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 Over the past decades, brain-computer interface (BCI) has gained a lot of 
attention in various fields ranging from medicine to entertainment, and 

electroencephalogram (EEG) signals are widely used in BCI. Brain-

computer interface made human-computer interaction possible by using 

information acquired from EEG signals of the person. The raw EEG signals 
need to be processed to obtain valuable information which could be used for 

communication purposes. The objective of this paper is to identify the best 

combination of features that could discriminate cognitive stimuli-based 

tasks. EEG signals are recorded while the subjects are performing some 
arithmetical based mental tasks. Statistical, power, entropy, and fractional 

dimension (FD) features are extracted from the EEG signals. Various 

combinations of these features are analyzed and validated using random 

forest classifier, K-nearest neighbors (KNN), multilayer perceptron, linear 
discriminant analysis, and support vector machine. The combination of 

entropy-FD features gives the highest accuracy of 90.47% with the KNN 

algorithm when compared to individual entropy and FD features which 

achieves 79.36% with random forest classifier, multilayer perceptron, and 
82.53% with linear discriminant analysis, respectively. Our results show that 

the hybrid of entropy-FD features with KNN classifier can efficiently 

classify the cognition-based stimuli. 
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1. INTRODUCTION 

Brain-computer interface (BCI) acts as an artificial and alternative output channel for the brain 

which is similar to the normal output channels like muscles and peripheral nerves. Hence, BCI is defined as 

“a brain-computer interface is a communication system that does not depend on the brain’s normal output 

pathways of peripheral nerves and muscles” [1]. BCI requires two adaptive controllers: A brain from where 

the electrical activity is recorded and a system that converts this electrical activity into control commands. 

Gain [2] discussed the function of various lobes of the brain in human behaviors. The temporal lobe is 

responsible for language processing, the occipital lobe for visual processing, the parietal lobe for sensations, 

frontal lobe for cognition and emotions. BCI has an input, an output, and a translation algorithm. The input is 

the features of the signals recorded from the brain. Some of these features are the time-domain and frequency 

domain. The translation algorithm such as linear/nonlinear equations, neural networks, and converts these 

input features into control signals. These output control signals are used to control or operate any device [3]. 

Event-related potentials are responses from the brain under certain conditions like giving external stimuli. 

There are two types of event related potentials (ERPs): exogenous and endogenous. Exogenous ERPs are 
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responses generated from the brain spontaneously as a result of external stimulus regardless of the subject’s 

thinking or actions. Endogenous ERPs are responses that are generated while the subjects try to respond to 

external stimuli through thinking, imagination, or emotions. For example, solving the given mathematical 

problem. These kinds of ERPs are also called cognitive ERPs [4]. Most of the BCI application consists of the 

following steps: preprocessing, channel selection, feature extraction, feature optimization, and classification 

[5]. The main challenge while dealing with electroencephalogram (EEG) signals is extracting appropriate 

features because of the non-stationary property of EEG signals and the number of channels used. Since the 

EEG brain signals are non-stationary and recorded in the time-domain, it is necessary to analyze the EEG 

data from multiple domains which gives enhanced information about the time and frequency-related 

information of the recorded signals. The objective of this paper is to give an overview of various existing 

techniques feature extraction techniques and to extract features from time as well as frequency domain and 

analyze the impact of various combinations of features over the classification accuracy to find out which 

combination performs better on cognitive stimuli. The categories of features extracted in this study are 

statistical features (S), power features (P), entropy features (E), and fractional dimension (F) features. Two 

methods are employed to analyze the performance of the classifiers based on the features: i) combine each 

feature with respect to their categories and compare the accuracies of each category and ii) combine each 

category of features in multiple combinations and compare the accuracies of each combination of feature 

categories. 

In this study, we use various classifiers such as random forest classifier (RFC), K-nearest neighbors 

(KNN), multilayer perceptron (MLP), linear discriminant analysis (LDA), and support vector machine 

(SVM) to classify EEG data into thirteen different classes of mental tasks (i.e., thirteen stimuli). Our results 

show that the combination of entropy-FD features employed in method (ii) with KNN gives the highest 

accuracy of 90.47%. 

 

 

2. RELATED WORKS 

Feature extraction methods are necessary to get the salient features from time-domain EEG signals 

which effectively classify the data. The features that can be obtained from the preprocessed signals belong to 

time-domain, frequency-domain, time-frequency domain, and spatial domain. 

 

2.1.  Time-domain features 

In the time domain, power is analyzed with respect to time. Here, event-related potentials invoked 

by external stimuli act as a command. Examples for time-domain include P300 potentials, and slow cortical 

potentials [1]. Choi et al. [6] has examined the brain responses across different regions while classifying 

mathematical and baseline tasks which is an endogenous paradigm i.e., without external stimuli. Ear-EEG is 

used for recording these self-modulated signals from the brain while performing mathematical tasks. Here 

among the statistical features, mean, standard deviation, mean absolute value (MAV) of the first and second 

difference of raw and standardized signals are widely used. Nawaz et al. [7] proposed that time domain-based 

statistical features and SVM with RBF kernel give better accuracy when compared to power, wavelet, FD, 

entropy features. However, separating noise from the signal is considered a challenging task with time-

domain features alone [8]. 

 

2.2.  Frequency domain features 

In the frequency domain, power is analyzed with respect to frequency. Here, the amplitude of 

frequency sub-bands acts as a command, examples for frequency domain include rhythms like α, and β [1]. 

Power-based feature extraction deals only with frequency sub bands that make it a frequency domain feature 

extraction [9]. Fast Fourier transform (FFT) is used for spectral analysis of a given signal which is stationary 

which makes it not suitable for EEG signals. FFT involves applying discrete FFT on the signal to find its 

frequency [10]. Wang et al. [11] utilizes frequency domain features using canonical correlation analysis 

(CCA) algorithm and power spectral density (PSD) techniques for more optimization. Stimulus frequency 

was identified using the above techniques. Frequency domain feature extraction is widely suggested, and 

PSD is a widely used technique for extracting frequency domain features. According to the Wiener-

Khintchine theorem, PSD is calculated by applying Fourier transform on the autocorrelation function �̂�𝑥(m) 

[12], or equivalently, PSD is calculated by taking the average of the squared magnitude of the Fourier 

transform [13]. Akrami et al. [14] proposed that logarithmic PSD is considered as the best method suitable 

for recognizing patterns from EEG. Shen et al. [15] proposed a method called WPT-BED to classify the 

cognitive tasks based on judgment where wavelet packet transform with db4 wavelet is used to decompose 

the signal into frequency bands and bispectrum features are extracted from the decomposed frequency bands. 

Then the sub-bands are reconstructed and bispectral eigenvalues of differential signals (BED) are used to 

optimize bispectral features from the resultant time-domain signal. The optimized features are then classified 
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using SVM. PSD might ignore certain frequency features such as phase which is very important in 

processing EEG signals. BED features improve classification accuracy by considering an ample amount of 

information that is not considered in PSD. 

 

2.3.  Time-frequency domain features 

Wavelet is suitable for analyzing non-stationary signals like EEG. Wavelet-based technique deals 

with both temporal and frequency ranges hence make it both time and frequency domain feature extraction 

technique [9]. The various types of wavelet transforms are discrete wavelet transform (DWT), continuous 

wavelet transform (CWT), tunable Q-factor wavelet transform (TQWT), dual tree-complex wavelet 

transform (DT-CWT) which is used in splitting signals into various frequency sub-bands (signal 

decomposition). The main drawback of FFT is it extracts the frequency features by taking the average over 

the entire signal without considering the difference in the time domain, which makes FFT only suitable for 

extracting frequency related feature from only signals which are stationary in the time domain. Since EEG is 

non-stationary, short time Fourier transform (STFT) is used for representing time-frequency features of the 

signal. The idea behind STFT is that the entire signals are divided into segments and apply FFT to segmented 

signals which are stationary in each segment. Hence, it provides frequency related information with respect 

to time interval [11]. STFT involves applying windows to the raw signals and the FFT is applied to the 

resultant signals [10]. The major drawback of STFT is that the window size is fixed which limits its 

capability to distinguish among various features and provides limited information regarding the location of 

frequency changes. On the other hand, wavelet transform or decomposition represents the features in a time-

frequency domain called scalograms by decomposing the signals into various sub bands. Wavelet 

transform/decomposition helps to find the location of frequency changes in each sub band [8]. The drawback 

of STFT could be overcome by a CWT. In CWT, the window size can be changed based on the spectral 

component. CWT provides the “high localization of time in high-frequency EEG signals” as well as a large 

number of waveforms apart from sinusoidal waveform [16]. The major drawback of CWT is the scaling 

value ‘a’ and translation value ‘b’ change continuously which yields a lot of unrelated information. This 

drawback can be overcome by DWT which represents features at multiple levels [17]. DWT is used along 

with Daubechies 4th order wavelet as mother wavelet to decompose signals into approximation and detailed 

coefficients. These coefficients are decomposed recursively which results in the high pass and low pass filters 

to get the frequency sub bands (between 0 and 50 Hz). Daubechies 4th order wavelet (db4) is widely used 

because it resembles EEG waveforms. DT-CWT is similar to DWT but has better approximate shift variance 

and anti-aliasing than DWT [12]. Wavelet decomposition (WD) decomposed the raw signals only into lower 

frequency sub bands, but high frequencies are detected while performing mental tasks. Another drawback is 

the deterioration of feature quality due to the quick reduction of wavelet coefficients. To overcome this issue, 

the wavelet packet decomposition (WPD) is used to decomposed the raw signals into both lower and higher 

frequency sub-bands [18]. 

Mini et al. [19] adopted DWT, WPD, and DWPD which is a combination of the DWT and WPD 

wavelet decomposition techniques where DWT was applied to detailed coefficient and WPD was applied to 

the approximate coefficient for the further decomposition of signals. WPD gives high accuracy when 

compared to other methods. Wavelet packet node reconstruction (WPNR) and wavelet node reconstruction 

(WNR) are responsible for reconstructing signals from their respective nodes [18]. Shen et al. [15] proposed 

a method that utilizes hybrid EEG features for the identification of DRDS tasks. Features are extracted using 

the one-vs-one method from the particular channels that had been selected using CSG techniques. The 

extracted features are time-frequency domain features. Chatterjee et al. [9] proposed a method where features 

are extracted based on wavelets and power. The feature extraction techniques are wavelet-based energy-

entropy, wavelet-based root means square, PSD-based band power, PSD-based average power, and their 

combinations. It is concluded that wavelet-based features such as Wavelet-based energy-entropy, wavelet-

based root mean square lead to better performance than power-based features with classifiers such as 

logistics and SVM. Chatterjee and Bandyopadhyay [20] concluded that wavelet-based energy-entropy as a 

feature gives better accuracy when compared to statistical features and power features. Murugappan et al. 

[21] proposed certain energy-based features such as recoursing energy efficiency (REE), logarithmic REE 

(LREE), and absolute logarithmic REE (ALREE) and classified these features using two linear classifiers 

such as KNN and LDA. Here KNN performs better with a maximum accuracy of 83.26% with ALREE 

features. Hence it is concluded that energy features perform better than power and conventional features [22]. 

Harpale and Bairagi [13] suggested that wavelet-based analysis gives better accuracy for feature extraction 

techniques. Wavelet-based decomposition and features are considered as better than FFT and STFT because 

wavelet decomposition separates the signal into detailed and approximation coefficients iteratively where we 

can get improved details of signal and better time-frequency representation while the latter seems to give the 

least time/frequency information and least information about signals [22]. 
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2.4.  Hybrid features 

Wei et al. [12] proposed a method in which time-domain, frequency-domain, and non-linear analysis 

features are extracted and used. In this method, raw EEG signals are preprocessed by filtering and 

decomposition into sub-bands using DT-CWT. Then the time-domain features are extracted using MAV, 

frequency-domain features by PSD, and non-linear analysis by fractional dimension (FD) and differential 

entropy (DE). Then these four features along with the best two frequency bands are given as input to the 

simple recurrent unit and by ensemble methods like voting and then the weighted average has been done to 

accomplish the classification task [12]. Suleiman and Fatehi [10] proposed that time-frequency-space 

analysis performed better than time/frequency domain and time-frequency domain. In multichannel EEGs, 

space-time-frequency (STF) is used for selecting signals from the appropriate regions or channels. This can 

be done by applying STFT on multiple electrodes to choose a channel. The selected channel is then combined 

with one of the channels and is sent as an input to the MLP which uses the back propagation algorithm. But 

in this method, no specific method was mentioned to select the best combination of channels which is 

necessary for extracting STF features [10]. Bajaj et al. [23] utilizes wavelet transform with statistical 

features. The raw EEG signals are decomposed into high and low pass sub bands using TQWT and features 

are extracted from these sub bands using statistical feature extraction methods like Horthy mobility (HM), 

minima, maxima, mean and standard deviation. Bandil and Wadhwan [24] proposed a method for epileptic 

classification in which DWT is used to decompose the EEG signals into 5 sub-bands with db4 mother 

wavelet. Then the signals are standardized to reduce the impact of higher estimated factors over the lesser 

ones. Morphological features like AR coefficient, and PSD, and statistical features like mean, median, mode, 

and entropy features are extracted. Harpale and Bairagi [13] proposed a method that classifies seizure and 

non-seizure EEG signals using hybrid features. Features are extracted from both time and frequency domains 

such as mean, coefficient of variation (COV), root mean square (RMS), kurtosis, and PSD respectively. By 

applying pattern adapted wavelet transform, features like mean, RMS, PSD, and standard deviation are 

extracted. Liu et al. [25] proposed a method in which features are extracted from the time domain, frequency 

domain, time-frequency domain, and multi-electrodes. Relevant features from all of these domains are 

selected based on maximum relevance and minimum redundancy as a feature selection method. Features are 

also extracted from the appropriate combination of channels that leads to better accuracy. Multi electrode 

features focus on extracting features based on the interconnections between electrodes that are attached to 

different brain regions [25]. Garg and Verma [8] proposed wavelet-based feature extraction techniques for 

classifying scalograms using neural networks. CWT is used to decompose signals into scalograms for better 

time-frequency representation of signals. Then scalogram images were fed into a convolutional neural 

network (CNN) where the spatial feature i.e., power of each frequency band in the scalogram images, is 

extracted in the pooling layer [16]. Various feature extraction techniques are summarized in Table 1. Based 

on various studies discussed above, hybrid features are considered to improve accuracy when compared to 

using a single feature or combination at a time. 

 

 

Table 1. Various feature extraction techniques 

Author Preprocessing Domain Features Feature 

Extraction 

Techniques 

Classification 

Algorithms 

Performance 

[15] Bandpass filter, 

ICA 

Time-frequency 

domain 

Wavelet CSG and 

OVO 

SVM with RBF kernel Accuracies for five 

subjects - 94.67%, 

91.33%, 0.00%, 

87.67%, 73.83% 

[11] High-pass filter, 

noise removal 

Frequency 

domain 

Power CCA and PSD Voting mechanism Accuracy exceeds 

72.84% 

[12] DT-CWT Time-domain, 

frequency 

domain, non-

linear analysis 

Hybrid MAV, PSD, 

FD and DE 

Simple recurrent units 

and ensemble methods 

such as voting and 

weighted average 

MAV–79.22%, 

PSD – 78.29%, 

FD – 77.22%, 

DE – 80.02% 

[6] Bandpass filter, 

fourth-order 

Butterworth filter 

Frequency-

domain 

 CSP sLDA Accuracy- 75.6% 
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Table 1. Various feature extraction techniques (continue) 

Author Preprocessing Domain Features Feature extraction 

techniques 

Classification 

Algorithms 

Performance 

[9] Elliptic 

bandpass filter 

Time-

frequency 

domain 

Wavelet Wavelet-based energy-

entropy, wavelet-based 

root mean square 

Logistic ROC - 0.918 Recall - 

0.821  Precision - 0.821 

Accuracy - 82.14 

     SVM ROC - 0.850 

Recall - 0.850 

Precision - 0.852 

Accuracy – 85 

     MLP ROC - 0.917 

Recall - 0.836 

Precision - 0.839 

Accuracy - 83.57 

[10] Notch filters, 

high and low 

pass filters 

Space-time-

frequency-

domain and 

time-frequency 

domain 

Hybrid FFT, STFT MLP Classification accuracy – 

99% (two tasks) and 

96%(three tasks) 

[23] TQWT Time-domain Hybrid Hjorth mobility, 

minima, maxima, 

mean and standard 

deviation 

ELM Accuracy – 91.842% 

[18] Notch filter Time-

frequency 

domain 

Hybrid Interchannel 

correlation coefficient 

and statistical features 

SVM with 

polynomial 

kernel 

Accuracy – 86% 

[24] DWT Time-domain 

and  

Frequency-

domain 

Hybrid Morphological and 

statistical features 

ANN Accuracy-99% 

[13] ICA Time-domain, 

frequency-

domain, and 

time-frequency 

domain 

Hybrid Standard deviation, 

variance, RMS, 

kurtosis, SUM, POW, 

and PSD 

Fuzzy 

inference 

system 

Accuracy - 96.48% 

[7] Time-window 

segmentation 

Time-domain Statistical, 

FD 

Mean, SD, MAV SVM with 

RBF kernel 

Accuracy – 77.62%, 

78.96%, 77.60% (valence, 

arousal, dominance) 

[25] High pass filter Time-domain, 

frequency-

domain, and 

time-frequency 

domain 

Hybrid Mean, SD, MAV, 

HOC,FD, Hjorth, NSI, 

PSD, REE, RMS, 

entropy, multi 

electrode features such 

as DA, RA, MSCE 

Random forest Accuracy – 

71.23%,69.9%(Arousal 

and Valence) 

[14] Bandpass filter Frequency-

domain 

Hybrid Logarithmic PSD Neural network Not mentioned 

[8] Bandpass filter Time-

frequency 

domain and  

spatial domain 

Hybrid Wavelet, CWT, 

spatial, feature 

extraction 

GoogleNet 

based CNN 

Maximum accuracy of  

92.19% 

[22] Average mean 

reference 

(AMR) 

Time-

frequency 

domain 

Wavelet 

and 

entropy 

DWT FCM, FKM Not mentioned 

[21] Surface 

Laplacian 

Time-

frequency 

domain 

Wavelet 

and energy 

DWT, ALREE KNN 83.26% 

[5] High pass filter, 

low pass filter 

and ICA 

Frequency 

domain 

Power BED SVM 84.38% 

[26] High pass filter, 

low pass filter, 

and ICA 

Time-domain, 

frequency-

domain, and 

time-frequency 

domain 

Hybrid Statistical features, FD, 

Hjorth features, PSD, 

Coif1 wavelet, energy, 

and entropy 

Unsupervised 

Hyperplane 

partitioning 

Maximum accuracy of 

77.53% 

[11] Bandpass filter Time-

frequency 

domain 

Wavelet STFT CNN 90.59% 
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3. METHODOLOGY 

In the current study, we have implemented machine learning techniques to classify cognitive-based 

stimuli (arithmetic mental tasks) using the EEG data. A total of 13 stimuli are used for each subject and EEG 

signals are recorded while performing the mental calculation. The overall framework of the study is depicted 

in Figure 1. Firstly, the signals are segmented into segments of 10 seconds. Secondly, the four categories of 

features are extracted from the time and frequency domain. Thirdly, the different combinations are made and 

given as input to the classifiers. Finally, the best combination of features along with the classifier is noted to 

classify the cognitive stimuli-based EEG signals. 

 

 

 
 

Figure 1. Framework of the study 

 

 

3.1.  Data acquisition and pre-processing  

EEG is a non-invasive technology used to measure brain activity. In the project, a gTech recorder 

which consists of 16 electrodes was used to measure brain activity. The EEG signals were measured across 

16 different channels such as FP2, F4, C4, P4, F8, T4, T6, O2, FP1, F3, C3, P3, F7, T3, T5, O1, and Ref. The 
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electrodes were placed according to the international standard 10-20 positioning system [10]. A sampling 

frequency of 512 Hz was used. Sensitivity was set to 2.5µV/mm. The low pass filter of 1.0Hz was used to 

remove high-frequency noise [7]. The notch filter was set to 50 Hz to remove exceeded power supply [7].  

The subject is made to sit on a chair in a comfortable position. The electrodes were attached to the 

scalp by using a gel (Ten20 Conductive gel). Then tapes were attached to the electrodes to prevent them from 

moving. The reference electrode was placed in the right ear. The readings were taken from various healthy 

subjects (age group between 22 and 25). The simple mental arithmetic tasks (i.e., basic addition, subtraction, 

multiplication, and division problems such as 10+5, 5-3, 5*5, and 6/2, ) are shown and used as the cognitive 

stimuli and 2 trials were taken for each subject. Each event was recorded with a time duration of 10 seconds. 

The cognitive stimuli consisted of the 13 mental arithmetic tasks and each lasted for 10 seconds with a time 

break of 10 seconds. At the start of the experiment, there was a time break of 120 seconds. The raw EEG 

signals are processed in such a way that only the signals from the performance period are taken into account 

and the signals that are recorded during the resting state will be discarded. Therefore, the raw EEG data is 

segmented for every 10 seconds based on the target class which in this case is the stimuli. The feature 

extraction takes place on these segmented signals. 

 

3.2.  Feature extraction 

The main aim of feature extraction is to obtain salient features from the EEG signals that could 

effectively classify the stimuli. In this study, four categories of features such as statistical, power, entropy, 

and FD features are extracted to analyze which feature set performs efficient classification. Each 10 seconds 

trails are further segmented into 2 seconds pieces and the following feature extraction techniques are applied. 

 

3.2.1. Statistical features 

In this study, six statistical features mean [7], standard deviation [7], mean absolute value [12], root 

mean square [13], coefficient of variation [13]. 

a. Mean 

 

μ
X

= 
∑ X(n)N

n=1

N
 (1) 

 

where ‘𝜇𝑋  denotes the mean of the data,‘X(n)’ denotes the data points and ‘N’ denotes the number of data 

points. 

b. Standard deviation 

 

σX=√∑ (X(n)N
n=1 -μX)

2

N
 (2) 

 

where ‘𝜎𝑋’ denotes the standard deviation of the data, ‘X(n)’ denotes the data points, ‘𝜇𝑋  denotes the mean of 

the data points and ‘N’ denotes the number of data points. 

c. Mean absolute value 

MAV is calculated by taking the average of the absolute value of the data points. 

 

M= log (
1

N
∑ |x(n)|N

n=1 ) (3) 

 

where ‘x(n)’ denotes the data points and ‘N’ denotes the number of data points. 

Root mean square (RMS) 

RMS is calculated by taking the square root of the averaged squared value of the data points [13]. 

 

RMS= √
1

T
∫ (x(n))

2T

0
dt (4) 

 

d. Coefficient of Variation (COV) 

 

 COV =
σX

μ
X

 (5) 

 

where ‘𝜇𝑋  denotes the mean of the data and ‘𝜎𝑋’ denotes the standard deviation of the data. 
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3.2.2. Power features 

Power features include features extracted from the frequency domain of EEG signals. One of the 

widely adopted techniques for extracting power features is PSD. PSD is calculated using Welch’s method by 

taking the average of the Fourier transform of the segmented blocks of the original signal [11], 

 

ŝx≜
1

K
∑ Pxn

(m)m=0
K-1  (6) 

 

where 𝑃𝑥𝑛
(𝑚) is called periodogram of each block which is the result of the FFT applied over the segmented 

signals and ‘𝐾’ represents the total number of segmented blocks in the original signals. 

 

3.2.3. Entropy features 

Entropy is recommended to extract non-linear features of EEG signals [7]. In this study, six 

categories of entropy features are extracted for the non-linear analysis of EEG data. 

a. Shannon entropy 

Shannon entropy is a measure of uncertainty present in the value. It quantifies the amount of 

information that a particular variable or data holds over the result [27]. It is defined as (7), 

 

H(X)=- ∑ Pi log
2

Pi
n
i=1  (7) 

 

where ‘n’ denotes the number of data points and ‘𝑃𝑖’ denotes the probability of a data point. 

b. Spectral entropy 

Spectral entropy (SE) represents the proportions of which power spectrum of the EEG signal is 

made which consists of ‘flats’ and ‘peaks’ distribution [28]. It is calculated by measuring Shannon’s entropy 

for PSD [7] by (8), 

 

SE= - ∑ PSD(f) log
2

(PSD(f))f=0
fn

 (8) 

 

where ‘f’ is half of the sampling frequency [7]. 

c. Permutation entropy 

Permutation entropy (PE) quantifies the information by analyzing the patterns of ranks of values 

present in the time series data [29]. It is defined by (9), 

 

PE=- ∑ p'
i
log

2
(p'

i
)n!

i=1  (9) 

 

where 𝑝′𝑖 denotes the number of times the pattern of a particular sequence occurs in a variable. 

d. Singular value decomposition entropy (SVDE) 

SVDE measures the dimensionality of the EEG data by analyzing the number of eigenvectors to 

represent the data [7]. It is defined by (10), 

 

SVDE= =- ∑ σi log
2

σi
n
i=1  (10) 

 

where ‘𝜎𝑖’ denotes the values of the embedding space matrix of the delayed vector (also known as singular 

spectrum) of the input EEG data and ‘n’ denotes the number of singular spectrums. 

e. Approximate entropy and sample entropy 

Approximate entropy (ApEn) measures the degree of irregularity present in the data [30]. According 

to Steve Pincus, ApEn is defined as the “likelihood that runs of patterns that are close remain close on next 

incremental comparisons” [31]. The study demonstrates that ApEn performs well with relatively small time-

series data. Sample entropy is used to examine the sequence and regularity present in the data and assigns a 

non- negative number to the sequence in such a way that the larger value denotes more irregularity present in 

the data [30]. Sample entropy can be defined as (11), 

 

SampEn(m,r) = lim
N→∞

{- ln [
A

m(r)

B
m(r)

]} (11) 

 

where ‘m’ denotes the run length of data points, ‘r’ denotes tolerance window, 𝐴𝑚(𝑟) denotes the probability 

of two m+1 matched sequences and 𝐵𝑚(𝑟) denotes the probability of two m matched sequences. 
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3.2.4. Fractional dimension features 

FD features are another non-linear analysis technique used for analyzing EEG signals. It is used to 

measure the FD of a geometric object [32]. 

a. Katz’s FD 

Katz’s FD algorithms are calculated by derivating FD directly from the planar waveform [7], [32]. 

The Katz’s FD is calculated as (12) [33], 

 

FD= 
log( N)

log (N)+ log (
d

L
)
 (12) 

 

where ‘d’ denotes the diameter of the waveform and ‘L’ is the length of the waveform.  

b. Petrosian FD 

Petrosian FD is computed by applying Katz’s FD over the binary sequences of the time-series data 

[7], [32]. The Petrosian FD is calculated as (13) [33], 

 

FD= 
log( N)

log (N)+ log (
N

N+0.4N∆
)
 (13) 

 

where ‘𝑁∆’ is the number of unique segment pairs present in the binary sequence. 

c. Higuchi’s FD 

Consider X(1), X(2), …, X(N) be the time-series data points and is constructed as (14), 

 

Xk
m:X(m),X(m+k), …, X (m+ [

N-m

k
] .k) (14) 

 

where m=1,2, …, k and ‘m’ denotes the starting point. ’k’ denotes intervals between data points. For each 

‘k’, calculate the length of the curve by (15). 

 

Lm(k)=
1

k
[

(∑ |X(m+ik)-X(m+(i-1)k)|(N-1)
[
N-m

k
]

i=1
)

[
N-m

k
].k

] (15) 

 

where ‘𝐿𝑚(𝑘)’ denotes the length of the curve. Then Higuchi’s FD is calculated by applying (16). 

 

FD= - lim
k→∞

log〈L(k)〉

log k
 (16) 

 

 

4. RESULTS AND ANALYSIS 

For finding out the better performance of EEG signals in classifying cognitive stimuli, we 

investigated which features or combination of features along with respective classifiers. Also, we suggested 

two methods and compared the feature extraction techniques based on that. Based on the comparison results, 

we provided our evaluation of the best set of features that could be used in the classification of cognitive 

stimuli-based EEG signals. In this study, the extracted features are given as input to the classifiers: RFC, 

KNN, MLP, LDA, and SVM and the accuracies are noted. Time and frequency domain features are then 

analyzed in two manners. 

a. Analysis of individual domain features: Combine each feature with respect to their categories and 

compare the accuracies of each category 

b. Analysis of hybrid domain features: Combine each category of features in multiple combinations and 

compare the accuracies of each combination of feature categories. 

 

4.1.  Analysis of individual domain features 
The individual features that are extracted from the time-series data are combined and categorized in 

such a way that each feature belongs to one of the four categories named statistical, power, entropy, and FD 

features. Then each category is given as input to the classifiers and the accuracies are noted. In Table 2, 

accuracies of each feature category with all the five classifiers are shown and in Figure 2, the bar plot illustrates 

the accuracies of individual domain feature categories with all the five classifiers. It is shown that the FD feature 

has the highest accuracy of 82.53% with the LDA classifier. 
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Table 2. Performance analysis on individual domain features based on the accuracy 

Features RFC LDA SVM MLP KNN 

Statistical features 63.5% 41.3% 69.8% 38.1% 50.8% 

Power features 61.9% 17.5% 65.1% 38.1% 66.7% 

Entropy features 79.4% 54.0 % 74.6% 79.4% 77.8% 

FD features 76.2% 82.5% 66.7% 47.6% 74.6% 

 

 

 
 

Figure 2. Performance analysis on individual domain features based on the accuracy 

 

 

4.2.  Analysis of hybrid domain features 

The different combinations of four categories of features are made which consists of a total of 11 

unique combinations of categories where ‘S’ represents statistical feature, ‘P’ represents power feature, ‘E’ 

represents entropy feature, ‘F’ represents FD feature. These different categorical combinations of features are 

given as input to the classifiers and the accuracies are noted. In Table 3, accuracies of every combination of 

the hybrid feature with all the five classifiers are shown and in Figure 3, the bar plot illustrates the accuracies 

of hybrid domain features with all the five classifiers. It is shown that the combination of entropy-FD features 

gives the highest accuracy of 90.47% with the KNN classifier. 

 

 

Table 3. Performance analysis on hybrid domain features based on the accuracy 

Features RFC LDA SVM MLP KNN 

S-P 68.2% 46.0% 61.9% 46.0% 50.8% 

S-F 87.3% 28.6% 69.8% 52.4% 63.5% 

S-E 84.1% 19.0% 69.8% 52.4% 74.6% 

P-F 82.5% 87.3% 69.8% 46.0% 73.0% 

P-E 79.4% 34.9% 69.8% 50.8% 77.8% 

E-F 74.6% 69.8% 73.0% 81.0% 90.5% 

S-P-F 82.5% 30.2% 61.9% 46.0% 65.1% 

S-E-F 81.0% 27.0% 69.8% 47.6% 82.5% 

S-E-P 82.5% 19.0% 61.9% 50.8% 76.2% 

E-P-F 73.0% 47.6% 73.0% 61.9% 90.5% 

S-E-P-F 81.0% 31.8% 63.5% 50.8% 82.5% 
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Figure 3. Performance analysis on hybrid domain features based on the accuracy 

 

 

5. DISCUSSIONS 

From the results obtained in the current study, we demonstrated that hybrid domain feature analysis 

gives the highest accuracy of 90.47% when using hybrid features of entropy-FD categories and hybrid 

features of entropy-power-FD categories with KNN outperforming individual domain feature analysis which 

achieves 79.36% with RFC, MLP and 82.53% with LDA, respectively. Dutta et al. [26] proposed feature 

extraction techniques for mental task-based EEG signals classification by combining multivariate empirical 

mode decomposition (MEMD) and phase-based decomposition. The features hence extracted are in the time 

domain which made this mode easy to implement in real-time applications. The LS-SVM classifier is used to 

classify the extracted features which achieve the highest accuracy of 83.33%. Our proposed approach 

outperformed this method with the highest accuracy of 90.47%. The hybrid features of entropy-FD categories 

are sufficient for efficient performance in classification since combining power feature with entropy-FD 

features has no impact on the classification accuracy and it provides the same accuracy as entropy-FD 

combination. Hence, we can conclude that the entropy-FD feature along with the KNN classifier can 

effectively be used in the classification of cognitive stimuli-based EEG signals. 

 

 

6. CONCLUSION 

Brain-computer interface is a way of communicating between the brain and an external device both 

sharing the same interface that can be controlled externally. The main agenda of the project is to enhance 

classification accuracy using hybrid features. In BCI, it is suggested that using features from multiple 

domains improves classification accuracy. There are various methods for extracting features from the raw 

EEG signals such as statistical approaches, power features, wavelet features, etc. In this study, statistical 

features such as mean, standard deviation, MAV, RMS, COV, and power features such as PSD, FD 

approaches, and entropy features are extracted from the raw EEG signals. Two methods of combinations are 

employed to find the best combination of features along with its classifier. From the experiment, it is shown 

that FD features with LDA classifier give the better accuracy of 82.53% when compared to other features, 

and the combination of entropy-FD features with KNN classifier gives the highest accuracy of 90.47% when 

compared to other combinations. From the above-obtained results, it is suggested that the combination of 

entropy and FD features with the KNN classifier can be used to effectively classify the target class. Hence the 
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above combination with the respective model can be used for predicting the stimuli class of the tasks 

performed by the subjects from their brain signals very effectively. The above combination of hybrid feature 

sets might increase the computational complexity of the system as the data provided increases. Our work can 

be further extended by applying feature optimization and channel selection techniques to minimize the 

complexity of the existing model. 
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