𝜏𝜖𝑅𝑛 is the control input torque. In this paper, the dynamic model of SCARA robot 

has been used in the simulation [25]. We assume that there is an additive sensor’s fault expressed by: 

 

𝑞𝑡 = 𝑞 + ∆𝑞         (4) 

 

by replacing (4) in (3) obtains the dynamic equation of manipulator: 

 

𝑀(𝑞𝑡)𝑞𝑡̈ + 𝐶(𝑞𝑡 , 𝑞̇𝑡)𝑞𝑡̇ + 𝐺(𝑞𝑡) = 𝜏𝑡      (5) 

 

where ∆𝑞 is the sensor fault, 𝑞𝑡 is the measured joint and q is the joint without fault. 𝑀(𝑞𝑡), 𝐶(𝑞𝑡 , 𝑞̇𝑡), 𝐺(𝑞𝑡) 

and 𝜏𝑡is the inertia matrix, the matrix of Coriolis and centrifuge, the vector of gravitational force and the 

control input torque, we are introducing the fault (additive fault). 

 

2.3.1. Time delay control 

In this paper, our objective is to synthesize a control law able to compensate the sensor defect in the 

manipulator based on the residuals between the real measurements and the neural network model and hence 

achieve good tracking performances [18]. Multiplying both part of (5) by 𝑀−1(𝑞𝑡)and resolving for 𝑞̈𝑡, we 

obtain: 

 

𝜏𝑡 = 𝐶(𝑞𝑡 , 𝑞̇𝑡)𝑞̇𝑡 + 𝐺(𝑞𝑡) + (𝑀(𝑞𝑡) − 𝑀̅(𝑞𝑡))𝑞̈𝑡 + 𝑀̅(𝑞𝑡)𝑞̈𝑡    (6) 

 

where t indicates the actual sample and 𝑀̅ = 𝑑𝑖𝑎𝑔(𝑀̅1, 𝑀̅2, … , 𝑀̅𝑛) 𝜖𝑅𝑛×𝑛 is a diagonal positive matrix. We 

take up the common supposition that the robot dynamics in (5) comply with 𝛿𝑚 ≤ 𝑀(𝑞𝑡) ≤ 𝛿𝑀 [26], for 

certain positive values 𝛿𝑚and 𝛿𝑀. This is since the inertia matrix 𝑀(𝑞𝑡) is voiced in terms of sin (𝑞𝑡) and 

cos (𝑞𝑡). From (6) we write a compact and simple form of 𝑞̈𝑡 as (7). 

 

𝑞̈𝑡 = 𝑁𝑡 + 𝑀̅−1𝜏𝑡         (7) 

 

where 𝑁𝑡 = −𝑀̅−1[𝐶(𝑞𝑡 , 𝑞̇𝑡)𝑞̇𝑡 + 𝐺(𝑞𝑡)] − 𝑀̅−1[(𝑀(𝑞𝑡) − 𝑀̅)𝑞̈𝑡] ∈ 𝑅𝑛, the command purpose is to 

construct the joint angles 𝑞𝑡of a manipulator pursue the reference 𝑞𝑟𝑒𝑓,𝑡accurately, so that the tracking error 

𝑒𝑡 = 𝑞𝑟𝑒𝑓,𝑡 − 𝑞𝑡𝜖𝑅𝑛should be as close as possible to zero. Since Nt in (7) is not available, we use its estimate 

𝑁̂𝑡. The TDC controller is expressed as [18] 

 

𝜏𝑡̅ = −𝑀̅𝑁̂𝑡 + 𝑀̅(𝑞̈𝑟𝑒𝑓,𝑡 + 𝑘𝑑𝑒̇𝑡 + 𝑘𝑝𝑒𝑡)      (8) 

 

where 𝑘𝑑 = 𝑑𝑖𝑎𝑔(𝑘𝑑1
, 𝑘𝑑2

, … , 𝑘𝑑𝑛
) ∈ 𝑅𝑛×𝑛 and 𝑘𝑝 = 𝑑𝑖𝑎𝑔(𝑘𝑝1

, 𝑘𝑝2
, … , 𝑘𝑝𝑛

) ∈ 𝑅𝑛×𝑛 are positive concept 

matrices, 𝑞̈𝑟𝑒𝑓,𝑡 = [𝑞̈𝑟𝑒𝑓1,𝑡 , 𝑞̈𝑟𝑒𝑓2,𝑡 , … , 𝑞̈𝑟𝑒𝑓𝑛,𝑡] ∈ 𝑅𝑛 is the desired angular acceleration, 𝑒̇𝑡𝜖𝑅𝑛 is a by-product 

of the tracking error,𝑁̂𝑡 = [𝑁̂1,𝑡 , 𝑁̂2,𝑡 , … , 𝑁̂𝑛,𝑡] ∈ 𝑅𝑛. The 𝑁̂𝑡 is the estimate of 𝑁𝑡 in (7) obtained by a delayed 

measurement of the sample, called TDE [18, 19]. The expression of 𝑁̂𝑡 is given by: 

 

𝑁̂𝑡 = 𝑁𝑡−𝐿 = 𝑞̈𝑡−𝐿 − 𝑀̅−1𝜏𝑡−𝐿       (9) 

 

where 𝐿 is a sampling time period, 𝑡 − 𝐿 is a sample passed. Replacing (9) in (8), we obtain the following 

recursive control: 

 

𝜏𝑡̅ = −𝑀̅𝑞̈𝑡−𝐿 + 𝜏𝑡−𝐿 + 𝑀̅(𝑞̈𝑟𝑒𝑓,𝑡 + 𝑘𝑑𝑒̇𝑡 + 𝑘𝑝𝑒𝑡)     (10) 

 

which is often called TDC [18]. It should be noted that the TDE is bounded, if the control gain 𝑀̅ is select to 

gratify the ensuing condition: 

 

‖𝐼 − 𝑀−1(𝑞𝑡)𝑀̅‖ < 1        (11) 

 

formally 𝑡 ≥ 0, also, the TDE error are limited by constant 𝑁𝑖
∗ for all 𝑖 = 1,2, … , 𝑛, i.e., |𝑁𝑖,𝑡 − 𝑁̂𝑖,𝑡| ≤ 𝑁𝑖

∗ 

[27, 28]. It implies as the command gains ought to be select to warrant the bounded ness of TDE errors. Thus, 

generally, little fixed command gains are utilized to gratify the inequality (11). Besides, if command gains 

are improperly little, the following performance degrades. Contrary, if those become improperly tall for 

quick response, those tend to produce a system unsteady. 
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2.4.  Control design and convergence analysis 
In this section, we will exploit the control design used in this paper together with the convergence analysis. 

 

2.4.1. Control design 
To achieve the control objectives outlined in the previous section, we must first determine the 

following sliding variable [29, 30]: 

 

𝑠𝑡 = 𝑒̇𝑡+𝐾𝑑𝑒𝑡          (12) 

 

Where, 𝑠𝑡 =  [𝑠𝑡,1, 𝑠𝑡,2, 𝑠𝑡,3] ∈ 𝑅3, 𝐾𝑑 = 𝑑𝑖𝑎𝑔(𝐾𝑑,1, 𝐾𝑑,2, 𝐾𝑑,3) ∈ 𝑅3and 𝑒𝑡=[𝑒𝑡,1, 𝑒𝑡,2, 𝑒𝑡,3]∈ 𝑅3. It is 

renowned that 𝐾𝑑 in (12) is a conception parameter to be specified for ensuring the stability. In terms of the 

sliding variable 𝑠𝑡 in (12), we build the following command schema [31]. The proposed switching TDC 

based neural network algorithm is given as follows: 

The main objective of this paper is to suggest a global command which switches between two 

controllers the first one (13) is applied to the manipulator without fault, introducing a low gain. The second 

controller (14) is applied to the manipulator with a fault, but a large gain has been introduced.  

If 

 𝑒1,𝑡 ≤ 𝛼 𝑎𝑛𝑑 𝑒2,𝑡 ≤ 𝛼 𝑎𝑛𝑑 𝑒3,𝑡 ≤ 𝛼      
 

 

then 

 𝛤1,𝑡 = 𝛤1,𝑡−𝐿 − 𝑀𝑏𝑞̈𝑡−𝐿 + 𝑀𝑏(𝑞̈𝑟𝑒𝑓,𝑡 + 𝐾𝑑𝑒̇𝑡 + 𝐾1𝑠𝑖𝑔𝑛(𝑠𝑡))    (13) 

 

else 

𝛤2,𝑡 = 𝛤2,𝑡−𝐿 − 𝑀𝑏𝑞̈𝑡−𝐿 + 𝑀𝑏(𝑞̈𝑟𝑒𝑓,𝑡 + 𝐾𝑑 𝑒̇𝑡 + 𝐾2𝑠𝑖𝑔𝑛(𝑠𝑡))    (14) 

 

And where 𝑠𝑖𝑔𝑛(𝑠𝑡) = [𝑠𝑖𝑔𝑛(𝑠1,𝑡), 𝑠𝑖𝑔𝑛(𝑠2,𝑡), … , 𝑠𝑖𝑔𝑛(𝑠𝑛,𝑡)𝜖𝑅𝑛 is defined as  
 

𝑠𝑖𝑔𝑛(𝑠𝑖,𝑡) = {
1 𝑖𝑓 𝑠𝑖,𝑡 ≥ 0

−1 𝑖𝑓 𝑠𝑖,𝑡 < 0
        

 

𝐾1 = 𝑑𝑖𝑎𝑔(𝐾1,1, 𝐾2,1, 𝐾3,1)𝜖𝑅3, 𝐾2 = 𝑑𝑖𝑎𝑔(𝐾1,2, 𝐾2,2, 𝐾3,2)𝜖𝑅3 are a positive constant switching gain matrix 

for guaranteeing stability, 𝜆𝑚𝑖𝑛(𝐾2) > 𝜆𝑚𝑎𝑥(𝐾1), 𝜆 indicates the proper value of a matrix, 𝑀𝑏 =
𝑑𝑖𝑎𝑔(𝑀1,𝑏 , 𝑀2,𝑏 , 𝑀3,𝑏) ∈ 𝑅3 is a control gain to be updated in-line according to the adaptive law, and 𝛼is the 

threshold not to be exceeded. 

It should be noted that the results of the neural network outputs compared to those of the real system 

outputs generate residuals which are processed as to be compared. Our proposed controller switches between 

two control schemes. The first one (13) is applied on a system without fault, where the TDC uses a small 

gain, in order to achieve good tracking performances with a smooth control signal. The second control 

scheme (14) is developed on a faulty system. In this case we introduce a large gain, in order to compensate 

the fault and external disturbances effects. The switching between the two schemas based on the residual’s 

values. 

 

2.4.2. Convergence analysis 
Consider the dynamic model of the robot manipulator described as follows: 

 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) + 𝑑 = 𝜏      (15) 

 

where 𝑑 is the external disturbance. Let us consider that we have a sensors fault expressed in (4). Hence, the 

dynamic model with sensors fault is given: 

 

𝑀(𝑞𝑡)𝑞̈𝑡 + 𝐶(𝑞𝑡 , 𝑞̇𝑡)𝑞̇𝑡 + 𝐺(𝑞𝑡) + 𝑑1 = 𝜏      (16) 

 

where 𝑑1 is the lumped disturbance which is expressed by: 

 

𝑑1 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇) + 𝐺(𝑞) − 𝑀(𝑞𝑡)𝑞̈𝑡 − (𝐶(𝑞𝑡 , 𝑞̇𝑡)𝑞̇𝑡 + 𝐺(𝑞𝑡)) + 𝑑  (17) 

Therefore 𝑁𝑡is given by: 

𝑁𝑡 = −𝑀̅−1(𝐶(𝑞𝑡 , 𝑞̇𝑡)𝑞̇𝑡 + 𝐺(𝑞𝑡) + 𝑑1) − 𝑀̅−1[(𝑀 − 𝑀̅)𝑞̈]    (18) 
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Then the TDE is used to estimate Nt, which allows us to evaluate the dynamics model without 

requiring any prior knowledge neither on the system nor on the sensors fault. Furthermore, TDC can use this 

estimation to compensate the effect of the lumped disturbances and achieve a good tracking performance. 

Theorem: Consider the dynamic model of robot (3) subjected to external disturbances and sensors fault. The 

control law given by (13) and (14), guarantees the convergence asymptotically of the tracking error and the 

tracking error rate. 

Proof: In order to prove above theorem, we use the Lyapunov function applicant as specified: 

 

𝑣 =
1

2
𝑠𝑡

𝑇𝑠𝑡 =
1

2
∑ (𝑠𝑡(𝑖)

2 )3
𝑖=1         (19) 

 

Its time derivative is given by: 

 

𝑣̇ = 𝑠𝑡
𝑇 𝑠̇𝑡          (20) 

 

Using (12) and (20) lead to: 

 

𝑣̇ = 𝑠𝑡
𝑇(𝑒̈𝑡 + 𝐾𝑑 𝑒̇𝑡) = 𝑠𝑡

𝑇(𝑞̈𝑟𝑒𝑓,𝑡 − 𝑞𝑡̈ + 𝐾𝑑𝑒𝑡̇)     (21) 

 

Replacing in (21) 𝑞̈𝑡by its expression deduced from (7), it comes to: 

 

𝑣̇ = 𝑠𝑡
𝑇(𝑞̈𝑟𝑒𝑓,𝑡 + 𝐾𝑑 𝑒̇𝑡 − 𝑀̅−1𝜏𝑡 + 𝑁𝑡)      (22) 

 

By applying the control law given by (13) and (14) we obtain: 

 

𝑣̇ = 𝑠𝑡
𝑇(𝑞̈𝑟𝑒𝑓,𝑡 + 𝐾𝑑 𝑒̇𝑡 + 𝑁𝑡 − 𝑁̂ − (𝑞̈𝑟𝑒𝑓,𝑡 + 𝐾𝑑𝑒̇𝑡 + 𝐾2𝑠𝑖𝑔𝑛(𝑠𝑡)))   (23) 

 

We obtain: 

 

𝑣̇ = 𝑠𝑡
𝑇( 𝑁𝑡 − 𝑁̂ − 𝐾2𝑠𝑖𝑔𝑛(𝑠𝑡))       (24) 

 

Since ||𝑁𝑡 − 𝑁̂||∞ ≤ 𝑁∗ as demonstrated in [27, 28]; hence 

 

𝑣̇ ≤ ∑ |𝑠𝑖|
3
1 (𝑁∗ − 𝐾2,𝑖)        (25) 

 

where 𝐾2,𝑖 is ith value of the diagonal matrix 𝐾2. Hence, if we choose 𝑘2,𝑖 > 𝑁∗ then 𝑉̇ becomes defined 

negative. Consequently, from the definition of 𝑣 we can conclude that 𝑠𝑡 converge asymptotically to zero: 

 

𝑠𝑡 = 𝑒̇𝑡+𝐾𝑑𝑒𝑡 → 0, 𝑎𝑠 𝑡 → ∞       (26) 

 

As a result, the tracking error and the tracking error rate converge asymptotically to zero: 

 

𝑒𝑡 → 0, 𝑒̇𝑡 → 0 𝑎𝑠 𝑡 → ∞        (27) 

 

 

3. SIMULATIONS AND RESULTS 
We considered a manipulator arm with 3 degrees of freedom, called SCARA as described in section 

2 of this paper. The command purpose here is to force the robot to follow a reference trajectory created in 

advance. The robot’s equations and parameters as in (1) are given in [25]. The manipulator’s parameters are 

𝑚1 = 0.5, 𝑚2 = 0.3, 𝑚3 = 0.1 (𝐾𝑔). The length of the links is set to be 𝐿 = 1𝑚, the moments of inertia are 

𝐼1 = 0.02,  𝐼2 = 0.03, 𝐼3 = 0.05 (𝑟𝑎𝑑 𝑠⁄ ) and the sampling time is equal to 𝑡𝑠 = 0.01 𝑠. In the following two 

sections, we will present the simulations and results of the proposed method for the detection and 

compensation of faults in the robot arm. These methods were presented in the previous sections of this paper. 

 

3.1. Simulation results of the fault detection 

In order to detect the faults in our system (the SCARA robot arm), we have chosen to use the 

following neural network design: One input layer that contains 9 neural (three articular positions, three 

articular velocities and three articular couples measured in t), one hidden layer, with 15 neural, and two 
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output layers with six neural (three articular positions and three articular velocities at (t+∆t)). The MLP was 

designed with a back propagation algorithm. The learning set is made by simulating 4 flawless spherical 

trajectories, introducing the input/output of each trajectory. After the training, the model obtained is then 

tested and validated using a fifth spherical trajectory by introducing only the input. As a result, the trajectory 

was immediately followed, as the MLP produced a copy of the dynamic manipulator behavior, in which the 

neural network has the same functionality as the manipulator. The simulations results are given in Figures 2-5. 

 

 

 
 

Figure 2. Tracking trajectory in task space 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 3. Tracking trajectory for (a) the x-axis, (b) the y-axis, and (c) the z-axis 

 

 

Where Figure 2 represents the set trajectory to be followed together with the neural network output 

trajectory, it is noted that the neural network output trajectory follows exactly that of the manipulators. Figure 

3 (a, b, c) represents the real and neural network trajectories following the x-axis, y-axis, and z-axis, 

respectively. It is clear again, that the neural network output trajectory is the same of that of the real robot 



          ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 10, No. 2, June 2021 :  91 – 103 

98 

manipulator. The MLP is set to generate accurate models of the system under normal (without fault) 

operating conditions. The comparison between the output of the network 𝑦1(𝑗, 𝑖) and the output of the 

system 𝑞(𝑗, 𝑖) (with fault) gives the error vector 𝑒𝑗(𝑖) = 𝑦𝑖(𝑗, 𝑖) − 𝑞(𝑗, 𝑖) with 𝑗 = 1, … ,3, 𝑖 = 1, … , 𝑛, 𝑛 =

1000.  

The suggested procedure is executed on-line so that faults can be detected right away. In order to 

simulate a sensor fault, we add ∆𝑞 = 0.001°as a failure on a sensor which leads to a significant reduction or 

rise in the torque, resulting in anomalous variations of the residue. This residue is compared to some set 

values, and if the comparison is positive, it conducts to the detection of the fault. Once the fault detection has 

been carried out, one proceeds to the fault compensation using the TDC which is presented in the following 

section. 

 

3.2.  Simulation result of compensation 

Three sets of simulations have been carried out in order to assess the TDC method. 

 

‑ Case 1 (fault-free) 
This case is considered the nominal one, where the system is not subjected to any faults (∆q=0). We 

will see how our method behaves when no faults are present on our system. The TDC controller’s gains are 

chosen as follows 𝛼 = 0.2, M𝒃 = diag[0.03,0.03,0.03], Kd = [1.9,1.9,1.9], K1 = diag[1.5,1.5,1.5]and K2 =
diag[6.1,6.1,6.1]. The simulations results are shown in Figures 4 and 5. Figure 4 presents the ser trajectory to 

be followed and the robot’s real trajectory (in 3D). It is shown that both trajectories are superimposed, which 

shows that the TDC method has not intervened negatively in the fault-free case. Figure 5 also show that we 

have obtained good tracking performance (on the x, y, and z axis respectively) when using the TDC method, 

while the torques stay in admissible values Figure 6. 

 

‑ Case 2 (faulty case) 

In order to evaluate the performances of the controller (13) in faulty environment, we have 

introduced sensor faults as follows: ∆q=0.01° in joints 1 and 2. The results of the simulation of the suggested 

command are illustrated in Figures 7 to 9. 

From Figures 6-9, it is clear that the controller given by (13) does not give acceptable results, as the 

robot does not track well the proposed trajectory. We observe that there is an error between the set trajectory 

and the robot’s trajectory. Therefore, we precede a change in the controller’s parameters as given in (14). 

This change in parameters has been applied in the following section. 

 

‑ Case 3 (faulty case, with parameter change) 

In this case, the proposed switched TDC based on neural network is introduced to overcome the 

drawbacks of controller (13). The proposed scheme uses the controller (12) in the scenario where there were 

no sensors faults, and switches to the controller (14) in the case of detecting important errors. 

The simulations results for the proposed controller are demonstrated in Figures 10 to 12. We can 

clearly see that at the time of the introduction of the fault, the robot’s trajectory changes Figure 10, to be 

corrected soon after by the proposed TDC method. This shows that the proposed controller is working well. 

Indeed, soon after introducing a defect, we switch to the controller (14) which is programmed with a large 

gain. The latter provides an important help to improve tracking performance. We can also see that the 

controller is effective in eliminating chattering (according to the Figures 10 to 12). In addition, it is obvious 

that the trajectory tracking has been improved by comparison to the controller (13). 

The main goal of this paper is to develop a method which allows detecting and compensating of 

sensor defect that often affects the manipulator joints. So, we proposed an MLP neural network, which 

allows to learn the functioning of the system (manipulator) without faults, as it was shown in Figure 2 and 3 

perfect learning of the system function. Once he has learned how to operate the system without faults, we 

injected it with disturbances at the manipulator outputs (position and speed) in order to compensate them 

later. Then, we developed two controllers (13 and 14) which allow us to compensate this defect. Controller 

13 is applied to the system (without fault) as it was shown in Figure 4 and 5; where it is noted a divergence 

when the fault is introduced, continuation of the trajectory is lost Figure 7 and 8. This result allowed us to 

think of developing another controller with a significant gain in order to compensate for the defect. The 

controller 14 which allows us to have a rapid compensation for the continuation of the trajectory even in the 

presence of a fault as it was shown in Figure 10. The principle of this step is to switch between the controllers 

13 and 14, in presence or absence fault based on neural networks. 
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Figure 4. Tracking trajectory in task space of Case 1 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 5. Tracking trajectory for (a) x-axis, (b) y-axis, and (c) z-axis of Case 1 

 

 

  
  

Figure 6. Required torque for Case 2 Figure 7. Tracking trajectory in task space in Case 2 
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(a) (b) 

  

 
(c) 

 

Figure 8. Tracking trajectory for (a) x-axis, (b) y-axis, and (c) z-axis in Case 2 

 

 

 
 

Figure 9. Require torque in Case 3 

 
 

Figure 10. Tracking trajectory in task space in Case 3 

  

  
 

  
(a) (b) 

  



Int J Rob & Autom ISSN: 2722-2586  

 

Switched time delay control based on neural network for fault detection … (Maincer Dihya) 

101 

 
(c) 

 

Figure 11. Tracking trajectory for (a) x-axis, (b) y-axis, and (c) z-axis in Case 3 

 

 

 
 

Figure 12. Require torque 

 

 

4. CONCLUSION 

In this paper, a new concept of fault detection and compensation based on neural networks and 

TDC, on a SCARA robot arm has been developed. It consists of a reliable detection and robust compensation 

in the presence of faults on the sensors. It is important to note that the combination of neural networks and 

TDC is very important to diagnose in a system. For this purpose, neural network modeling was used for the 

generation of residues, in which several trajectories were driven in order to model the different functioning 

cases of the system. Another trajectory was used to test the efficiency of the network and validate it. This 

results in MLP model that has the same behavior of the faultless system. By making the difference between 

the output of the robot with faulty sensors and that of the network mode, we obtain an error which should be 

compensated. From these errors, a global control switch (TDC) between two commands has been developed. 

The first command (TDC) is applied to the faultless robot with a low gain, which showed a good tracking of 

the trajectory. Then, with the same command (low gain), we introduce a fault on the robot, which shows the 

divergence (failure to follow the trajectory). A second control was developed, with a high gain in the 

presence of a fault. The results of the simulations show that the robot arm followed the desired trajectory 

successfully. The TDC command used in this paper is model free, i.e., it does not use a specific model, which 

represents a major advantage of the proposed command. This study shows that the developed approach can 

produce good detection and compensation results for a nonlinear system exposed to faults. Moreover, the 

controller conception is capable of stabilizing the error trajectories of the system in a finite time. The 

robustness, stability, and perturbation rejection of the proposed controller have also been demonstrated. 
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