
IAES International Journal of Robotics and Automation (IJRA) 

Vol. 11, No. 3, September 2022, pp. 181~195 

ISSN: 2722-2586, DOI: 10.11591/ijra.v11i3.pp181-195      181  

 

Journal homepage: http://ijra.iaescore.com 

Selection of smooth motion profile for a tube locator module of 

an inspection device 
 

 

G. Perumalsamy1, P. Visweswaran2, Deepak Kumar2, S. Joseph Winston2, S. Murugan1 
1Homi Bhabha National Institute (HBNI)-Mumbai, Kalpakkam Centre, Tamilnadu, India 

2Reactor Design and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India 

 

 

Article Info  ABSTRACT  

Article history: 

Received Jul 19, 2021 

Revised Jun 2, 2022 

Accepted Jun 21, 2022 

 

 The Prototype Fast Breeder Reactor steam generators inspection system has 

seven modules. In this, tube locator module is a planar serial two-link 

robotic arm, which is used to place the eddy current probe above the steam 

generators tube hole in the tube sheet region. The trajectory planning of the 

two-link robotic arm is one of the important tasks, so the peak velocity, peak 

acceleration, peak jerk of various motion profiles for a given distance has to 

be selected properly for smooth motion and to avoid actuator saturation. The 

fifth-order polynomial gives lower acceleration and velocity than the jerk-

limited S-curve. In this paper, the comparison of peak values of kinematic 

variables (velocity, acceleration, and jerk) for different motion profiles has 

been presented. 
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1. INTRODUCTION 

The Prototype Fast Breeder Reactor (PFBR) is a 500 MW capacity sodium cooled fast breeder 

reactor under commissioning in Kalpakkam, India. The steam generator (SG) of PFBR is a counter flow shell 

and tube heat exchanger with sodium on shell side and water/steam on the tube side. The SG contains 547 

tubes of 17.2 mm OD, 25 m length and thickness of 2.3 mm. The wall thickness of the tube is the only barrier 

between the liquid sodium and the water in the SG. Periodic in-service inspection of the SG tubes is 

mandated to mitigate the failure of the SG tubes. The in-service inspection of the SG tubes is carried out 

using the indigenously developed PFBR SG inspection system (PSGIS) device. The structural integrity of the 

SG tubes is evaluated using the remote field eddy current testing technique. The PSGIS device consists of 

several modules such as the device deployment module, tube locator module (TLM), and cable pusher 

module. The primary task of the inspection device is to orient the cable pusher module above the user defined 

SG tube for the deployment and retrieval of the eddy current probe at uniform speed along the tube length. 

The TLM of the PSGIS device is a two-arm serial robotic device. It has two rotational degrees of freedom 

which enable it to position the end-effector of the robotic arm above anyone of the 547 tubes as shown in 

Figure 1. The actual prototype of two-link robotic arm is shown in Figure 2.  

Forward kinematics determines the end-effector position corresponding to joint angle. Figure 3 

represents the schematic of two-link robotic arm. The position of two-axis robotic arm (x, y) is represented 

by (1) and (2). 

 

𝑥 = 𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) (1) 

https://creativecommons.org/licenses/by-sa/4.0/
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𝑦 = 𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2) (2)  

 

where x and y are end-effector position coordinates, l1 is the length of link1, l2 is the length of link2, and θ1 

and θ2 are joint angle of link1 and link2, respectively. 

 

 

 
 

Figure 1. SG tube sheet and steam generator 

 

 

 
 

  

Figure 2. Prototype of two-link robotic arm Figure 3. Schematic of two-link robotic arm [1] 

 

 

TLM uses harmonic drive FHA-C miniseries (gear ratio=50) servo actuators with incremental line 

driver encoder (2000 ppr). Table 1 shows the two-link robotic arm geometric and mass parameter. Inverse 

kinematics establishes the relation between the joint angle and end-effector position. There are many 

methods to find out joint angles such as analytical, geometric, and iterative techniques. The inverse kinematic 

algorithm of two-link robotic arm is shown in Figure 4. 

 

Table 1. Two-link robotic arm geometric parameter 
Parameters  Value Parameters  Value 

Mass of the Elbow arm motor(m3)  0.5 kg Elbow Arm Moment of Inertia about CG (Iz2) 3.675*10-3 kgm2 

Mass of the Elbow arm (m2) 1.0 kg Length of shoulder arm (l1) 0.21 m 
Mass of the Shoulder Arm (m1)  1.0 kg Length of Elbow arm (l2)  0.21 m 

Shoulder Arm Moment of Inertia about CG(Iz1)  3.675*10-3 kgm2 Mass of the point load at end-effector end(m4) 1 kg 
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Figure 4. Inverse kinematics algorithm of SG-ISI 

 

 

In TLM, damped least square inverse kinematics is used to find out joint velocity as given by (3), 

 

𝜃 = 𝐽𝑇̇ [𝐽𝐽𝑇 + 𝜆2𝐼]−1[𝑉] (3)  

 

where λ is damping factor, V is end-effector velocity,  - joint velocity of two-link robotic arm, and J 

represents the Jacobian of the two-link robotic arm which is given by (4). 

 

𝐽 = [
−𝑙1 sin(𝜃1) − 𝑙2 sin(𝜃1 + 𝜃2) −𝑙2 sin(𝜃1 + 𝜃2)

𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) 𝑙2 cos(𝜃1 + 𝜃2)
]  (4)  

 

The positioning accuracy required for the TLM is of the order of 0.1 mm. Moreover, in a serial 

manipulator like TLM, achieving accuracy of the order of 0.1 mm is a challenging task. The positioning 

accuracy is affected by residual vibration of the robotic arm. Hence, selection of smooth motion profile plays 

a vital role in achieving the 0.1 mm accuracy. The smooth motion profile is generated in many ways by 

different functions and different methods. 

Motion planning in robotics is a growing research field in the industry. Robotic motion is classified 

into two types, namely point-to-point and motion through sequence of points. Motion planning is done in 

joint space/end-effector coordinates. The end-effector coordinates, and joint coordinates are related by 

nonlinear functions, so planning of joint motion profile plays an important role in end-effector motion 

planning. In literature, several methods are proposed for the generation of smooth trajectory namely 

polynomial, spline, dynamic movement primitives, digital convolution, and finite impulse response filter-

based methods. It is seen from the literature that Ezair et al. [2] and Kirecci and Gilmartin [3] investigated 

motion planning from a computational point of view. The methods favorable for reducing the computation 

load are i) root multiplicity method, ii) recursive method, and iii) convolution method. 
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Ezair et al. [2] enumerated a recursive method to reduce higher-order polynomial to lower-order 

polynomial. It can produce a smooth trajectory using arbitrary initial and final conditions. Kirecci and 

Gilmartin [3] synthesized the joint angle motion planning using arbitrary power polynomial. The arbitrary 

power polynomial produces lower peak velocity than the other motion profile. Moreover, Boryga and Grabos 

[4] proposed root multiplicity method to form higher order polynomial. The higher-order polynomial 

produces oscillation. In addition, previous studies showed that higher-order polynomials introduce 

computational complexity. To avoid this, a piecewise polynomial (spline) is used to interpolate the joint 

angle [5]. Even though piecewise polynomial (spline) is used to join the number of via points for smooth 

motion, the acceleration of cubic spline is not smooth. Furthermore, truncated trigonometric series is used to 

interpolate the joint angle [6]. Moreover, motion planning is discussed from the point of minimum jerk [7]–

[9], minimum time [10]–[12], minimum energy [13], [14], and minimum torque [15].  

Jerk-limited motion is generated by polynomial, trigonometric and sigmoid function. M. S. Mujtaba 

[16] stated that bang-bang (quadratic polynomial) motion produces infinite jerk which produces lots of 

vibration which leads to tracking error. In addition, jerk-limited motion is generated by S-curve profile. S-

curve motion profile has seven phases. Depending on the motion distance, initial and final boundary 

conditions, S-curve may not have constant velocity and constant acceleration phases. Nguyen et al. [17] 

proposed a recursive method to form S-curve motion profile using polynomial and trigonometric. They stated 

that position error decreases when higher-order polynomial S-curve is used. Further, an increase of 

polynomial degree increases the number of segments by 2n-1. The jerk-limited motion profile increases the 

motion time than cubic polynomial. 

At the beginning of the 19th century, only first-order continuity (velocity) is achieved in motion 

planning. At the end of the 19th century, second-order continuity (acceleration) is achieved. In the 20th 

century, third-order continuity (jerk) has been a main concern in the motion profile. Moreover, jerk-bounded 

motion produces symmetric and asymmetric motion profiles due to the bounded value of jerk in acceleration 

and deceleration phases. The design of acceleration and deceleration profile plays a vital role in improving 

precision and accuracy. Moreover, duration of acceleration and deceleration play a significant role in 

reducing the settling time and residual vibration. The settling time is reduced by asymmetric motion and 

lower magnitude of jerk. The conventional method cannot produce an asymmetric velocity profile. Different 

magnitudes of jerk in acceleration and deceleration can produce an asymmetric profile. Li [18] proposed an 

asymmetric motion profile using a sine jerk profile which reduces residual vibration. The vibration produced 

by the sinusoidal jerk profile is lesser than the trapezoidal and jerk-limited s-curve motion profile. Rew and 

Kim [19] enumerated closed-form solution to asymmetric motion using a seven-segment approach to reduce 

settling time and residual vibration. Amthor et al. [20] proposed an asymmetric motion profile using fourth-

order polynomial. Perumal and Jawahar [21] proposed a synchronized trigonometric S-curve for jerk 

reduction. Moreover, sigmoid (piecewise exponential) is also used for smooth motion [22], [23]. 

The motion profile with higher-order continuity increases computational complexity but motion 

time is more complex, and it needs precise hypothesis. Snap bounded trajectory planning reduces the 

amplitudes of vibration than the jerk-limited motion profile. Rocha et al. [24] proposed an embedded system-

based snap constrained trajectory planning method for 3D motion systems. They compared snap constrained 

trajectory planning with seven segments and trapezoidal acceleration motion profile. 

Even though piecewise polynomial (algebraic spline) is used to plan the joint motion, it is not 

suitable for operations such as obstacle avoidance. Moreover, drawback of algebraic spline is that 

computational complexity increases due to coupled nature of unknowns. To reduce the coupling, Simon et al. 

[25] introduced a trigonometric spline to interpolate data points. Further, Visioli [26] compared the algebraic 

and trigonometric splines to reduce the overshot of the motion profile. Nnaji and Asano [27] investigated five 

joint trajectory profiles such as bang-bang, polynomial, exponential, cosine, and sine ramp profile. They 

investigated joint motion based on total work done, individual peak joint torque, and individual peak joint 

power. They stated that the evaluation process is independent of joint profile or specific robot. They stated 

that exponential trajectory was the best path out of the five trajectories. Polynomial trajectory is robot 

specific but exponential trajectory is not robot specific. The exponential profile is more suitable for large 

distance motion than the shorter motion. The acceleration produced by the exponential motion profile at the 

starting and ending is finite which results in tracking error. 

On contrary to off-line programming, online motion planning needs fewer data points. Moreover, 

online motion planning plays a vital role in avoiding obstacles. The finite impulse response filter is used to 

generate multi-segment motion profile in online motion planning [28]. Chand and Doty [29] proposed a cubic 

spline online joint trajectory. The average path error produced by the cubic spline is lower than the linear 

spline joint trajectory. Bazaz and Tondu [30] proposed a three-cubic method for motion generation between 

two successive points. Sidobre and Desormeaux [31] proposed a smooth cubic polynomial for human-robot 
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interactions. In robotics motion control, shorter movements possess complex behavior. They analyzed the 

influence of velocity on the shorter motion. 

From the literature, it was found that no generalized study was carried out for smooth motion profile 

with kinematic constraints. In this paper, generalized study of bang-bang, jerk-limited s-curve, fifth order 

polynomial (quintic polynomial), and cycloid motion profile is presented. The paper is organized as follows. 

Section 1 gives a brief review of forward, inverse kinematics of two link robotic arm and state of the art in 

motion planning. Section 2 gives a brief overview of the smooth motion profiles. Section 3 gives analytical 

methods to compute peak velocity, acceleration, and jerk. Section 4 discusses case study. Section 5 

summarizes the results of this paper. 

 

 

2. SELECTION OF SMOOTH MOTION PROFILE FOR STEAM GENERATOR INSPECTION 

Smooth motion is obtained in many ways. Smooth motion is generated by with or without 

considering kinematic and dynamic constraints. The kinematic constraints are joint actuator velocity, 

acceleration, and jerk. The dynamic constraints are joint actuator torque and torque rate. Further, minimum 

time is handled by kinematic and dynamic constraints, respectively. The bang-bang motion profile achieves 

time-optimal motion, but it results in jerky motion due to impulse load (infinite jerk) at finite points as shown 

in Figure 5(a), which causes tracking error and vibration. However, the jerky motion is smoothened by linear 

acceleration and deceleration (trapezoidal acceleration and deceleration) which increases motion time as 

shown in Figure 5(b). Even though jerk-limited motion produces finite jerks, it does not have continuous 

jerks as shown in Figure 5(c). This can be further improved by including higher-order continuity namely 

derivative of jerk (snap), derivative of snap (jounce or crackle), and which makes the jerk continuous. The 

motion profile with higher-order continuity results in computational complexity which needs proper 

hypothesis for selecting motion time. The higher-order polynomial motion produces smaller jerks. The trade-

off has to be made such that motion profile satisfies computational complexity and bounded jerk. In multi-

segment motion planning, the movement from one segment to another segment needs smooth transition 

(preferably c3 continuity) to avoid impulse load (impulse force or torque). The piecewise polynomial is used 

to join the segment smoothly. The formulation of various motion profiles is given in the methodology 

section.  

 

 

     
(a) (b) (c) (d) (e) 

 

Figure 5. Position, velocity, acceleration, and jerk of various motion profiles: (a) bang-bang, (b) cubic 

polynomial, (c) jerk-limited s curve, (d) fifth-order polynomial, and (e) cycloid motion 

 

 

3. METHODOLOGY 

In this section, the end-effector peak velocity, peak acceleration and peak jerk of various motion 

profiles are derived and compared for the given motion time (t) and total displacement (Δs).  
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3.1. Quintic polynomial 

Polynomial is used for motion planning of joint angle due to less computation. Even though linear 

polynomials have position continuity, they do not have velocity, acceleration continuity. On the other hand, 

cubic polynomial has position and velocity continuity. However, the acceleration produces discontinuity at 

the starting and ending in cubic polynomial. The fifth-order polynomial (Figure 5(d)) has position, velocity, 

and acceleration continuity. Moreover, jerk produced by the cubic polynomial is constant, but fifth-order 

polynomial produces non-linear jerk. The position (s), velocity (v), acceleration (a), jerk (j), and snap of fifth 

order polynomial is given by (5), 

 

𝑠(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 + 𝑎4𝑡
4 + 𝑎5𝑡

5

𝑣(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2 + 4𝑎4𝑡

3 + 5𝑎5𝑡
4

𝑎(𝑡) = 2𝑎2 + 6𝑎3𝑡 + 12𝑎4𝑡
2 + 20𝑎5𝑡

3

𝑗(𝑡) = 6𝑎3 + 24𝑎4𝑡 + 60𝑎5𝑡
2

𝑗(𝑡) = 24𝑎4 + 120𝑎5𝑡

 

 (5) 

 

where a0,a1,a2,a3,a4,a5 are unknowns and t-time. 

The fifth-order polynomial has six unknowns. The six unknowns are determined by applying the 

initial and final boundary conditions. The initial and final boundary conditions are given by (6). 

 
𝑠(𝑡 = 0) = 𝑠𝑖 𝑣(𝑡 = 0) = 0 𝑎(𝑡 = 0) = 0

𝑠(𝑡 = 𝑡𝑓) = 𝑠𝑓 𝑣(𝑡 = 𝑡𝑓) = 0 𝑎(𝑡 = 𝑡𝑓) = 0
 (6) 

 

The position at time t is given by (7) 

 

𝑠(𝑡) = [(
10

𝑡𝑓
3) 𝑡

3 − (
15

𝑡𝑓
4) 𝑡

4 + (
6

𝑡𝑓
5) 𝑡

5] (𝑠𝑓 − 𝑠𝑖) (7) 

 

The jerk of fifth-order polynomial is given by (8) 

 

𝑗(𝑡) = [(
60

𝑡𝑓
3) − (

360

𝑡𝑓
4 ) 𝑡 + (

360

𝑡𝑓
5 ) 𝑡

2] (𝑠𝑓 − 𝑠𝑖) (8) 

 

The maximum velocity occurs when acceleration is zero (t=tf/2).The maximum velocity (vm) of fifth-order 

polynomial is given by (9a) and (9b) 

 

𝑣𝑚 = (
15

8
) (

∆𝑠

𝑡𝑓
) (9a)  

 

where∆𝑠 = 𝑠𝑓 − 𝑠𝑖  

 

𝑣𝑚 = 0.4789(∆𝑠2𝑗𝑚)
(1 3⁄ ) (9b)

  

where 𝑣𝑚is the maximum velocity, tf is the motion time, Δs is the total distance, and jm is the maximum jerk. 

The maximum value of jerk occurs at t=0 and t=tf. The given distance (Δs) and velocity (vm), the maximum 

jerk (jm) is calculated by (10) 

 

𝑗𝑚 =
𝑣𝑚
3

(∆𝑠)2(0.4789)3
 (10)  

 

where jm is the maximum jerk, Vm is the maximum velocity, and Δs is the total distance  

The optimal time for fifth-order polynomial is given by (11) 

 

𝑡𝑓 = 3.9149 (
∆𝑠

𝑗𝑚
)
(1 3⁄ )

 (11)  

The maximum acceleration (am) of fifth-order polynomial is given by (12) 

 

𝑎𝑚 = 0.3767(∆𝑠𝑗𝑚
2 )(1 3⁄ ) (12)
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3.2.  Jerk-limited S-curve (without constant acceleration and constant velocity phase) 

The cubic polynomial produces linear acceleration, but this introduces finite jerks at the starting and 

ending. Even though the jerk-limited motion profile has some finite value at the starting and ending in jerk, it 

has zero acceleration at endpoints. Depending on the distance and kinematic constraints (maximum 

acceleration and maximum velocity), some phases (constant acceleration or constant velocity) may not exist. 

For ease of computational complexity, only constant jerk phase is considered. The constant acceleration and 

constant velocity phase are not considered. It can be seen that the minimum number of segments for 

achieving minimum time is 3 for satisfying only jerk constraints without utilizing the maximum acceleration 

and velocity. 

The jerk (j) at time t is given by (13), 

 

𝑗(𝑡) = {

𝑗𝑚     0 < 𝑡 ≤ 𝑡𝑗
−𝑗𝑚     𝑡𝑗 < 𝑡 ≤ 3𝑡𝑗

   𝑗𝑚          3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

  (13) 

 

where tj-time duration for jerk phase, jm- maximum jerk. The position of jerk-limited motion profile is given 

by (14a). 

 

𝑠(𝑡) =

{
 
 

 
 𝑗𝑚 (

𝑡3

6
)                                                                         0 < 𝑡 ≤ 𝑡𝑗

𝑗𝑚𝑡𝑗 (
𝑡2

2
) − 𝑗𝑚 (

𝑡3

6
) + 𝑗𝑚 (

𝑡𝑗
2

2
) 𝑡 + 𝑗𝑚 (

𝑡𝑗
3

6
)          𝑡𝑗 < 𝑡 ≤ 3𝑡𝑗

   𝑗𝑚 (
𝑡3

6
) − 𝑗𝑚𝑡𝑗 (

𝑡2

2
) + 𝑗𝑚 (

𝑡𝑗
2

2
) 𝑡 + (

11

6
) 𝑗𝑚𝑡𝑗

3      3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

 (14a) 

 

The velocity of jerk-limited motion profile is given by (14b). 

 

𝑣(𝑡) =

{
 
 

 
 𝑗𝑚 (

𝑡2

2
)                                      0 < 𝑡 ≤ 𝑡𝑗

𝑗𝑚𝑡𝑗𝑡 − 𝑗𝑚 (
𝑡2

2
) + 𝑗𝑚 (

𝑡𝑗
2

2
)     0 < 𝑡 ≤ 3𝑡𝑗

   𝑗𝑚 (
𝑡2

2
) − 𝑗𝑚𝑡𝑗𝑡 + 𝑗𝑚 (

𝑡𝑗
2

2
)       3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

 (14b) 

 

The acceleration of jerk-limited motion profile is given by (14c). 

 

𝑎(𝑡) = {

𝑗𝑚𝑡                  0 < 𝑡 ≤ 𝑡𝑗
𝑗𝑚𝑡𝑗 − 𝑗𝑚𝑡      𝑡𝑗 < 𝑡 ≤ 3𝑡𝑗
   𝑗𝑚                   3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

 (14c)   

 

The time duration for jerk phase along x, y-direction (tx, ty) is given by (15). 

 

𝑡𝑥 = [
∆𝑥

2𝑗𝑚
]
(1 3⁄ )

𝑡𝑦 = [
∆𝑦

2𝑗𝑚
]
(1 3⁄ )

 (15)  

 

From the maximum velocity, the maximum jerk is calculated. From the maximum jerk (jm) and distance, 

motion time is calculated. The time for the jerk phase is given by (16a). 

 

𝑡𝑗 = 0.7937 (
∆𝑠

𝑗𝑚
)
(1 3⁄ )

 (16a) 

 

The total time for jerk-limited motion profile is given by (16c). 
 

𝑡𝑗 = 4𝑡𝑗 

𝑡𝑗 = 3.1748 (
∆𝑠

𝑗𝑚
)
(1 3⁄ )

 (16b) 

 

𝑡0 = 𝑚𝑎𝑥(𝑡𝑥 , 𝑡𝑦) (16c) 
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3.3. Cycloid motion  

The fifth-order polynomial and jerk-limited motion are formed by polynomial, whereas cycloid 

motion (Figure 5(e)) is constructed by point p on the circle rolls along a straight line as shown in Figure 6. 

The cycloid motion cannot be used for motion planning of multiple segments, due to finite jerk in the 

intermediate points, start and endpoints. The cycloid motion has linear polynomial and trigonometric 

function. 

 

 

 
 

Figure 6. Generation of cycloid motion 

 

 

The position of cycloid motion profile as shown in Figure 6 is given by (17) . 

 

𝑠(𝑡) = ∆𝑠 {(
𝑡

𝑡𝑓
) − (

1

2𝜋
) sin (

2𝜋𝑡

𝑡𝑓
)} + 𝑠𝑖 (17) 

 

The velocity, acceleration and jerk are given by(18-20). 

 

𝑣(𝑡) = (
∆𝑠

𝑡𝑓
) {1 − cos (

2𝜋𝑡

𝑡𝑓
)} (18) 

 

𝑎(𝑡) = (
2𝜋.∆𝑠

𝑡𝑓
2 ) {sin (

2𝜋𝑡

𝑡𝑓
)} (19) 

 

𝑗(𝑡) = (
4𝜋2.∆𝑠

𝑡𝑓
3 ) {cos (

2𝜋𝑡

𝑡𝑓
)} (20) 

 

where Δs is the total displacement, tf is the total motion time. The acceleration profile of cycloid motion is 

smoother than the jerk-limited motion profile. The peak acceleration of cycloid motion is larger than the 

fifth-order polynomial. 

 

3.4. Harmonic jerk S-curve 

The harmonic jerk S-curve is given by (21). 

 

𝑗(𝑡) =

{
 
 
 
 

 
 
 
 𝑗𝑚 (1 − 𝑐𝑜𝑠 (

2∙𝜋∙𝑡

𝑡𝑗
)) 0 < 𝑡 ≤ 𝑡𝑗

−𝑗𝑚 (1 − 𝑐𝑜𝑠 (
2∙𝜋∙𝑡

𝑡𝑗
)) 𝑡𝑗 < 𝑡 ≤ 2𝑡𝑗

−𝑗𝑚 (1 − 𝑐𝑜𝑠 (
2∙𝜋.𝑡

𝑡𝑗
)) 2𝑡𝑗 < 𝑡 ≤ 3𝑡𝑗

𝑗𝑚 (1 − 𝑐𝑜𝑠 (
2∙𝜋.𝑡

𝑡𝑗
)) 3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

  (21) 

 

The acceleration of harmonic jerk S-curve is given by (22). 
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𝑎(𝑡) =

{
 
 
 
 
 
 

 
 
 
 
 
 

0.5 ∗ 𝑗𝑚 {𝑡 −
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

} 0 < 𝑡 ≤ 𝑡𝑗

−0.5 ∗ 𝑗𝑚 {𝑡 −
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

} + 0.5 ∗ 𝑗𝑚 ∗ 𝑡𝑗 𝑡𝑗 < 𝑡 ≤ 2𝑡𝑗

−0.5 ∗ 𝑗𝑚 {𝑡 −
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

} 2𝑡𝑗 < 𝑡 ≤ 3𝑡𝑗

0.5 ∗ 𝑗𝑚 {𝑡 −
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

} − 0.5 ∗ 𝑗𝑚 ∗ 𝑡𝑗 3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

 (22) 

 

The velocity of harmonic jerk S-curve is given by (23) 

 

𝑣(𝑡) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

0.5 ∗ 𝑗𝑚 {
𝑡2

2
+
𝑐𝑜𝑠(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

2 } 0 < 𝑡 ≤ 𝑡𝑗

−0.5 ∗ 𝑗𝑚 {
𝑡2

2
+
𝑐𝑜𝑠(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

2 } + 𝑗𝑚 ∗ 0.5 ∗ 𝑡𝑗𝑡 + 𝑗𝑚 ∗ 0.25 ∗ 𝑡𝑗
2 + 𝑗𝑚 ∗ 0.5 ∗ (

𝑡𝑗

2𝜋
)
2

𝑡𝑗 < 𝑡 ≤ 2𝑡𝑗

−0.5 ∗ 𝑗𝑚 {
𝑡2

2
+
𝑐𝑜𝑠(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

2 }+ 𝑗𝑚 ∗ 0.5 ∗ 𝑡𝑗
2 + 𝑗𝑚 ∗ 0.5 ∗ (

𝑡𝑗

2𝜋
)
2

2𝑡𝑗 < 𝑡 ≤ 3𝑡𝑗

0.5 ∗ 𝑗𝑚 {
𝑡2

2
+
𝑐𝑜𝑠(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

2 } + 𝑗𝑚 ∗ 0.25 ∗ 𝑡𝑗
2 − 𝑗𝑚 ∗ 0.5 ∗ (

𝑡𝑗

2𝜋
)
2
− 𝑗𝑚 ∗ 0.5 ∗ 𝑡𝑗𝑡 3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

(23) 

 

The position of harmonic jerk S-curve is given by (24). 

 

𝑠(𝑡) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

0.5 ∗ 𝑗𝑚 {
𝑡3

6
+
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

3 } − 𝑗𝑚 ∗ 0.5 ∗ (
𝑡𝑗

2𝜋
)
2
𝑡 0 < 𝑡 ≤ 𝑡𝑗

−0.5 ∗ 𝑗𝑚 {
𝑡3

6
+
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

3 } + 𝑗𝑚 ∗ 0.5 ∗ (
𝑡𝑗

2𝜋
)
2
𝑡 + 𝑗𝑚 ∗ 0.25 ∗ 𝑡𝑗

2𝑡 + 𝑗𝑚 ∗ 0.25 ∗ 𝑡𝑗𝑡
2 + 𝑗𝑚 ∗ (

1

12
) ∗ 𝑡𝑗

3 − (
𝑗𝑚

2
) ∗ 𝑡𝑗 (

𝑡𝑗

2𝜋
)
2

𝑡𝑗 < 𝑡 ≤ 2𝑡𝑗

−0.5 ∗ 𝑗𝑚 {
𝑡3

6
+
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

3 } + 𝑗𝑚 ∗ 0.5 ∗ 𝑡𝑗
2𝑡 + (

𝑗𝑚

2
) ∗ 𝑡 (

𝑡𝑗

2𝜋
)
2
+ 𝑗𝑚 ∗ 0.5 ∗ 𝑡𝑗

3 2𝑡𝑗 < 𝑡 ≤ 3𝑡𝑗

𝑗𝑚 ∗ 0.5 ∗ {
𝑡3

6
+
𝑠𝑖𝑛(

2𝜋𝑡

𝑡𝑗
)

(
2𝜋

𝑡𝑗
)

3 } − 𝑗𝑚 ∗ 0.25 ∗ 𝑡𝑗𝑡
2 + 𝑗𝑚 ∗ 0.25 ∗ 𝑡𝑗

2𝑡 − (
𝑗𝑚

2
) ∗ 𝑡 ∗ (

𝑡𝑗

2𝜋
)
2
+ 𝑗𝑚 ∗ (

1

12
) ∗ 𝑡𝑗

3 + (
𝑗𝑚

2
) ∗ 𝑡𝑗 (

𝑡𝑗

2𝜋
)
2

3𝑡𝑗 < 𝑡 ≤ 4𝑡𝑗

(24) 

 

 

4. RESULTS AND DISCUSSION  

The position of two link robotic arm from start point to end point is shown in Table 2. It is assumed 

that end-effector velocity along x-direction is 20 mm/sec. Bang-bang motion produces finite acceleration at 

starting and ending, which makes the motion jerkiness. On the contrary, cubic polynomial produces finite 

jerk as shown in Table 3. The jerk-limited motion profile gives maximum velocity than other motion profiles 

for the given jerk (j) and motion time (tf). However, quintic polynomial produces the lowest velocity and 

acceleration. The maximum velocity and acceleration produced by S-curve is lower than the other motion 

profile. The comparison of different motion parameters is given in Table 3. 

The motion of x-coordinate of end-effector is shown in Figure 7. Figure 8 represents the motion of 

y-coordinate. The total time for both coordinates is the same. For fixed time, the maximum jerk magnitude 

along x-coordinate differs from the y-coordinate due to variation in displacement in the x and y coordinates. 
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Table 2. End-effector displacement at the start and end point 
End-effector displacement Initial point (mm) End point (mm) Kinematics constraints 

x 209.3 225.4 
End-effector velocity along x-direction= 20 (mm/sec) 

y 250.9 223.1 

 

 

Table 3. Comparison of different motion parameters for the given time 
Type of Interpolation Total distance (mm) J (mm/s3) a (mm/s2) v (mm/sec) t (s) 

Bang-bang motion ∆𝑠 ∞ 𝑎𝑚 √𝑎𝑚∆𝑠 𝑡𝑓 

Cubic polynomial ∆𝑠 𝑗𝑚1 1.15(√𝑗𝑚1
2 ∆𝑠

3
) 0.66 (√∆𝑠2𝑗𝑚1

3
) 𝑡𝑓 

Jerk-limited motion ∆𝑠 𝑗𝑚2 0.79(√𝑗𝑚2
2 ∆𝑠

3
) 0.63 (√∆𝑠2𝑗𝑚2

3
) 𝑡𝑓 

Quintic polynomial ∆𝑠 𝑗𝑚3 0.38(√𝑗𝑚3
2 ∆𝑠

3
) 0.48 (√∆𝑠2𝑗𝑚3

3
) 𝑡𝑓 

Cycloid motion ∆𝑠 𝑗𝑚4 0.54(√∆𝑠𝑗𝑚4
23
) 0.59 (√∆𝑠2𝑗𝑚4

3
) 𝑡𝑓 

Harmonic jerk S-curve ∆𝑠 𝑗𝑚5 0.5 (√∆𝑠𝑗𝑚5
23
) 0.5 (√∆𝑠2𝑗𝑚5

3
) 𝑡𝑓 

 

 

 
 

Figure 7. End-effector x-coordinate with respect to time 

 

 

 
 

Figure 8. End-effector y-coordinate with respect to time 
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It can be seen that only time is synchronized, while velocity is not synchronized as shown in Figures 9 

and 10. The maximum velocity of x-coordinate differs from y-coordinate velocity due to different 

displacement along x and y coordinates. The peak velocity of cubic polynomial is lower than the other 

motion profile. It can be seen that cycloid motion produces higher peak velocity than quintic motion profile. 

However, quintic polynomial produces the lowest peak velocity with smoothness.  

 

 

 
 

Figure 9. End-effector x-coordinate velocity with respect to time 

 

 
Figure 10. End-effector y-coordinate velocity with respect to time 

 

 

The acceleration produced by the jerk-limited motion is not smooth. Moreover, acceleration is linear 

in jerk-limited motion whereas it is cubic in quintic polynomial. In contrast to cubic polynomial, acceleration 

of cycloid motion is zero at the starting and ending but the jerk produced by the cycloid motion is finite at the 

starting and ending which leads to trajectory error. The acceleration produced by the jerk-limited S-curve is 

linear as shown in Figures 11 and 12. 

It can be seen that jerk produced by the S-curve is a step function. In quintic and cycloid motion 

profile jerk is continuous except at the starting and ending (finite jerk) unlike step function in jerk-limited S-

curve as shown in Figure 13. The jerk magnitude of cycloid motion is higher than the jerk-limited S-curve as 

shown in Table 4. The maximum jerk value in the x and y direction is different due to synchronization of 

time as shown in Figures 13 and 14. For time synchronized motion, jerk in the x-direction is lesser than the y-

direction. It was found that harmonic jerk S-curve produces maximum jerk for the given motion time as 

shown in Table 4. 

Figure 15 shows the end-effector profile of a two-link robotic arm. The end-effector coordinates are 

interpolated by fifth-order polynomial. The position of joint angle for the initial and final point is calculated 

by inverse kinematics algorithm. 
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Figure 11. End-effector x-coordinate acceleration with respect to time 

 

 

 
 

Figure 12. End-effector y-coordinate acceleration with respect to time 

 

 

 
 

Figure 13. End-effector x-coordinate jerk with respect to time 
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Table 4. Comparison of jerk magnitude end-effector x-coordinate for various motion planning 
Motion model Maximum jerk value (mm/s3) Maximum acceleration (mm/s2) Maximum velocity (mm/s) 

Cubic polynomial 46.3 -46.3 15 
Jerk-limited S-curve 123.43  49.68 20 

Harmonic jerk S-curve 246.90  49.68 20 

Quintic polynomial 231.43  35.85 18.75 
Cycloid motion 152.27  39.02 20 

 

 

 
 

Figure 14. End-effector x-coordinate jerk with respect to time 

 

 

 
 

Figure 15. Two-link robotic arm end-effector profile for fifth-order polynomial 

 

 

5. CONCLUSION 

In this paper, the motion analysis of two-link robotic arm for steam generator inspection is discussed 

from kinematics aspects without considering dynamics. The theoretical formulation of fifth-order, jerk-

limited and cycloid motion profile is presented, and optimal time calculation has been presented for the 

velocity constraints. Finally, a case study has been presented. The conclusions are summarized as follows: i) 

the end effector trajectory is planned by using fifth-order polynomial, cycloid motion, harmonic jerk S-curve 

and jerk-limited S-curve, ii) the time-optimality of motion profile considering velocity and acceleration 
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constraints is discussed, and iii) the synchronization of end-effector coordinates motion along the x and y 

direction is discussed. In future, this study can be extended to motion planning with obstacles in between the 

start point and end point. Moreover, comparison of various motion profiles with dynamic constraints will be 

studied. 
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