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 This paper presents the implementation of a complex fractional order 

proportional integral derivative (CPID) and a real fractional order PID 

(RPID) controllers. The analysis and design of both controllers were carried 
out in a previous work done by the author, where the design specifications 

were classified into easy (case 1) and hard (case 2) design specifications. 

The main contribution of this paper is combining CRONE approximation 

and linear phase CRONE approximation to implement the CPID controller. 
The designed controllers-RPID and CPID-are implemented to control 

flowing water with low pressure circuit, which is a first order plus dead time 

system. Simulation results demonstrate that while the implemented RPID 

controller fails to stabilize the system in case 2, the implemented CPID 
controller stabilizes the system in both cases and achieves better transient 

response specifications. 
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1. INTRODUCTION  

Fractional calculus is an extension to ordinary calculus by extending the orders of differentiation 

and integration to noninteger numbers. This mathematical concept was utilized in system modelling and 

control. In control, several fractional controllers were designed for several types of systems [1], [2]. As a 

further extension, complex fractional calculus was introduced as an extension to the real fractional calculus, 

where the orders of differentiation and integration can be complex numbers [3]. In [4], definitions and 

theorems were presented for complex fractional calculus mathematically. Complex fractional calculus was 

utilized to introduce models that describe viscoelastic materials [5], to model drug resistance in human 

immunodeficiency virus (HIV) infection [6], [7], and to present a new mathematical model for the atrial 

fibrillation [8]. Cois et al. [9] proposed a tool to model and study state-space with complex order. A complex 

fractional calculus was also applied to solve certain mathematical problems, such as fractional boundary  

problems [10].  

In control theory and applications, fractional calculus has been well utilized to design fractional 

order controllers. Since the conventional proportional integral derivative (PID) controller dominates other 

controllers [11], [12], the most common fractional order controller is the fractional order PID controller (also 

called PIλDμ controller), proposed by I. Podlubny [13], [14]. It is a generalization of the conventional PID 

controller, where the integer order derivative and integral actions are replaced by fractional order derivative 

and integral actions. Some of the recent works that utilize the PIλDμ controller are presented in [15]–[17]. 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 11, No. 3, September 2022: 205-212 

206 

This generalization was also utilized in the differentiation and integration actions of the conventional fuzzy 

logic controller, resulting in a fractional order fuzzy logic controller [18], [19]. For nonlinear controllers, 

such as sliding mode controllers (SMC), fractional calculus was introduced in the sliding surface by taking 

the fractional order derivative and/or integral of the state variables [20]–[27]. Hybridization between fuzzy 

logic and fractional order sliding mode control can be achieved, where the resultant controller is called Fuzzy 

fractional order sliding mode controller (FFOSMC) [28]–[32]. All the previously mentioned works and other 

works in the literature lack the investigation of the effect of introducing complex fractional calculus into 

control action. In [33], the analysis of real fractional order PID (RPID) and complex fractional order PID 

(CPID) controllers were carried out, and both controllers were designed to control a first order plus dead time 

(FOPDT) system. In the design process, the specifications were classified into two cases, easy and hard. This 

classification is adopted to demonstrate the need for the CPID controller to overcome the limitations of the 

RPID controller. This paper implements the RPID and CPID controllers designed in [33]. The RPID 

controller is implemented using CRONE approximation-as most works in the literature; however, the 

contribution of this paper is the implementation of the CPID controller; it proposes combining CRONE 

approximation and linear phase CRONE approximation to obtain an acceptable approximation of this 

controller.  

The rest of the paper is organized: section 2 presents the problem statement; section 3 presents the 

model of the flowing water with low pressure circuit (FWLPC), which is the plant to be controlled; section 4 

presents the implementation of the RPID and CPID controllers using CRONE approximation and CRONE 

approximation/linear CRONE approximation, respectively; the results and their discussion is presented in 

section 4; and the conclusions is drawn in section 5. 

 

 

2. PROBLEM STATEMENT 

This paper addresses the utilization of complex fractional calculus in control theory. It is concerned 

with implementing the CPID controller that was designed in [33]. The suggested method is to combine 

CRONE approximation and linear phase CRONE approximation to approximate the real 

differentiator/integrator and imaginary differentiator/integrator factors of the controller, respectively.  

 

 

3. MATHEMATICAL MODEL OF THE FWLPC 

The LPRWC-the process to be controlled-is a FOPDT system; its transfer function is 

 

𝑃(𝑠) =
𝑘

𝜏𝑠+1
𝑒−𝐿𝑠 (1) 

 

where 𝐿 = 50𝑠 (time delay), 𝑘 = 3.13 (gain), and 𝜏 = 433.33𝑠 (time constant) [33], [34]. 

 

 

4. CONTROL SYSTEM IMPLEMENTATION 

The RPID and CPID controllers that are implemented in this paper were designed in [33], where the 

design specifications (desired gain crossover frequency 𝜔c and desired phase margin 𝜙m) were classified into 

two cases; in case 1, the design specifications are easy, while in case 2, the design specifications were made 

hard by increasing both 𝜔c and 𝜙m. 

 

4.1.  Implementation of the RPID controller 

The RPID control law 𝑢(𝑡) is  

 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼𝐷−𝜆𝑒(𝑡) + 𝐾𝐷𝐷𝜇𝑒(𝑡) (2)  

 

and the corresponding transfer function is  

 

𝐶R(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑃 + 𝐾𝐼

1

𝑠𝜆 + 𝐾𝐷𝑠𝜇 = 𝐾𝑃 + 𝐾𝐼𝑠−𝜆 + 𝐾𝐷𝑠𝜇 (3)  

 

where 𝐾𝑝, 𝐾𝐼, 𝐾𝐷 ∈ 𝑅 and 𝜆 and 𝜇 ∈ 𝑅+ are the parameters of the controller were designed in [33] and are 

shown in Table 1. To implement 𝐶R(𝑠), it is needed to implement the fractional-order integrating action 𝑠−𝜆 

and fractional-order differentiating action 𝑠𝜇. In this paper, CRONE approximation (sometimes called 

Oustaloup filter) is used. It is given by [35]. 
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𝑠𝛾 ≈ 𝐾 ∏
𝑠+𝜔𝑧,𝑘

𝑠+𝜔𝑝,𝑘

𝑁
𝑘=1  (4a) 

 

𝜔𝑧,𝑘 = 𝜔𝑙(𝜔𝑢)
2𝑘−1−𝛾

𝑁  (4b) 

 

𝜔𝑝,𝑘 = 𝜔𝑙(𝜔𝑢)
2𝑘−1+𝛾

𝑁  (4c) 

 

𝐾 = 𝜔ℎ
𝛾
 (4d) 

 

𝜔𝑢 = √
𝜔ℎ

𝜔𝑙
 (4e) 

 

where [𝜔𝑙, 𝜔ℎ] are the frequency range on which the approximation is valid. The frequency range is taken as 
[𝜔𝑙, 𝜔ℎ] = [0.01, 100] rad/s. Using the values of the RPID controller parameters given in Table 1 and  

(4a)-(4e) to approximate 𝑠−𝜆 and 𝑠𝜇 in (3), 𝐶R(𝑠) becomes 

 

𝐶R(𝑠) ≈
690.2𝑠8+2.012×104𝑠7+1.737×105𝑠6+3.978×105𝑠5+3.211×105𝑠4+7.689×104𝑠3+6925𝑠2+215𝑠+2.446

𝑠8+99.94𝑠7+1927𝑠6+1.182×104𝑠5+2.042×104𝑠4+1.193×104𝑠3+1965𝑠2+102.9𝑠+1.039

 (5) 

 

for case 1, and 

 

𝐶R(𝑠) ≈
6.567×104𝑠8+2.616×106𝑠7+1.979×107𝑠6+4.785×107𝑠5+3.26×107𝑠4+7.816×106𝑠3+6.349×105𝑠2+3.029×104𝑠+545.7

𝑠8+254.1𝑠7+1.202×104𝑠6+1.824×105𝑠5+7.707×105𝑠4+1.112×106𝑠3+4.47×105𝑠2+5.76×104𝑠+1382

 (6) 

 

for case 2. 
 

 

Table 1. RPID and CPID controller parameters 

Case Controller 
Parameters 

𝐾𝑃 𝐾𝐼 𝐾𝐷 𝛼 𝛽 𝜃 𝜙 

1 RPID 

CPID 

0.09 

0.76 

0.02 

0.16 

5.22 

21.54 

0.88 

0.04 

 

1.19 

0.31 

0.21 

 

1.56 

2 RPID 

CPID 

17.40 

0.94 

0.07 

20.65 

29.30 

31.92 

1.76 

0.48 

 

-1.42 

0.64 

0.85 

 

0.73 

 

 

4.2.  Implementation of the CPID controller 

The CPID control law 𝑢(𝑡) is 

 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼𝐷−(𝛼+𝑗𝛽)𝑒(𝑡) + 𝐾𝐷𝐷𝜃+𝑗𝜙𝑒(𝑡) (7) 

 

and the corresponding transfer function is 

 

𝐶C(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑃 + 𝐾𝐼

1

𝑠𝛼+𝑗𝛽 + 𝐾𝐷𝑠𝜃+𝑗𝜙 = 𝐶(𝑠) = 𝐾𝑃 + 𝐾𝐼
1

𝑠𝛼+𝑗𝛽 + 𝐾𝐷𝑠𝜃+𝑗𝜙 = 𝐾𝑃 + 𝐾𝐼
1

𝑠𝛼𝑠𝑗𝛽 +

𝐾𝐷𝑠𝜃𝑠𝑗𝜙 = 𝐾𝑃 + 𝐾𝐼𝑠−𝛼𝑠−𝑗𝛽 + 𝐾𝐷𝑠𝜃𝑠𝑗𝜙 (8) 

 

where 𝛽, 𝜙 ∈ 𝑅 are the extra parameters that introduces the imaginary integrator 𝑠−𝑗𝛽 and imaginary 

differentiator 𝑠𝑗𝜙. The seven parameters of the CPID controller were designed in [33] and are shown in  

Table 1. The fractional integrator 𝑠−𝛼 and fractional differentiator 𝑠𝜃  are approximated using (4a)-(4e). 

However, to implement (8), it is needed to find a valid approximation of the imaginary integrator 𝑠−𝑗𝛽 and 

imaginary differentiator 𝑠𝑗𝜙. The sinusoidal transfer function of 𝑠𝑗𝛾 is 

 

𝑠𝑗𝛾 = (𝑗𝜔)𝑗𝛾 = 𝑗𝑗𝛾 × 𝜔𝑗𝛾 = 𝑒−𝛾
𝜋

2 × (cos(𝛾 ln 𝜔) + 𝑗 sin(𝛾 ln 𝜔)) (9) 

 

|(𝑗𝜔)𝑗𝛾| = 𝑒−𝛾
𝜋

2  (10) 
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∠(𝑗𝜔)𝑗𝛾 = 𝛾 ln 𝜔 = 𝛾
ln 𝜔

log10𝜔
log

10
𝜔 = 𝛾 ln 10 log

10
𝜔 (11) 

 

From (11), it can be seen that the phase is a linear function of log
10

𝜔, i.e., if the phase is plotted in a 

logarithmic axis, it is a straight line with slope equals to 𝛾 ln 10. This is a significant feature of the imaginary 

differentiator/integrator, since the real fractional differentiator/integrator has constant phase angle (i.e., its 

slope equals zero). In this paper, the imaginary differentiator/integrator are approximated by linear CRONE 

approximation, which relies on locating the transfer function poles and zeros of the approximating transfer 

function such as to give a linear phase curve. Unlike the CRONE approximation, in linear CRONE 

approximation, the spacing distance between the poles is not equal to the spacing distance between the zeros; 

this different spacing distance is responsible of giving the nonzero slope of the phase line. The linear CRONE 

approximation is [4], 

 

𝑠𝑗𝛾 ≈ ∏
1+

𝑠

𝜔𝑧,𝑘

1+
𝑠

𝜔𝑝,𝑘

2𝑁
𝑘=1  (12a) 

 

𝜔𝑧,𝑘 = 𝜔𝑐(𝑏)𝑘−𝑁−
1

2 (12b) 

 

𝜔𝑝,𝑘 = 𝜔𝑐(𝑎)𝑘−𝑁−
1

2 (12c) 

 

𝜔𝑐 = √𝜔𝑙𝜔ℎ (12d) 

 

where [𝜔𝑙, 𝜔ℎ] are the frequency range on which the approximation is valid, 𝑎 and 𝑏 are the recursive 

coefficients of the poles and zeros, respectively. The relation between the imaginary order 𝛾 and the recursive 

coefficients 𝑎 and 𝑏 is 

 

𝛾 ln 10 =
𝜋

2⁄

log10 𝑏
−

𝜋
2⁄

log10 𝑎
 (13) 

 

Algorithm 1 shows a pseudo code to set the values of 𝑎, 𝑏, and 𝑁 given the values of 𝜔𝑙, 𝜔ℎ, and 𝛾. 

The frequency range of the linear CRONE approximation is also taken as [𝜔𝑙, 𝜔ℎ] = [0.01, 100] rad/s (to 

give a fair comparison with the CRONE approximation of the RPID controller). Applying the algorithm 

given in Figure 1, the resultant values of 𝑎, 𝑏, and 𝑁 are given in Table 2. 

 
Algorithm 1: A flow chart to set the values of 𝑎, 𝑏, and 𝑁 given the values of 𝜔𝑙, 𝜔ℎ, and 𝛾. 
1- Input 𝜔𝑙, 𝜔ℎ, and 𝛾. 
2- Set 𝑎 equals to a certain value >1 and set 𝑁 = 0. 
3- Calculate 𝑏 from equation (13). 
4- 𝑁 = 𝑁 + 1.  
5- Calculate 𝜔𝑧,𝑘 from (12b). 

6- Calculate 𝜔𝑝,𝑘 from (12c). 

7- If 𝑏 < 𝑎 and 𝜔𝑧,𝑘 > 𝜔ℎ, go to 10. 

8- If 𝑏 > 𝑎 and 𝜔𝑝,𝑘 > 𝜔ℎ, go to 10. 

9- Go to 4. 

10- Output the values of 𝑎, 𝑏, poles 𝜔𝑝,𝑘, zeros 𝜔𝑧,𝑘, and 𝑁. 

 

Using the parameter values of the CPID controller in Table 1, (12a)-(12d), and Algorithm 1 to 

approximate 𝑠−𝑗𝛽 and 𝑠𝑗𝜙 in equation (8), 𝐶C(𝑠), for case 1 and case 2, becomes 

 

𝐶C1(𝑠) ≈
∑ 𝑎𝑖𝑠𝑖24

0

∑ 𝑏𝑖
24
0 𝑠𝑖 (14) 

 

for case 1, and 

 

𝐶C2(𝑠) ≈
∑ 𝑐𝑖𝑠𝑖24

0

∑ 𝑑𝑖
24
0 𝑠𝑖 (15) 

 

for case 2, where 𝑎𝑖 and 𝑏𝑖 are given in Table 3 and 𝑐𝑖 and 𝑑𝑖 are given in Table 4. 
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Figure 1. Unit step response of the RPID and CPID control systems: case 1 

 

 

Table 2. Linear CRONE parameter values 𝑎, 𝑏 and 𝑁 and the resultant slope of phase line 
Case Imaginary differentiator/integrator 𝑎 𝑏 𝑁 Slope of phase line 

1 𝑠−𝑗1.19 2 1.9280 4 0.2916 

𝑠𝑗1.56 2 2.1346 4 -0.4482 

2 𝑠−𝑗(−1.42) 2 1.5487 4 3.0505 

𝑠𝑗0.73 2 1.8550 4 0.6358 

 

 

Table 3. Values of the coefficients 𝑎𝑖 and 𝑏𝑖 in (14) 
Coefficient Value Coefficient Value 

𝑎0 43.1 𝑏0 17.5 

𝑎1 4664 𝑏1 1776 

𝑎2 2.188 × 105 𝑏2 7.297 × 104 

𝑎3 5.8 × 106 𝑏3 12.9 × 106 

𝑎4 1 × 108 𝑏4 2.3 × 107 

𝑎5 1.1 × 109 𝑏5 2.2 × 108 

𝑎6 9.8 × 109 𝑏6 1.5 × 109 

𝑎7 5.8 × 1010 𝑏7 7.1 × 109 

𝑎8 2.5 × 1011 𝑏8 2.4 × 1010 

𝑎9 8.1 × 1011 𝑏9 6.3 × 1010 

𝑎10 1.9 × 1012 𝑏10 1.2 × 1011 

𝑎11 3.4 × 1012 𝑏11 1.7 × 1011 

𝑎12 1.9 × 1012 𝑏12 1.8 × 1011 

𝑎13 4.3 × 1012 𝑏13 1.4 × 1011 

𝑎14 3.16 × 1012 𝑏14 8.4 × 1010 

𝑎15 1.71 × 1012 𝑏15 3.7 × 1010 

𝑎16 6.8 × 1011 𝑏16 1.2 × 1010 

𝑎17 1.9 × 1011 𝑏17 2.8 × 109 

𝑎18 4.2 × 1010 𝑏18 4.9 × 108 

𝑎19 6.4 × 109 𝑏19 6 × 107 

𝑎20 6.7 × 108 𝑏20 5.1 × 106 

𝑎21 4.7 × 107 𝑏21 2.8 × 105 

𝑎22 2.1 × 106 𝑏22 9316 

𝑎23 5.4 × 104 𝑏23 160.4 

𝑎24 582.8 𝑏24 1 
 

Table 4. Values of the coefficients 𝑐𝑖 and 𝑑𝑖 in (15) 
Coefficient Value Coefficient Value 

𝑐0 1.8 𝑑0 0.9 

𝑐1 194.1 𝑑1 106.5 

𝑐2 8113 𝑑2 5079 

𝑐3 1.8 × 105 𝑑3 1.3 × 105 

𝑐4 2.4 × 106 𝑑4 2.1 × 106 

𝑐5 2.2 × 107 𝑑5 2.2 × 107 

𝑐6 1.4 × 108 𝑑6 1.6 × 108 

𝑐7 6.7 × 108 𝑑7 8.7 × 108 

𝑐8 2.3 × 109 𝑑8 3.3 × 109 

𝑐9 5.9 × 109 𝑑9 9.4 × 109 

𝑐10 1.1 × 1010 𝑑10 1.9 × 1010 

𝑐11 1.7 × 1010 𝑑11 3 × 1010 

𝑐12 1.9 × 1010 𝑑12 3.5 × 1010 

𝑐13 1.7 × 1010 𝑑13 3 × 1010 

𝑐14 1.1 × 1010 𝑑14 1.9 × 1010 

𝑐15 5.7 × 109 𝑑15 9.5 × 109 

𝑐16 2.2 × 109 𝑑16 3.4 × 109 

𝑐17 6.3 × 108 𝑑17 9 × 108 

𝑐18 1.3 × 108 𝑑18 1.7 × 108 

𝑐19 2 × 107 𝑑19 2.3 × 107 

𝑐20 2.2 × 106 𝑑20 2.2 × 106 

𝑐21 1.5 × 105 𝑑21 1.3 × 105 

𝑐22 6943 𝑑22 5408 

𝑐23 160.4 𝑑23 114.6 

𝑐24 1.4 𝑑24 114.6 
 

 

 

5. SIMULATION RESULTS AND DISCUSSIONS 

The implemented RPID and CPID controllers were used to control the FWLPC system given by (1), 

where the systems were simulated using MATLAB Simulink. The unit step responses for both systems were 

obtained for comparison purposes. Figure 1 shows these responses for case 1 and Figures 2-3 show these 

responses for case 2, and Table 5 shows the performance of both systems in terms of transient response 

specifications. The obtained results demonstrated that in case 1, the performance of the implemented CPID 

RPID 

CPID 
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controller is better than that of the implemented RPID controller by reducing both the rise time and steady 

state error, while in case 2 the RPID controller failed to stabilize the system while the CPID controller 

stabilized it. The significance of these results is that it insured the results that were obtained when the 

controllers were designed [33], where the RPID controller stabilized the system only in case1, while the 

CPID controller stabilized it in both cases and gave better design specifications. For both systems, the  

steady-state error is not zero; this is due to approximating the pure integrator in both the RPID and CPID 

controllers. 

 

 

 
 

Figure 2. Unit step response of the RPID control system: case 2 

 

 

 
 

Figure 3. Unit step response of the CPID control system: case 2 

 

 

Table 5. Transient response specifications of the RPID and CPID control systems 
 RPID CPID 

 Case 1 Case 2 Case 1 Case 2 

Rise time (s) 70 unstable 62 90 

Percentage overshoot  7.5% 16% 

Steady-state error (m) 0.12 0.11 0.14 
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6. CONCLUSIONS 

In this paper, RPID and CPID controllers have been implemented to control a FOPDT system. The 

RPID controller has been approximated using CRONE approximation, and the CPID controller has been 

approximated by combining CRONE approximation and linear phase CRONE approximation. The following 

two conclusions are draw: i) adding extra implementation parameters has a significant impact on the order of 

the controller; ii) the CPID controller outperforms the RPID controller from the stability and performance 

(transient response specifications) point of views. As a suggestion for future work, the steady-state error of 

both the RPID and CPID control systems can be investigated by identifying its cause and suggesting proper 

solutions to reduce or eliminate it. 
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