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ABSTRACT

Despite autonomous navigation is one of the most proliferate applications of
three-dimensional (3D) point clouds and imagery both techniques can poten-
tially have many other applications. This work explores urban digitization tools
applied to 3D geometry to perform urban tasks. We focus exclusively on com-
piling scientific research that merges mobile laser scanning (MLS) and imagery
from vision systems. The major contribution of this review is to show the evolu-
tion of MLS combined with imagery in urban applications. We review systems
used by public and private organizations to handle urban tasks such as historic
preservation, roadside assistance, road infrastructure inventory, and public space
study. The work pinpoints the potential and accuracy of data acquisition systems
to handled both 3D point clouds and imagery data. We highlight potential future
work regarding the detection of urban environment elements and to solve urban
problems. This article concludes by discussing the major constraints and strug-
gles of current systems that use MLS combined with imagery to perform urban
tasks and to solve urban tasks.
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1. INTRODUCTION
The accelerated urban growth of these days requires essential changes in what we usually know as

urban construction, production, and management. In this sense, society’s efforts to adapt itself and try to
dominate the urban revolution comes along with a remarkable and continuous technological progress. Public
and private organisms that regulate, inspect, and monitor public services have adopted technological tools for
specific tasks like urban digitization tools for map building in projects related to land, road, or natural resource
management. Additionally, areas such as topology, video games development, and historic preservation are
in the constant search for look for better technologies, sensors, and techniques to generate the most precise
digitization of urban elements.

This work explores urban digitization tools applied to three-dimensional (3D) geometry to perform
urban tasks. Nowadays, mobile laser scanning (MLS) systems on board moving vehicles are one of the most
common tools for data acquisition in urban environments. These on board systems combine high-range laser
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sensors for 3D point cloud acquisition, panoramic cameras for image color and texture acquisition, and a global
positioning system (GPS) for location tracking. MLS systems can be helpful for a wide variety of applications
in areas such as archeology (e.g. land exploration), video game development (e.g. 3D object reconstruction),
topology, and historic preservation. Additionally, MLS data is used to evaluate buildings (construction man-
agement, and civil engineering) and streets (urban maintenance, and electrical work). Moreover, in urban tasks,
MLS data is particularly useful for projects benefiting communities (environmental projects).

Extensive research on MLS systems is easily verifiable thanks to the numerous works reported in
the literature. Each of these initiatives introduces novel MLS developments from different perspectives. It is
essential to compile data processing methods in photogrammetry and remote sensing and compare different
scattered 3D points registration techniques [1]. Besides, Cheng et al. [2] made a brief review of LiDAR
technologies, including terrestrial, aerial, and satellite laser scanning across multiple applications.

MLS has proven to be an excellent tool for urban management-related applications such as building
facade reconstruction, road inventory, land exploration, and structural monitoring, to name a few. The re-
searchers [3]-[6] examine different MLS applications to discuss technological advances in data registration ,
geo-referencing of scanned data, and environment change detection and deformation monitoring for engineer-
ing surveying and structural and civil engineering. Also, Matikainen et al. [7] is an exclusive review for power
line corridor remote sensing methods exploring different LiDAR technologies. Many studies such as those
reported in [8]-[10] report, describe, and compare urban object recognition and classification methodologies
using MLS.

Some years ago, urban data acquisition systems were integrated only by laser scanner devices to re-
place vision systems as the primary tool for handling urban tasks. However, it did not take long for vision
systems to be integrated into the solution again. Including camera vision systems into urban data acquisition
systems provides texture and color data to laser scanning data. In this sense, the researchers [11], [12] examine
multiple procedures for 3D reconstruction and 3D modeling from LiDAR and image integration for visualiza-
tion and aesthetics. Similarly, Ma et al. [13] studied LiDAR-based mobile mapping and surveying technology
by analyzing the performance of exceptional mobile terrestrial laser scanning systems. Additionally, the au-
thors reviewed the positioning, scanning, and imaging devices integrated into these systems. Similarly, works
such as those proposed by [14]-[16] have managed to compare mobile LiDAR technology, including system
components. More recently, Wang et al. [17] is a review of MLS systems for urban 3D modeling where check
the efficiency and stability of these systems. The main application are 3D modeling, LiDAR simultaneous
localization and mapping, point cloud registration, feature and object extraction, semantic segmentation, and
processing applying deep learning. In addition, Gao et al. [18] presents a 3D LiDAR dataset to review the size,
diversity and quality, which are the critical factors in training deep models. They showed an organized survey
of 3D semantic segmentation too including the latest research trend using deep learning techniques.

The combination of MLS data with imagery in vision systems helps retrieve more details of urban
objects. Consequently, MLS initiatives combining imagery may be classified depending on the object to be
detected, such as road markings, road signs, and pole-like objects. The works reviewed in this paper introduce
MLS developments and discuss the performance and applicability of such developments to demonstrate that
MLS systems are suitable for different urban management applications.

This work exclusively compiles scientific research that merges both MLS data and imagery from
vision systems. A similar work is proposed by [19], who conducted a study on photogrammetry and remote
sensing to point at the benefits of using both types of data for disadvantage compensation. More recently,
Zhong et al. [20] is a survey of the MLS and camera systems fusion and enhancement. The work review both
two sensors regarding depth completion, 3D object detection, segmentation and tracking. In the case of our
review, the main interest is to know how current initiatives for handling urban management task successfully
integrate MLS with imagery, since we found a gap regarding the use of 3D point cloud data along with imagery
in urban applications.

The main contribution of this review is to trace the evolution of MLS with imagery technologies ap-
plied in urban applications. We do not review, however, autonomous vehicle MLS systems, as we consider they
deserve a study of their own. We review applications that can be used by both public and private organizations
in urban environments such as construction management, urban maintenance, environmental projects, electri-
cal work, and civil engineering for management tasks such as historic preservation, roadside assistance, road
infrastructure inventory, and public space study. Hence, this paper pinpoints the potential of data acquisition
systems that use both 3D point clouds and imagery data to detect urban elements and solve urban problems.
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We include a section to describe MLS and vision system technology to provide an overview of the tools
used to accomplish such urban tasks. Namely, we focus on listing MLS developments showing data processing,
segmentation, detection, and classification capabilities. Likewise, we discuss the methods commonly used to
evaluate the performance of such systems as well as the accuracy of their results. Then, in the discussion
section, we expose how merging MLS data with imagery from vision systems is being used most and why.
Finally, as our research conclusions, we highlight opportunity areas for urban tasks in which MLS data and
imagery data are exploited for both academic and industrial purposes.

2. RESEARCH METHOD
Our review discusses merely scientific research that integrates MLS data with imagery from vision

systems regarding urban tasks. The selected works meet the criteria: i) Data acquisition systems with at least
the following components: the MLS system, panoramic cameras, and a GPS receiver; ii) Implementation of
these systems in urban applications for either public or private organizations in urban environment applications
such as construction management, urban maintenance, environmental projects, electrical work, or civil engi-
neering; iii) Works discussing the data processing process and describing the object detection or segmentation
method of the data acquisition system; iv) If the work discusses a data acquisition system with object classi-
fication capabilities, then, the used classification and evaluation techniques must be described along with the
accuracy of the system’s results; and v) Some of the main keywords for paper selection are the next listed be-
low: LiDAR, 3D point cloud, vision system, mobile mapping systems, mobile laser scanner systems, panoramic
cameras, GPS receiver, imagery, urban application, urban management, urban environment, urban object de-
tection, urban object segmentation, urban object classification, buildings, threes, road signs, road elements, and
road markings.

Our search covers approximately ten years of research to trace the evolution of data acquisition in
urban contexts. We focus exclusively on compiling scientific research that merges MLS data with imagery data
from vision systems. We leave aside data acquisition developments mounted on autonomous vehicles, since
we consider they deserve a study of their own. Also, we consulted the datasheets of every system reviewed.
The search of works was conducted on search tools such as Google Scholar, ResearchGate, Scopus, Mendeley,
and multiple journal engines. In the last ten years, there has been a remarkable increase in urban digitization
developments. Figure 1 depicts the yearly distribution of works published on state-of-the-art technologies
merging MLS data with vision system images in the context of urban projects. The dotted line shows clearly
that there is a trend that will continue increasing. As cities around the world continue to grow exponentially,
these developments will remain on the rise to help societies overcome emerging urban challenges and dominate
the latest urban revolution. Figure 2 shows the principal LiDAR sensors count, some works do not specify the
sensor.

Figure 1. State-of-the-art scientific article count per year that merges both MLS data and vision system
images. The dotted line shows the trend line
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92 ❒ ISSN: 2722-2586

Figure 2. Principal LiDAR sensors count, some works do not specify the sensor

3. MOBILE DATA ACQUISITION SYSTEMS
The past couple of decades have witnessed the exponential growth of computational calculation and

data management technologies, thus leading to rapid computational technology developments, especially in
term of computer vision and computer graphics. In this sense, mobile mapping systems (MMS), especially
MLS systems, have demonstrated to be effective tools in a wide range of urban applications. The satisfactory
performance of MLS systems is due to their sensory system, which provides dynamic vision to any vehicle
using the components: i) A laser scanner sensor: range sensor, LiDAR sensor; ii) Vision sensors: digital
cameras, video cameras, and panoramic cameras; and iii) A global navigation satellite system (GNSS): GPS
receiver, inertial measurement unit (IMU), odometers, speedometers, and accelerometers.

LiDAR sensors are the main element of mobile data acquisition systems referring to MLS or MMS. In
turn, each MLS and MMS platform has different applications. In this work, we only review vehicle-mounted
MLS systems and MMS that use both 3D point cloud and imagery for urban application scanning. As previ-
ously mentioned, we discard those platforms used for autonomous driving since we consider that these systems
deserve their own study. Our goal is to describe the technologies into MLS system and vision system. Table
1 summarizes our review of vehicle-mounted MMS and MLS systems by including the information: i) Name
of the system or institution that developed or integrated the system; ii) The model of laser scanner sensor; iii)
The model of vision sensor including the field of view (FOV) and the resolution; iv) Model of GNSS/IMU
receiver system; and v) The authors for reference. Also, we briefly describe how each system merged the MLS
data with imagery data and which urban tasks was cover. Additionally, we introduce Table 2 to highlight the
characteristics of the laser sensors comprised in each reviewed system, along with aspects such as data update
rate, FOV, data acquisition range, and image resolution. We also consulted the datasheets of each system to
obtain more details on its characteristics.

The first platform reviewed concerns the Finnish Geodetic Institute (FGI) sensei, developed at the
Finnish Geodetic Institute. According to Jaakkola et al. [21], FGI sensei is a modular measurement system
capable of performing aerial scanning and MLS mapping. The system uses an Ibeo Lux laser scanner for
individual tree measurements. The researchers used FGI sensei to classify tree species by integrating laser and
hyperspectral data. The camera in this system can bring RGB synchronized point cloud data and images to
identifying urban objects and a mapped overview of the environment [22]. FGI sensei also uses a spectrometer
that measures incoming light by passing it through a diffraction grating to a monochromatic charge-coupled
device (CCD) sensor. The spectral channels were averaged for data acquisition by binning the pixels on the
CCD sensor into 123 channels [22].

The second platform reviewed is VIAMETRIS MMS a vehicle for road surveying developed by [23].
The system can extract road inventory (markings and signs) by reflecting feature information from four SICK
LMS-291 LiDAR sensors. In turn, camera data help texturizes and interpret this information to show the results
in a geographic information system (GIS) to be consulted through internal software.
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Table 1. Different MLS platforms for urban management applications
System name or insitution Laser scanner sensor Vision sensor Field of view

FOV (H×V)
GNSS/IMU receiver systems References

FGI Sensei Ibeo Lux AVT Pike F-421C 4 MP
2048 × 2048 Specim V10H
44.4◦ V

NovAtel SPAN-CPT Novatel
702 GG

[21], [22]

VIAMETRIS Four SICK LMS-291 AVT Pike F-210C 2.07 MP
1920 × 1080

Trimble Omnistar 8200-H
Ixsea LandINS

[23]

eXperimental Platform
(XP-1)

RIEGL VQ-250 FLIR thermal SC-660 3.2 MP
640×480 5-CCD multispec-
tral camera

Ixsea LandINS [24], [25]

East China Normal Univer-
sity VBLS

Two SICK n/s Two CCD cameras 1392 ×
1040

GPS, INS and Odometer n/s [26]

NAVTEQ True Velodyne HDL-64E Ladybug 3 1600 × 1200 HD
Prosilica cameras n/s

GPS/IMU/DMI n/s [27], [28]

National Polytechnic Insti-
tute

Velodyne HDL-64E Point Grey Ladybug2 1024×
768

ProMark 3 GPS CHR UM6
gyro

[29]-[31]

VISIMIND Leica HDS4500 Six 2-4 MP SONY digital
cameras

Imar GMBH
GPS/GLONASS Topcon

[32]

Stereopolis II Two RIEGL LMSQ120i
Velodyne HDL-64E

Sixteen Pike full HD cameras
n/s

POS-LV220 [33]

Topcon IP-S2 Three 2D SICK n/s 360◦ Six digital camera
1600 × 1200

GPS/GLONASS and IMU
signlas tracker n/s

[34]

Topcon IP-S3 HD1 Velodyne HDL-32E 360◦ LadyBug 5 30 MP (5
MP × Six sensors) 2048 ×
2448

GPS/GLONASS and IMU
signlas tracker n/s

[35]

Optech Lynx Two Lynx sensor Four Lynx BB-500 GE 5 MP
57◦ × 47◦ FoV

POS LV 520 Applanix [36]-[40]

SSW 360◦ laser sensor n/s Ladybug 3 1600 × 1200 GPS receiver and IMU n/s [41], [42]
RIEGL VMX 250 Two RIEGL VQ-250 Six VMX-250-CS6 5 1.4 MP,

2 MP or 5 MP
IMU/GNSS n/s [43]

RIEGL VMX 450 Two RIEGL VQ-450 VMX-450-CS6 5 MP 2452×
2056 80◦ × 65◦ FoV Lady-
bug5 30 MP (5 MP × Six sen-
sors) 2048 × 2448

IMU/GNSS n/s [42]-[49]

Trimble MX-8 Two RIEGL VQ-250 Four Point Grey Grasshopper
GRAS-50S5C 5 MP 2448 ×
2048

Applanix POS LV 520 [50]

Florida Atlantic University Velodyne HDL-32E Cameras—Nikon 3200, 3300
24.4 MP 6045 × 4003

Geodetics, Geo-iNav [51]

Purdue University Two Velodyne HDL-32E 5MP FLIR Flea-2G camera Novatel SPAN-CPT [52]
Utah Department of Trans-
portation (UDOT)

Velodyne HDL-32E
Laser road imaging
system n/s

Imaging technologies n/s Laser rut measure system n/s
Position orientation sys. n/s

[53], [54]

Wuhan University Three low-cost SICK n/s Ladybug 3 1600 × 1200 GPS/IMU n/s [55]
StreetMapper 30 RIEGL VQ-250 or VQ-

450
DigiCAM K14 or Nikon D300
SLR 12.3 MP 4288 × 2848

NovAtel OEMV-3 or High
quality IGI navigation system

[56]-[58]

Tsinghua University Velodyne HDL-64E Basler digital camera 1292 ×
964

n/s [59]

MODISSA Two Velodyne HDL-64E
Two Velodyne VLP-16

Eight Baumer VLG-20C.I.
Jenoptik IR-TCM 640 thermal
infrared camera JAI CM
200-MCL gray scale camera
Jenoptik DLEM 20 laser
rangefinder

Applanix POS LV V5 520
INS/GNSS DMI/IMU

[60]

AnnieWAY Velodyne HDL-64E Two FL2-14S3M-C and two
FL2-14S3C-C Point Grey Flea
2

OXTS RT 3003 [61]

Innopolis University Velodyne VLP-16 Basler acA 1300-200uc NV08C MTi-G-710 [62]
KAIST Daejeon, South Ko-
rea

Two Velodyne VLP-16
Two SICK LMS-511

Two FLIR FL3-U3-20E4C-C
1280 × 560

EVK-7P U-Block GRX 2
SOKKIA MTi-300 Xsens
LM13 RLS

[63]

Teledyne Optech Maverick 32-line LiDAR sensor Ladybug 5 panoramic camera GNSS system [64]
*no specified (n/s)
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Table 2. Different laser scanner sensors in mobile data acquisition systems
Laser scanner sen-
sor

Company name Data update
rate Hz

Field of view
FOV (HxV)

Acquisition range Resolution
points/second

Energy consump-
tion

Ibeo Lux Ibeo Automotive
Systems GmbH

50 Hz 110◦ × 3.2◦ 0.3 to 200 m 38,000 9 - 27 V 8 W (aver-
age), ¡ 10 W (max)

Leica HDS4500 Leica Geosystems 10 to 20 Hz 360◦ × 310◦ 1 m to 25 m Up to 500,000 24 V 50 - 70 W
Lynx Optech Lidar Imag-

ing Solutions
500 kHz 360◦ H 200 m max 1,000,000 12 V 30 A

RIEGL LMSQ120i RIEGL laser mea-
surement systems

30 kHz 80◦ H Up to 150 m 10,000 24 V 2 A

RIEGL VQ-250 RIEGL laser mea-
surement systems

300 kHz 360◦ H Up to 500 m 100 18 - 32 V 180 W
(max)

RIEGL VQ-450 RIEGL laser mea-
surement systems

550 kHz 360◦ H Up to 800 m 200 18 - 32 V 180 W
(max)

SICK LMS-291 SICK Sensor Intelli-
gence

75 Hz 180◦ H 80 m 361 (infer) 24 V 30 W

SICK LMS-511 SICK Sensor Intelli-
gence

100 Hz 190◦ H 80 m 361 (infer) 24 V 22 W

Teledyne Optech
Maverick

Teledyne Optech n/s 360◦ H ±10◦

−30◦ V
Up to 100 m Up to 700,000 12 V - 36 V

Velodyne HDL-
64E

Velodyne LiDAR 5 to 20 Hz 360◦ × 26.9◦ Up to 120 m Up to 2,200,000 12 - 32 V 60 W

Velodyne HDL-
32E

Velodyne LiDAR 5 to 20 Hz 360◦ × 41.33◦ Up to 100 m Up to 695,000 9 - 18 V 12 W

Velodyne VLP-16 Velodyne LiDAR 5 to 20 Hz 360◦ × 30◦ 100 m 300,000 9 - 18 V 8 W
n/s no specified

The third system is the experimental platform (XP-1) a MMS designed and implemented by [24] at
Maynooth University. The innovative 5-CCD multispectral camera in XP-1 is capable of sensing across visible
and infrared bandwidths. Kumar et al [25]. implemented binary morphological processes and road marking
generic dimension data, and eliminated extra road elements by thresholding.

The East China Normal University developed a SICK-vehicle-borne laser scanning (VBLS) [26], the
fourth platform reviewed. The goal of the system was to extract street lamp distance data, and it demonstrated to
be valid in terms of the accuracy of positioning and modeling ground targets. The method in the SICK/VBLS
system first finds the nearest shooting position of each image record. Then, the system calculates distances
between each laser point and each imaging position to discard laser points that lie beyond a distance threshold
from the shooting position.

Next, Chen et al. [27] and Babahajiani et al [28] implemented the NAVTEQ True MMS for urban
applications, as fifth platform reviewed. On the one hand, Chen et al. [27] relied on the system to focus on
facade-aligned and viewpoint- aligned street-level image data to improve city scales in reconstruction. The au-
thors employed panoramic cameras to construct a visual database of omnidirectional images and query images
captured using traditional perspective cameras. On the other hand, Babahajiani et al [28] used NAVTEQ True
technology to develop a street scene semantic recognition framework by labeling datasets. The system makes
a correspondence between 3D points and combinations of 2D imagery pixels.

The sixth platform is from the National Polytechnic Institute of Mexico (IPN, by its Spanish acronym).
They assembled its own MLS system for 3D urban reconstruction and conducted a sensitivity analysis of the
laser sensor’s calibration and the panoramic camera [29]-[31]. The accuracy in terms of texture extraction is a
function of the distance between sensors. Each 3D point is projected onto the panoramic image and classified
according to its distance from the camera. From a similar perspective, Garcia-Moreno et al. [29] developed an
automated 3D city reconstruction platform for geo-referenced 3D reconstruction of outdoor scenes. According
to the researchers, the system can generate global textured models while preserving the geometry of the scanned
scenes by using the information of uncertainty and sensitivity evaluation, and getting a good visual appearance.

In collaboration with KTH Royal Institute of Technology, VISIMIND developed VISIMIND MMS
[32], a system using imagery and laser data to obtain a geo-referenced inertial navigation system (INS), the
seventh platform reviewed. In this approach, imagery and laser data help determine object position and attitude
to back IMU navigation. Meanwhile the eighth platform reviewed, Stereopolis II was developed by [33] and
emerged as a hybrid image/laser MMS. The system can capture a spatial data infrastructure compliant with
several applications across the web, from multimedia immersive visualization to 3D metrology. Additionally,
the street view application in Stereopolis II displays a pedestrian view of streets and map interaction to update
precise urban maps.
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As nineth and tenth platform reviewed is the IP-S2 and IP-S3 mobile survey systems from Topcon.
The IP-S2 comprises a camera, a LiDAR sensor, and a GNSS system configuration. The system was created
by [34] and allows for road element extraction and georeferencing by 3D to 2D re-projection of data and image
processing. Likewise, the system has an automatic process forobject extraction from co-registered data. The
IP-S’s counterpart, IP-S3 HD1 MMS, was developed by the same company and can acquire overlapping colored
images and dense point clouds. In their work, Hussnain et al. [35] implemented a feature detection, extraction,
and matching method using the two Topcon MMSs along with aerial orthoimages.

The eleventh platform reviewed is the Lynx MMS from Optech. The Lynx can generate LiDAR
and image data and has been implemented by [36]-[39]. Puente et al. [36] used Lynx MMS and obtained
thresholds to classify eight-bit color histograms (RGB 0,0,0 zero - 255,255,255 white), whereas Riveiro et
al. [37] managed to identify road elements by using point cloud intensity data. The method extracts road
elements by thresholding intensity images. Another work, Soilan et al. [38] used Lynx MMS to re-project 3D
synchronized road elements point cloud positions onto 2D pixels. Then, they used machine learning to identify
the road elements. More recently, Safaie et al. [40], they developed an automated tree inventory based on
Hough transform and active contours. Even though they assemble their own binary images, google images are
used to compare the results. Arcos-Garcia et al. [39], their MMS gets traffic signs using the retro-reflective
paint feature from RGB projected images. The work applies a deep artificial neural network (D-ANN) with
convolutional and spatial transformer layers to extract traffic signs.

On the other hand, Capital Normal University and the Beijing Geo-Vision Technology Limited Lia-
bility Company jointly developed the vehicle-borne scanning system SSW MMS [41], [42]. The main data
retrieved by this twelfth system are point clouds acquired by the laser scanner. Also camera images provide
texture to implement object reconstruction and detection. Yang et al. [42], color and intensity features are used
to create multi-scale super-voxels, while in the work of [41], 3D point clouds are the main data retrieved by the
system, whereas textural information from cameras complements 3D urban environment model reconstruction.

RIEGL laser measurement systems comprise 2D and 3D laser scanners suitable for mobile mapping
applications. The thirteenth and fourteenth platform reviewed are RIEGL VMX 250 and RIEGL VMX 450.
Moreover, they can register scanned data acquired from moving platforms. Landa and Prochazka [43] relied
on the RIEGL VMX 250 system for sign detection by reflexivity filtering. Namely, since road signs contain
highly reflexive paint, the information obtained from RGB images was the color of these signs. If compared
to the RIEGL VMX 250 system, RIEGL VMX 450 has been used in a larger number of applications in [42],
[44]-[48]. Yang et al. [42], the RIEGL VMX 450 system was used to generate a multi-scale super-voxel, where
point attributes such as colors, intensities, and spatial length form the super voxel. The goal is to generate a
segmentation by graphics and multiple cues as main direction and colors. Wu et al. [44], RIEGL VMX 450
was used to develop a novel method for traffic sign detection and visibility. Said method uses the high retro-
reflectivity of the traffic signs and a visibility estimation method. Yu et al. [45], the RIEGL VMX 450 system
helped retrieve a collection of usual traffic sign pictograms and stamps from the Chinese Ministry of Transport.
Then, the researchers used a Gaussian-Bernoulli deep Boltzmann machine (GDBM) to represent these signs
and reduce the size of the stamps to an 80×80-px square.

Wen et al. [46], the RIEGL VMX 450 system was used to develop a spatial-related traffic sign man-
agement procedure. The sign area is extracted from the point clouds. Then, the 2D image data is re-projected
to the point cloud data for sign recognition. From a different perspective, You et al. [47] introduced a traffic
sign identification and fast deterioration examination method for typical environments. The approach uses a
deep neural network (DNN) and Fast R-CNN.

Finally, Guan et al. [48] and Guan et al. [49] relied on RIEGL VMX 450 to propose a method for
detecting traffic signs directly from mobile LiDAR point clouds based on prior knowledge on aspects such
as road width, pole height, material reflectance , geometrical structure, and traffic sign size. Additionally,
the system uses traffic sign image segmentation by projecting the detected traffic sign points onto the digital
images. And more recently employed a convolutional capsule network model for classification.

Guan et al. [50] tested the performance of Trimble MX-8, a commercial MLS system that generates
rich survey-grade laser and image data for urban surveying. This fifteenth system reviewed was tested at two
test sites in urban areas for road network update and management tasks. As its main capabilities, Trimble MX-8
proved to be efficient in terms of extracting digital ground models, measuring tunnel height and road width,
identifying traffic signs, reconstructing 3D building models, monitoring land-side, and configuring utility.

Next are the sixteenth and seventeenth platform checked, in [51] and [52], the Velodyne-HDL32E

Using mobile laser scanner and imagery for urban management applications (José-Joel González-Barbosa)
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system was used to improve the accuracy of point clouds and imagery recordings. The eighteenth platform is
in [54]. The work discussed a mobile-based data collection approach developed by the Utah Department of
Transportation (UDOT). The systems developed comprise a laser scanner, an imaging sensor, a distance and
crack measurement module, and other methods. The goal of the UDOT approach is to get high-resolution
road sign images. First, daytime digital photos of road signs were captured. Then, trained operators examined
such photos to rate the visual condition of the signs as good, fair, or low (GFP). From a different perspective,
in collaboration with Wuhan LEADOR Spatial Information Technology Co., Wuhan University developed its
own MMS. Cui et al. [55], this nineteenth system is used to propose a line-based registration approach for
panoramic images and LiDAR point clouds. The researchers established the transformation model between the
primitives from the two datasets in the camera-centered coordinate system. Also, using extracted features, they
resolved the relative orientations and translations between the camera and the LiDAR.

The twentieth platform is the StreetMapper 360 MMS and is mainly used for road mapping and urban
environment reconstruction. Yadav and Chousalkar [56], this MMS is a part of a power line extraction method.
The acquired point cloud is first organized as 2D gridded data, which take the shape of connecting pillars in
3D. The 2D Hough transform was used on the image data to detect power lines as linear features. On the
other hand, Yadav et al. [57], StreetMapper 360 MMS is used within a method for calculating road geometry
parameters (i.e. width, centerline, longitudinal, and cross slope). Onsite manual measurement reference data
were used to verify the correct functionality of the method. The data included road slopes diagrams using MLS
data (XYZRGB format) of road surface points.

The twenty-first platform is in [59], researchers from Tsinghua University handled a Velodyne HDL-
64E system with a Basler digital camera (1292×964 resolution) to acquire both color and geometrical data.
Planar objects are directly detected in 3D space from colorized laser scans containing both color and geomet-
rical data. The authors applied a driving cuboid aligned along roadway boundaries, and the laser scans falling
into the camera FOV can collect color data.

The Fraunhofer Institute of Optronics developed the sensor vehicle MODISSA. The twenty-second
platform reviewed allowed the development and testing of real time methods or high level driver assistance
functions. The functionalities were applied in LiDAR-camera pedestrian detection methods [60]. Zhu et al.
[65] used MODISSA to generate a unified thermal point cloud without the need for RGB images. The fusion
helps to describes the radiance of building facade and to analyze thermal properties.

The Karlsruhe Institute of Technology and the Toyota Technological Institute at Chicago (TTIC) de-
veloped the AnnieWAY MLS system and used this twenty-third platform reviewed to develop a novel set of
computer vision benchmarks, known as the KITTI vision benchmark. The task to accomplish and improve with
the KITTI suite include stereo, optical flow, visual odometry, 3D object detection, and 3D tracking. Bruno et
al. [61] applied the KITTI benchmark suite to their 3D traffic sign detection method to track traffic sign objects
and their images. The method can identify traffic signs by integrating 2D and 3D data and building a semantic
object interpretation.

Velodyne’s VLP-16 sensor is the smallest advanced sensor in Velodyne’s 3D LiDAR product range.
Buyval et al. [62] proposed a method on board an autonomous vehicle for road sign detection and localiza-
tion using the VLP-16 sensor. The researchers used this twenty-fourth platform reviewed to implement their
algorithm for road sign s classification and localization in a 3D space. The algorithm uses neural networks
and points clouds obtained from a laser range finder. From a different perspective, Korea Advanced Institute
of Science and Technology (KAIST) developed its own MMS. Jeong et al. [63] incorporate stereo camera
data into KAIST MMS, the twenty-fifth platform reviewed to support vision based robotics research. As its
main contribution, this approach provides data for a variety of environments, from downtown area to apartment
complexes to underground parking lots. Also, the approach provides a baseline via a SLAM algorithm using
highly accurate navigational sensors and a semi-automatic loop closure process.

The Toronto-3D data set was acquired through the Teledyne Optech Maverick Weikai [64], the twenty-
sixth platform reviewed. The dataset covers approximately 1 km of point clouds and consists of about 78.3
million points. The inspiration for the data set was semantic segmentation to train deep learning models effec-
tively. The data set is about 8 urban object categories as road, road marking, natural, building, utility line, pole,
car, and fence.

According to this review, RIEGL VMX-450, Optech Lynx Mobile Mapper, and Velodyne HDL-64
are the most popular MLS tools applied in urban tasks. RIEGL VMX-450 is a robust integrated system with
its own sensors; Optech Lynx Mobile Mapper, however, is less robust than RIEGL but includes both digital
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cameras and GPS receivers. In turn, the Velodyne HDL-64 laser scanner sensor is robust but only comprises
a laser scanner sensor. In conclusion, the choice of a given MLS system over others may largely depend on
multiple factors (e.g. costs), yet integrated MLS systems are more appropriate. Also, MLS systems integrate
GPS receivers and cameras, which grant simultaneous registration of visual and spatial data. Nevertheless, it
is essential to maintain a cost-balance benefit. It is well known that one of the most common problems in the
use of MLS systems concerns the existence of large occluded regions and segmentation. A not so expensive
solution to this problem is to retrieve multiple scanned images of the same area; however, developments of
segmentation methods are by themselves case studies.

4. URBAN MANAGEMENT APPLICATIONS
This section discusses the evolution of MLS technology combined with imagery for urban applica-

tions. We list those systems using data processing, segmentation, detection, and classification methods. We
also discuss the accuracy of the results provided by these systems and the evaluation methods used to assess
their performance. Objects in urban environments include buildings, pedestrians, vehicles, road signs, trees,
and animals, among others. Dynamic objects (e.g. vehicles, pedestrians, animals) are studied mainly for ob-
stacle avoidance by autonomous vehicles or to analyze the flow of objects in physical space. On the other
hand, static objects (e.g. trees, road signs, traffic lights, lamps, buildings, streets, and services) are studied to
ensure their good condition and location and trace their change over time due to weather conditions or vandal-
ism. Also, static object features serve multiple different purposes (e.g. safe transit, environment preservation,
historic preservation, public space study, archaeological or architectural analyses).

The initiatives reviewed in this section are systematically organized in four tables. Each table includes
the following information: i) author names, ii) acquisition system, refer to the section 3, iii) urban object classes
detected, iv) data processing methods, 3D point clouds, and imagery enhancing or reduction, v) detection and
segmentation, methods implemented, vi) classification methods used, and vii) accuracy, performance, and
results obtained. Table 3 summarizes our review of works dealing with mixed (i.e. dynamic and static) object
detection. Then, Table 4 lists the reviewed developments on static objects (i.e. trees, road signs, traffic lights,
lamps, buildings, streets, and services). Notice that studies on road signs are listed in a separate Table 5, due
to the large number of scientific developments revolving around road sign detection and visualization. Finally,
developments dealing with road elements (e.g. road markings, crosswalks, lanes, arrow signs, sidewalks) are
summarized in Table 6. The following sections provide a thorough discussion of each Table.

4.1. Urban management applications from mixed dynamic and static urban objects
Table 3 introduces a compilation of works on static and dynamic urban object detection and classifi-

cation. Detection of mixed urban objects is applied in scene analysis, roadside assistance, or obstacle avoid-
ance, being vehicles, people, and urban elements such as trees the most commonly detected. Urban objects
detection efficiently supports urban surveying, geospatial data acquisition by GPS, and safety assessment in
pedestrian crossing environments. There is a scientific proof that mobile mapping is a reasonable means for
analyzing specific safety parameters in urban environments. The first step in data processing is plane ex-
traction. Segmentation of ground and facade points reduces the amount of information to be analyzed and
facilitates problem-solving. As researchers [66]-[69] pointed out, methods such as the random sample consen-
sus (RANSAC) and the M-estimator sample consensus (MSAC) are popular because their implementation is
more accessible than other methods, such as gridding and voxelization. These two last techniques group 3D
points into perceptually meaningful clusters with high efficiency. Also, supervoxelization allows for clustering
spatially connective points within similar features [66], [42], [67], [68]. Supervoxelization is often preferred
over other segmentation methods because of its basic processing units instead of original points in point cloud
applications. Object detection and segmentation depend on the classes to be identified. If the goal is building
and road reconstruction, data processing achieves object segmentation. For other objects, such as dynamic
and static urban objects, vectors are usually favored. Feature vectors include geometry features (dimensions,
color, and intensity), [28], [70], [66], [71]-[73], [69]. The connected component algorithm is usually used for
segmentation, since it operates on organized point cloud data, [71], [74], [75], [69]. Also, the algorithm is
based on the costly neighborhood and uses normal surface points in Euclidean space, commonly used in point
clouds. Points are compared using a comparison function to determine the neighborhood of the point cloud.
Since most works using urban objects are to discern among classifications, the classification process only needs
to find general classes. In this sense, the main classifier methods include super vector machine (SVM), [74],
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[71], [70], fuzzy logic [66], boosted decision trees [28], [67], [68], and convolutional neural networks (CNN),
[75], [73], and [69]. All these methods consider machine learning techniques, whose objective is to learn by
acquiring knowledge by training a given data set. Accuracy validation methods include the confusion matrix
and the F-score [66], [75], [72]. The F1-score is the harmonic mean of the precision and recall, where an F1-
score reaches its best value at 1 (perfect precision and recall) and its worst value at 0. Results have shown that
accuracy decreases as more object details are to be detected. Serna and Marcotegui [74] studied eight object
classes: cars, pedestrians, noisy structures, dogs, house facades, chimneys, trees, and lampposts. The detection
method segmented 78% of the objects accurately, and 82% of such well-segmented objects were correctly clas-
sified using SVM and connected components. Babahajiani et al. [68] proposed a method that can classify eight
different classes of urban objects – buildings, trees, cars, traffic signs, pedestrians, roads, water, and sky using
a boosted decision tree detector. The method had a classification accuracy ranging from 83% to 67%. Also,
Luo et al. [73] used three data sets with nine, six, and 14 classes, respectively. They implemented a CNN with
feature vectors of the objects. The lowest accuracy result (74.9%) was obtained in the 14 object data set.

Table 3. Urban management applications from mixed dynamic and static urban objects
Reference Acquisition System Classes Data Processing Detection and Segmentation Classification Accuracy

[28] NAVTEQ True Sky, Building, Road, Tree, Car,
Sidewalk, Sign-S, Fence, Pedes-
trian and Water

3D-2D projection between
patches and super pixels SPs

3D features: height above
camera, surface planarity
and reflectance strength

Boosted decision trees, each 3D
feature vector with a semantic label

88%

[70] Stereopolis II 3D buildings, 3D roads and a set of
3D visual landmarks

not specified Bottom-up algorithm given
the objects geometric speci-
fications

Rigid stereo pairs are used for 3D
recognition and modeling

qualitative

[66] Velodyne HDL-64E, a
monocular camera and
other sensors

Ground (road), building, water,
tree, grass, bush, pavement, sky and
obstacles (vehicles, pedestrian)

Separate the ground points
using a RANSAC plane fit-
ting algorithm and candidate
obstacles are localized into
3D cubic voxel grid

Bottom-up classification of
local image patches and top-
down contextual analysis to
further resolve uncertainties

Fusing result of Velodyne data and
image using the fuzzy logic infer-
ence framework, and smooth result
by the Markov random field based
temporal fusion method

F-measure
MRF: 0.25-
0.59, MFV
0.24-0.53

[74] Stereopolis II Car, pedestrian, noisy structure,
dog, house facade, chimney, trees,
and lampposts

3D point cloud projected to
elevation images, segmented
facades as the highest verti-
cal structures and eliminated
small and isolated regions

Connected objects are seg-
mented using a watershed
approach

SVM with geometrical and contex-
tual features

det. = 98% seg.
= 78% class. =
82%

[42] RIEGL VMX-450 and
SSW

Buildings, streetlamps, trees, tele-
graph poles, traffic signs, cars

Hough transform to filter the
facade and Top-Hat for hole
filling on the ground

Multi-scale supervoxels us-
ing the point attributes (col-
ors, intensities)

Semantic knowledge 91%

[71] FGI Sensei Trees, lamp posts, traffic signs,
cars, pedestrians, and hoardings

PCA and connect compo-
nents to remove ground and
buildings

Local descriptor images
(LDH), spin images, and
general features

SVM and its C-SVM version with
the radial basis function (RBF) ker-
nel

87.9%

[67] NAVTEQ True and Stere-
opolis II

Tree, car, sign, person, fence,
ground and building

Ground and building seg-
mentation by RANSAC,
maximal height filter and
morphological operations

Voxel based segmentation
and 3D feature extraction
(intesity, areas and normal
angle)

Boosted decision tree 91%

[68] NAVTEQ True, and Velo-
dyne HDL32

Building, tree, car, traffic sign,
pedestrian, road, water, and sky

rule-based detectors for road
surfaces and building fa-
cades, RANSAC

Super-voxel features, sur-
face orientation by PCA,
and 2D semantic segmenta-
tion

Boosted decision tree detector 83% and 67%

[75] Velodyne HDL-64 Vehicles, pedestrians, short facades
and street clutter

2D grid based approach
via point height informa-
tion: ground, low fore-
ground, high foreground,
and sparse areas

Fast connected component
analysis for object sepa-
ration, maximal elevation
value and point cloud den-
sity

Theano: CNN-based feature learn-
ing framework

89% overall F-
rate

[72] Optech Lynx Traffic light (Type 1), traffic light
(Type 2), street lamp, tree, and
other pole-like objects

Pedestrian crossings extrac-
tion by intensity data, verti-
cal mean and variance com-
putation and a region grow-
ing algorithm for ground and
non-ground elements

Pole-like object segmenta-
tion by euclidean clustering
and a geometric supervised
classification

PCA to projected points into a
2D raster grid binary image, type
1: classification by a Cubic SVM,
Type 2: a two layer feed forward
neural network with sigmoid hid-
den and softmax output neurons

F-score 95%

[73] RIEGL VMX-450 HDRObject9, SMDObject6,
SUObject14 including bus station,
light-pole, road sign, station sign,
traffic light, traffic sign, trashcan,
trees, vehicles, pedestrian, etc.

not specified Three discriminative low-
level 3D shape descriptors
for obtaining multi-view 2D
representation of 3D point
clouds

JointNet, by jointing low-level fea-
tures and CNNs for 3D object
recognition

recognition:
94.6%, 93.1%
and 74.9%

[69] Optech Lynx Bench, car, lamppost, motorbike,
pedestrian, traffic light, traffic sign,
tree, waste-container, wastebasket

Planes elimination, MSAC Connect component Shape and colour to CNN object
classification

99.5%

4.2. Urban management applications from mixed static urban objects
Table 4 introduces a compilation of works dealing with static urban object detection and classification.

Static urban object detection supports multiple purposes, such as hazard management, city planning, travel
guidance, 3D reconstruction for exploration systems, and geographical information system (GIS) development.
In turn, GISs allows for spatial data analysis, automatic change detection registration, geo-database updating
in urban environments, and smart city management.
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Table 4. Urban management applications from mixed static urban objects
Reference Acquisition System Classes Data Processing Detection and Segmentation Classification Accuracy

[23] VIAMETRIS MMS Road boundaries, road markings
and traffic signs

RANSAC to extract road
boarders and centers

3D NURBS for road curva-
ture, road signs extraction
by threshold on reflectivity
value

qualitative qualitative

[84] LiDAR system and
ground mobile truck data
(no specified)

Tree Point cloud filtered by the
second order derivatives

Watershed transformation Point-features-based matching al-
gorithm in stereo vision, Föstner
operator

comparison
80%-90%
integrated
75%-95%

[21] FGI Sensei Pole-like object and trees No specified Clustering the extracted ver-
tical line segments and anal-
ysis of the spatial distribu-
tion

Cluster distribution inspection ver-
tically splited of a tree

comp. 90%
correc. 86%

[26] SICK-VBLS Lamps Density of Projected Points
(DoPP)

Maximum height of each
grid cell

Height threshold qualitative

[22] FGI Sensei Tree No specified Hyperspectral imagery and
laser overlapping informa-
tion, height distributions

SVM two species
95.8% three
species 83.5%

[27] Velodyne HDL-64E and
Ladybug

Buildings Visibility mask for spher-
ical projection, panorama
overlapping perspective cen-
tral images PCIs, perspec-
tive frontal image PFI, and
histogram equalization

Upright feature keypoints Query image vocabulary tree
trained on SIFT descriptors, and
geometric verification for PCIs
(RANSAC with a 2D affine model)
and PFI (3 degree-of-freedom
(DOF) scale and offset check)

recall=95%

[32] VISIMIND MMS Buildings facades GPS and IMU data is in-
tegrated in post processing
module (PPM) within the
Kalman filter

Feature extraction based on
Harris operator, and use
of Lucas Kanade Feature
Tracker

28 control points measured total
station with accuracy of 5 mm

RMS value
0.011 m

[78] Optech Lynx Mobile
Mapper

Trees and buildings Divides the mobile lidar
points into grids on the
XOY

Weights of points, geo-
referenced feature image
and feature extraction image
segmentation

Shape constraint and Z-direction
profile analysis

Trees pro-
file 97.9%
Building shape
100%

[41] SSW Trees Sloping adaptive neigh-
borhood to removing the
ground

Binary connected compo-
nent labeling density based
and crown segmentation of
overlapping objects

Entity hierarchical extraction by
height of the target

qualitative (10
cm error)

[36] Optech Lynx Mobile
Mapper

Luminaries Point cloud pre-
segmentation based on
height values

Colored point cloud filtered
by geometric and radiomet-
ric features

Thresholds are extracted from the
color histogram analysis RGB

100% in 95s

[76] RIEGL VMX 250 Parking railing, boards, light pole,
house segment, hedge, fence, fire
hydrant, warning tape, crane, chair,
and bucket

Point cloud images co-
registration, terrestrial
images free-network bundle
adjustment, control points
manually collected from
feature points and block
window patches as a basic
z-buffer unit to filter

2D Delaunay triangulation
performed on the discrete
points, multi-stereo image
inter-correlation, and graph
cut area based on the super-
pixel optimization

Evaluation of detection detec. 64%,
76.4%, 80%

[43] RIEGL VMX 250 Traffic signs, road markings and
general pole-shaped objects (e.g.
city lights or trees)

Reflexivity filtering Euclidian cluster extraction Segments processing by rules, point
number, centroid and height

93%

[83] RIEGL VMX-450 Tree Voxel-based upward-
growing filtering

Euclidean distance cluster-
ing and voxel-based normal-
ized cut segmentation

Waveform representation, two
layers deep Boltzmann machines
DBMs and SVM

86.1%

[56] StreetMapper 360 Power lines 2D gridding and horizontal
segmentation based filtering
of horizontal segment

2D point density based re-
finement to remove trees and
building, Hough transform
detection

Quantitative accuracy assessment correctness
98.84% com-
plet. 90.84%

[77] Velodyne HDL-32E Building and road marking Elimination of reflected
parts of sidewalks or nearby
vehicles through binariza-
tion

2D probabilistic occupancy
grid map for vertical struc-
tures, line extraction using
Hough transform and the
IEPF algorithm

qualitative, RMS position errors for
the lateral and longitudinal direc-
tions

RMS: 0.136
m lateral and
0.223 m longi-
tudinal

[79] LiDAR sensor no speci-
fied and 360◦ camera

Doors and windows Cube mapping of spherical
panorama images

Pixel-wise mask and seman-
tic segmentation on point
clouds through DBSCAN
and connect components

No classification Visual evalua-
tion 1 to 2 cm

[100] Optech Lynx Mobile
Mapper

Road vegetation Limit the edge of the road,
increased point density

Polygonal region segmenta-
tion within 10 m threshold

MSAC Mean geomet-
ric error 0.25 m
2.82%

[80] TOPCON MLS and a
Ladybug-5 camera

Building facades Ground filtering, edge cen-
ter and window detection

Geometric Filtering Kalman filtering RMS X 0.131
RMS Y 0.135

[81] road-borne MLS system
n/s and a Ladybug 5 cam-
era

Fences Images cropped FCN predictions, image to
point cloud transfer using
perspective projection, and
polygonal segmentation us-
ing Hough transform

PointNet Precision 95%
Recall 87% K
0.89

[82] RIEGL VMX-450 Building patches Constraining the area of
keypoint throughthe loca-
tion within a 50 m radius
from the image GPS posi-
tion

Siam2D3D-Net: STN mod-
ule and modified VGG net-
work, to learn the image fea-
ture, point cloud branch with
PointNet

No classification Qualitative

[40] Optech Lynx Trees Left-side and a right-side
point cloud division, low-
height points filtered

Foliage extraction by
Voronoi tessellation and
active contour

Characteristics measurements trunk
and foliage height and diameter

Average error
in height ex-
traction: less
than 15 cm,
TDBH average
error: less than
10 cm

[65] MODISSA Buildings Intrinsic calibration of TIR
images. Take of horizontal
lowest plane and CC for the
point clouds

Harris corner detector and
the line segment detector
(LSD), Harris 3D

Find correspondences and 2D/3D
registration by an automatic method
based on restricted RANSAC

false alarm rate
= miss detected
lines over de-
tected lines less
than 30% after
5 pixels

*n/s no specified
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Developments extracting static urban objects process the data depending on the classes to be detected.
For other urban object detection procedures, first, it is necessary to identify the ground and building points. Qin
and Gruen [76], relied on a Z-buffer unit to filter points to segment three classes of static urban objects: parking
railing, boards, and light poles. The authors used 2D Delaunay triangulation and supervoxelization for object
detection. From a similar perspective, the works of [23], [77] used reflectivity values of road markings and
traffic signs to segment and filter buildings. Both building extraction and monument extraction are highly useful
in cultural heritage documentation, reverse engineering, and 3D objects reconstruction. Also, they help generate
digital elevation models (DEM). Prior to object detection and segmentation, Chen et al. [27] and Gajdamowicz
et al. [32] performed a data integration process to allow for more detail in point clouds. Integrating point
clouds with imagery allows using 2D methods such as SIFT descriptors and the Harris Corners Detector. Yang
et al. [78] focused on the task of building reconstruction by relying on tree detection and extraction to solve
the occlusion problem. In this sense, MLS systems are possibly the best systems for detecting changes in
objects eluding contact. Building detection can also deploy urban flood disaster and risk management plans
[79]. Also, Ergun et al. [80] developed a building facade survey through a 2D Kalman filtering algorithm
and a related laser data segmentation method. The method allows the acquisition of rectified images from the
facade to CAD. Another work related is the work of [81]. It presents an image-based point cloud segmentation
(IBPCS) method for filter the point clouds after semantic segmentation of images. They use the method in
low dense point clouds as fence recognition. The detection and classification process was made using a fully
convolutional network (FCN) and PointNet. Termal infrared (TI) images are used in [65] to evaluate the energy
consumption and leakage of building. They fusion thermal infrared image sequences and the point clouds.
The fusion describes the radiance of the facade in the building and helps to analyze thermal properties. For
augmented reality, Liu et al. [82] used 2D image patches and 3D LiDAR point cloud from the urban scene. They
proposed Siam2D3D-Net to achieve virtual-real registration high-quality using 2D-3D patch-volume dataset
and retrieving the Euclidean space.

According the researchers [21], [41], [83], classification of tree species is mainly performed for safety
studies, noise modeling, and environmental and ecological analyses. Trees play a critical role in urban ecosys-
tems since they help maintain the environmental quality and aesthetic beauty of urban landscapes. Moreover,
trees are of social service for communities. Tree classification relies on tree height characteristics and demon-
strates that biomass changes can be mapped with relative facility using laser collections of the same tree. Gong
et al. [84] collected tree data such as counting and dimensions for effective tree management and quantita-
tive tree analysis in urban areas. Likewise, Zhong et al. [22] introduced hyperspectral sensors to classify tree
species, mainly coniferous and deciduous trees. The first step in tree detection using MLS systems and imagery
data is ground point filtering, followed by shape detection considering pole-like object, height, and crown den-
sity. Safaie et al. [40] they created a tree inventory from an MMS point cloud. They start extracting the trunk
by the Hough transform (HT) followed by the tree foliage via Voronoi tessellation (VT). Then, a density image
is created using the number of points as the gray value of each pixel.

Detecting urban objects such as street lamps, traffic signs, street light poles, and power lines starts by
detecting pole-like objects, as in tree detection. The researchers [26], [36], [43], [56], the authors based their
urban object detection approaches on point cloud density, height filter, and geometric and radiometric features.
An RGB spectrum is a helpful tool for object differentiation using a color filter and threshold color histograms.

4.3. Road sign detection and classification
Table 5 lists relevant works that deal with or propose methods for traffic sign detection and classifica-

tion. Traffic signs worldwide share standard features but also respond to local classifications. All strictly static
urban objects have particular physical characteristics for safety and do not obstruct other activities. Namely,
traffic signs have specific standards to be easily and quickly identified by drivers and pedestrians. Their spatial
characteristics allow us to differentiate elevated traffic signs from lower traffic signs; geometric shapes make it
easy to know whether a given sign is informative, restrictive, or preventive. Also, visual features, such as color
and texture allow us to know the message being transmitted. Moreover, road signs are coated with reflective
paint; hence, they reflect back the light from car headlights in order to improve readability. This feature is
advantageous when using laser sensors for road sign detection and classification, since sensor-based systems
can retrieve color intensity data.
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Table 5. Road sign detection and classification
Reference Acquisition System Data Processing Detection and Segmentation Classification Accuracy

[101] Velodyne LiDAR sensor
system and associated pho-
tolog

Many sign attributes, such as loca-
tion, size (length and width), mount
height, collection date, and facing
direction were measured

color, sheeting type, age, and geographic
conditions, in order to predict their retro-
reflective degradation over time

Visual nighttime inspection, and Retro re-
flectivity measurement

conditional proba-
bility, qualitative

[44] RIEGL VMX-450 Surface extraction from point
clouds by reflectance and geomet-
ric characteristic

Geo-referenced relations according to the
normal of ground and four image features:
intensity, color histogram, edge contrast,
and proportion of traffic sign

Evaluation of the visibility level based on
a combination of visual appearance and
spatial-related features

Average deviation
under 5%

[37] Optech Lynx Mobile Map-
per

Horizontal intensity images, thresh-
olding and evaluation of histograms
with GMM

DBSCAN and subsequent curvature analy-
sis with PCA

Shape descriptors, 3-D points intensity im-
age

completeness
92.11% correctness
93.96%

[38] Optech Lynx Mobile Map-
per

GMM with two components non-
reflective and reflective points

DBSCAN PCA Geometric parameters: centroid, height,
etc; and color: (HLS) bitmap using HOG
and SVM

98%

[46] RIEGL VMX-450 Highly retro-reflective vertical
plane

Centroid coordinates of the bottom ring, a
horizontal profile with a thickness size

SVM classifier trained by a mix feature of
HOG and color descriptor

detection MLS
91.63% images
92.61% precis.
96.32%

[45] RIEGL VMX-450 Voxel cloud connectivity segmenta-
tion (VCCS)

Bag-of-visual-phrases representations Gaussian-Bernoulli deep Boltzmann
machine-based hierarchical classifier

97.54%

[39] Optech Lynx Mobile Map-
per

K- Nearest-Neighbor algorithm is
used to obtain the closest voxel

Geometric and radiometric features, 3D
data projected on 2D RGB images

D-ANN, convolutional and spatial trans-
former layers

99.71%

[47] RIEGL VMX-450 No specified Fast R-CNN training for detection and
coarse corresponding relationship between
the image and the point clouds

Traffic sign damage inspection: tilted pole,
deformed board, fallen board or pole and
disappeared

detec. = 92.42%

[59] Velodyne HDL-64E S2 and
Basler digital camera

Driving cuboid aligned along road-
way boundaries and colorized laser
scans

Laser reflectivity and RGB, HSV, and CIE
L × a × b color spaces, SVM

3D geometric characteristics of planar ob-
jects HOG

detection 95.87%
recognition 95.07%

[61] AnnieWay (KITTI database) K-means and background subtrac-
tion

Neural Network with binary output board
detection, “object signature”, the 3D-CSD
(3D-Contour Sample Distances) descriptor

Deep Learning CNN to classify type: max-
imum speed, stop, preferential, pedestrian
or other

classi. = 97.64%
detec.= 76%

[48] RIEGL VMX-450, four
CCD cameras, a set of
Applanix POS LV 520

knowledge of pole height and road
width to remove points

detect traffic sign interest regions based
on intensity information and geometrical
structures

on digital images, supervised GB-DBM detection 86.8%
classification
93.3%

[54] Velodyne LiDAR sensor
system and associated pho-
tolog

No specified Sign location, size, color, condition Random Forests model and Odds ratio qualitative sign in-
spection by contin-
gency tables

[62] Velodyne VLP-16 Depth filtration Bounding box and sign location on an im-
age to find a corresponding to the sign
point cloud

Faster-RCNN architecture from 30% to 96%

[86] RIEGL VMX-450 Objects on both sides of the lane
based on the trajectory data and in
a distance d are retained

Semantic and spatial properties (location,
position and geometric features)

Deep neural network: YOLOv3 and FCN
model

mx-pres. 95.8%
mx-recll 99.25%
mx-f1-m 95.77%
mx-qual 91.89%

[102] RIEGL VMX-450 Quantitative representation of the
visibility and recognizability of
traffic signs within Sight Distance
(SD)

Visual recognizability field and Traffic
Sign Visual Recognizability Evaluation
Model (TSVREM)

Parameter Sensitivity Analysis occlusion rate: 95%
verification 94.89%

[87] RIEGL VMX-450 No specified Pole height, road width, intensity, geomet-
rical structure, and plate size from LiDAR
data

Points are projected onto the images to ap-
ply a Convolutional Capsule Network

recognition rate
0.957, detec.
86.8%

[88] RIEGL VMX-450 A curb-based filtering method to
divide mobile LiDAR data into
ground and off-ground points

Euclidean clustering algorithm to ex-
tract pole-like objects and retro-reflectance
properties

Convolutional Capsule Network recognition rate
0.965, detec.
86.8%

[85] AnnieWay (KITTI database) Ground and building filtering re-
garding the driver trajectory

Object segmentation through 3D point
cloud density and retro-reflective material
feature. Color segmentation using HSV
model

Classification through geometric shape as-
sociation, local features description for se-
mantic data

precision 0.88,

[49] RIEGL VMX-450 Curb-based filtering method, Euclidean clustering algorithm to ex-
tract pole-like object, next retro-reflectance
properties to extract traffic signs, and Im-
age re-projection

Deep Learning: convolutional capsule net-
work

Recognition: 0.965

For traffic sign detection, developments take advantage of the highly retro-reflective property of the
vertical plane. After ground point segmentation, laser points intensity values help segment traffic signs from
other objects. Researchers [37], [38] used a Gaussian mixture model (GMM) and a density-based-approach
(DBSCAN) to filter traffic signs. The GMM is a probabilistic model that can be thought of as generalizing
k-means clustering to incorporate information on the covariance structure of the data and the centers of the
Gaussian distributions. Traffic sign classification depends on the number of details or characteristics to be
identified in the signs. Works such as those proposed by researchers [38], [46], [59] relied on the histogram
of oriented gradients (HOG) to classify road signs. HOG is a feature descriptor using the gradient distribu-
tion directions. Gradients of an image are useful because the gradient magnitude is large around edges and
corners. Researchers [38], [46], [59], used SVM to classify the HOG. Machine learning simplifies the traffic
sign classification task by using ground truth. Tan et al. [45] and Yang et al. [48] used a GDBM-based hierar-
chical classifier. The GDBM uses Gaussian units in the visible layer of the deep Boltzmann machine (DBM);
however, DBM is an ANN model where each neuron in the intermediate layers receives both top-down and
bottom-up signals, thus facilitating uncertainty propagation during the inference procedure. Yang et al. [85]
used the KITTI database to road signs segmentation. The object segmentation is divided in 3D point cloud
and image segmentation. The first is by 3D point cloud density and retro-reflective material feature. The color
segmentation is using HSV model. The preliminary classification is through geometric shape association, local
features extraction and description for semantic data as numbers, characters, and drawings.
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In this sense, semantic detection has simplified the traffic sign detection task. 3D information is re-
projected onto 2D images, and D-ANNs are used for sign classification, as discussed in [47], [39], [61], [62],
[86]-[88]. These systems use CNNs hierarchically organized based on supervised learning and contain several
specialized hidden layers. This organization allows the first layers to detect lines and curves and specialize
until they reach deeper layers that recognize complex shapes, such as faces or an animal silhouettes. Guan et
al. [49] developed an automatic traffic sign detection and recognition method. They employed an euclidean
clustering to extract pole-like objects and the retro-reflectance properties for traffic signs. Classification was
made using a convolutional capsule network.

Table 6. Road element detection and classification
Reference Acquisition Sys-

tem
Classes Data Processing Detection and Segmentation Classification Accuracy

[34] IP-S2 HD Lanes, arrows sign and
crosswalks

Point cloud geographical re-
projection, geometric filtering,
interpolation on a regular grid
(raster 2D image)

Labeling object isolation and mor-
phological indicator, peak detector
for lane detection, and attributes
generation

Template matching for arrow
marks, and crosswalks detection by
morphological indicators

qualitative

[92] RIEGL VMX-
450

Longitudinal markings,
transverse markings, object
markings, and special mark-
ings

Vehicle trajectory raw data parti-
tioned, and small height pseudo
scan-lines for jumps detection in
road curbs

Geo-referenced intensity image
via an extended inverse-distance-
weighted, and local and global
intensity data

Image segmentation by a point-
density-dependent multi threshold
method to recognize road markings

complet. 0.96,
correct. 0.83, F-
measure 0.89

[96] RIEGL VMX-
450

Road manhole and sewer
well covers

Rasterization of road surface points
into a 2-D georeferenced intensity
image improving the inverse dis-
tance weighted

Marked point of disks and rectan-
gles to model the locations of man-
hole and sewer well covers and their
geometric dimensions

Reversible jump Markov chain
Monte Carlo algorithm, simulation
of the posterior distribution using a
Bayesian paradigm

complet.
(95.16%),cor-
rect. (97.25%),
and quality
(92.67%)

[25] eXperimental
Platform (XP-1)

Continuous line, broken
line, words, zig-zag, hatch,
and arrow

Range dependent thresholding to
the intensity values, and range at-
tributes convert into 2D raster sur-
faces

Binary morphological operations
and priori knowledge of the dimen-
sions

Comparative analysis by the length
and average width of the final ex-
tracted road markings

detec. 90.91%
and 88.43%

[93] RIEGL VMX-
450

Road markings Partition the point cloud into blocks
along the trajectory, a profile is gen-
erated perpendicularly, curb points
are located within each profile

Multi-segment thresholding strat-
egy using the Otsu’s, Euclidean dis-
tance clustering, voxel-based nor-
malized cut segmentation

Large-size marks based on trajec-
tory and curb-lines; deep learning-
based small-size marks; and PCA
rectangular-shaped marking classi-
fication

complet. 0.93,
correct. 0.92, F-
measure 0.93

[97] Stereopolis II Road markings Orthophoto-like LiDAR image gen-
eration by vertically projected point
cloud onto a horizontal plane (in-
tensity and height)

Reversible-Jump Markov Chain
Monte Carlo (RJMCMC) sampler
coupled to detect occurrences of
road marking

Local bundle adjustment (LBA),
and uncertainty propagation ap-
plied to estimate pose parameters
and covariance

Maximum error
0.4m

[51] Velodyne-
HDL32E

Sidewalk, median, guard
rail, fencing, lighting, land-
scape areas, delineators,
lanes, road Markings, and
road signs/boards

Road centerline and road width are
extracted from the TIGER (Topo-
logically Integrated Geographic En-
coding and Referencing) dataset

RANSAC to ground points, poles
and lamp posts; road marking and
road signs by edges from the im-
ages, and point cloud intensity;
building by planar property

Attributes: dimensions, curbs, con-
dition, geometry, message, and type

qualitative

[35] IP-S3 HD1 Road markings Point cloud data tiles cropped, 3D
point grey values calculation of the
corresponding pixels in raster im-
age, and nadir aerial ortho image
projection

Harris corner detector, adaptive
approach for dynamic threshold
computation, and Learned Ar-
rangements of Three Patch Codes
(LATCH)

k-NN based descriptor matching
and Homography (computed with
RANSAC)

qualitative by
evaluation of the
matching result

[90] Optech Lynx
Mobile Mapper

Pedestrian crossings and ar-
rows

Curb pavement segmentation by k-
means and intensity filter within
GMM

Raster image creation and road
markings detect by Otsu binariza-
tion and CC

Set of binary image features: GBF F-scores ex-
trac.=94%
classif. 96%

[91] Optech Lynx
Mobile Mapper

Sidewalk, pavement, and
road markings

Intensity values normalization,
saliency analysis to segment z-axis
point clouds and k-means, height
filter within a 2D raster image

Ground extraction via region grow-
ing, road curb extraction by ground
limits, and fusing heuristic and su-
pervised learning methods

Reflective materials, standard devi-
ation filter on the pavement inten-
sity image in a 3-by-3 pixel neigh-
borhood

F-score detec.
95% (pave-
ment/sidewalks),
detec. 80% (road
marking)

[98] Five 3D LiDAR
sensors, and a
multi-camera
network

Curbs ERFNet semantic segmentation,
color projection of the semantic
image pixel

Semantic labels analysis Curb’s lower and upper edge points
searching, monotonically ascend-
ing region and vertical structure

precision 80%
recall 60%

[99] RIEGL VMX-
450

Dashed line, text, straight ar-
row, turn arrow, diamond,
triangle, lane line, and cross-
ing

3D point clouds are first projected
onto a horizontal plane and gridded
as a 2D image

Segmentation network U-net to
classify every pixel

A multiscale (distance-based Eu-
clidean) clustering algorithm to
large size road markings, and a
CNN classifier to small size road
markings

U-net-based Pre-
cision 95.97%
Recall 87.52%
F1-score 91.55%

[94] RIEGL VMX-
450

curb-based road surface ex-
traction and multi threshold
road marking extraction

Vehicle’s trajectory data, MLS
point clouds partition into a se-
quence of data blocks, correspond-
ing profile sectioned with a certain
width

Inverse distance weighting method,
intensity and local-global elevation
data, MLS road surface interpola-
tion and Otsu for 2D intensity im-
ages

Sparse and unorganized road mark-
ing points clustered into topological
and semantic objects using the con-
ditional Euclidean clustering

recall 90.79%,
precision
92.94%, and
F1-score 91.85%

[95] SSW Manhole covers Intensity-based images generation,
fluctuation trend in the elevation to
ground points extraction

HOG descriptor, PCA, symme-
try characteristic, and shape detec-
tion, graph-based image segmenta-
tion method, OneCut

Dimension evaluation by sector de-
composition diagram for manhole
maintenance analysis

96.18%, com-
plet. 94.27%,
F-measure
95.22%

[89] RIEGL VMX-
450 AnnieWAY

Road boundary The erroneous boundary removal
is treated as a binary classification
through a U-Net model

CNN-based method for 2D bound-
ary completion, and Euclidean dis-
tance to partition the boundary
points into separated line clusters

Matching taxi GPS trajectory points
via boundary line images with cen-
terline

91.34-92.14
complet. 89.87-
95.91 correct.
82.81-88.65
quality

[103] Five LiDAR and
four monocular
cameras

Vegetation, road, curb, lane
marking, terrain and side-
walk

Semantically labeled images and
projecting each LiDAR point onto
the images

Extraction through semantic classes
from region of consecutive points

Detection evaluation avg distance 0.2-
0.34 m prec. 63-
84.2

[104] Velodyne VLP-
16

Road markings Non road point filter based on the
height difference

Road surface extraction by a mov-
ing fitting window filter from each
pseudo-scan line

Marker edge detector with an in-
tensity gradient and statistics his-
togram

Recall 90%,
precision 95%,
MCC 92%

[105] Dataset1 Optech
SG1 and
Point Grey
Dataset2 RIEGL
VMX450

Road markings Non-ground filtering and section
alignment

A number of candidate are detected
using HT algorithm

Fuzzy inference system Avarage 88%
F1-score and
87%
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4.4. Road element detection and classification
Table 6 lists relevant works dealing with or proposing methods for road element detection and clas-

sification. Wen et al. [89] obtained critical information on urban roads ensures traffic safety. Road elements
comprise curbs, lines, and road markings, among others. Road inventory is essential for adequate transporta-
tion management, advanced driver-assistance systems (ADAS), road network maintenance, traffic analysis, and
traffic inspection. The first step in road element detection is conducting ground point filtering . Height filters
can help extract the rest of the urban objects. Works searching for curbs and sidewalks start with a vertically
2D projection of point clouds. Then, they use intensity and height data to identify the elements. On the other
hand, the task of searching for lines, arrows, pedestrian crossings, and dashed lines begins by conducting a
horizontally 2D projection of segmented ground point clouds. Intensity values also help detect these elements.
Researchers in [90], [91] use k-means and intensity filters jointly for detecting road elements. The first work
detects pedestrian crossing and arrows using geometry based feature (GBF) extraction and classification. In
the second work, sidewalk and pavement were identified by segmenting points whose normal vectors were
close to the z-axis. 2D image generation helps identify urban elements of interest by 2D image methods. 2D
image representation of road marking looks like gray or binary images. Researchers [34], [25] relied on the
morphological method to process the information and detect road markings. Similarly, in [92]-[94], researchers
applied the Otsu thresholding method to extract urban elements of interest. Other 2D image detection methods
include Harris corner detector [35], principal component analysis (PCA) [93], HOG [95], and GBF extraction
and classification [51], [90]. As reported in the literature, many methods can be used to assess detection ac-
curacy, including Markov chain Monte Carlo (MCMC) methods, the Bayesian paradigm [96], [97], and CNNs
[98], [99].

5. DISCUSSION
This review discusses the general applications of MLS systems merge with vision systems in urban

management tasks. According to the review and Figure 2, RIEGL VMX-450, Optech Lynx Mobile Mapper,
and Velodyne HDL-64 are the most popular MLS tools for managing urban tasks. RIEGL VMX-450 is a robust
integrated system with its own sensors; Optech Lynx Mobile Mapper, however, is less robust than RIEGL but
includes both digital cameras and GPS receivers. In turn, the Velodyne HDL-64 laser scanner sensor is robust
but only comprises a laser scanner sensor. In conclusion, the choice of a given MLS system over the others may
largely depend on multiple factors, such as costs. Integrated MLS systems are more appropriate since while the
cameras can capture photogrammetric information then LiDAR can extract geometrical data, and GPSs retrieve
object global location. Most of the works dealing with or proposing alternatives for urban object classification
share the following standardized methodological structure: i) They perform geo-referenced point cloud and
imagery data acquisition; ii) The data on the ground, facades, and the remaining objects are processed (i.e. data
processing); iii) They propose a specific segmentation and detection method for the particular problem to be
solved, and iv) Finally, they propose a classification method and assess the accuracy of the classified results.

Tendency in Figure 3 shows that 3D point cloud and imagery detection and classification problems
regarding urban objects are growing at their own step. They apparently remain constant as we can see in
the Figure 3. The mixed dynamic and static urban objects and mixed static urban objects works number are
almost the same year by year. In contrasts, since approximately 2015 works about road sign and road elements
detection and classification are increasing.

Contemporary initiatives to accomplish urban tasks are searching for specific goals with new propos-
als. For instance, buildings detection and reconstruction intend to retrieve occlusion and texture. Hyperspectral
cameras are useful in tree, building energy, and pedestrian detection. Traffic elements are labeled using high
retro-reflective paint for easy identification at night. Likewise, road elements are detected and discerned among
them by intensity values (e.g. sidewalks, curves, lines, pedestrian crossings). The literature also discusses the
detection and classification of retro-reflective and non-retro-reflective elements. Finally, 3D point cloud and
2D texture projection allows experts to apply well-known image processing methods.

In the use of MLS systems and vision systems, a disadvantage persists concerning to manual and
offline algorithms training. Algorithms are hard run in real-time, and a part of the object detection and clas-
sification process is performed manually or offline. Thus, the training work depends on human experience
and knowledge, and algorithm robustness bets on different lighting conditions, shadows, and urban landscape.
It also seems that when searching for two or more urban object classes, avoiding extracting greater details
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improves accuracy. Works detecting different objects hardly extract greater details. In this sense, semantic
features seem to contribute to the solution, since they serve as the basic conceptual description of meaning for
any element and contribute to having large labeled data sets.

Figure 3. Tendency in our tables organization per year: i) mixed dynamic and static urban objects, ii) mixed
static urban objects, iii) road sign detection and classification, and iv) road element detection and classification

6. SUGGESTED FUTURE RESEARCH
MLS systems that integrate GPS receivers and cameras grant simultaneous registration of visual and

spatial data. Nevertheless, the high cost of these system features may imply that the current solution is a disad-
vantage. The developments explored in this review share some overall limitations and challenges. Two of the
most common problems are the existence of large occluded regions and segmentation. Different authors pro-
pose learning and searching for occluded parts. They suggest that several scan images of the same area could
mitigate this problem; however, segmentation methods are by themselves a case of study. Another critical
issues are the under-segmentation and over-segmentation of point clouds. The improvement of segmentation
processes have to include an analysis of object density, shape, color, and texture; some promising works add
intensity gradient, spectral features, and geometric features. We also found that the gray-scale and binary in-
formation are the most used features for object segmentation, followed by the RGB color space; however, other
color spaces such as HSV or CMYK can improve the segmentation and classification of different objects by
relying on a broader range of color shades. MMS including LiDAR and cameras are applied to other urban
tasks and can consequently benefit a range of industries and disciplines. This review provided an overview
of the multiple industries benefitting from MMS developments for particular application: i) Automotive in-
dustries: vehicle statistics analysis, accident statistics analysis, electronic unit development for road assistance
and vehicle driving; ii) Urban planning and 3D reconstruction: road dimensions and directions, identification
of sidewalk characteristics, building classification, bus stop detection, light detection, ramp detection, pedes-
trian crossing detection, and road sign identification. Management of transportation, commerce, recreational,
and environmental projects, and study of touristic places; iii) Construction industries: drainage system man-
agement, complementary works, signaling dynamics, weather forecast, and obstacle detection for road sign
installation; iv) Data collection companies: socio-demographic data collection, trade applications, construc-
tion, employment home and housing projects, map development, environmental studies, population, transport,
and tourism; and v) Telecommunication and other digital technology companies: utility pole detection, street
name sign detection, road sign detection, identification of regional borders, railroad detection, green area data
collection, and socioeconomic data collection.

New urban management developments must contemplate as sources of data government databases in
order to meet their goals. Finally, some of the reviewed works discuss the feasibility of a further fusion of their
systems with complementary sensors, such as radars, video cameras, and encoders, to name a few.
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7. CONCLUSION
This review discussed the use of 3D point cloud data with imagery in urban management applications.

The goal of the review was to highlight the MMS and MLS systems currently available for handling urban
management tasks. Additionally, our review discussed current trends in urban object segmentation, detection,
and classification. We considered urban management applications such as historic preservation, roadside as-
sistance, road infrastructure inventory, and public space study. Urban element detection aims at maintaining
order between dynamic and static variables. Dynamic object detection (e.g. pedestrians and cars) is mostly
conducted for self-driving assistance, driver assistance, and traffic scene analysis. On the other hand, detec-
tion of road markings and road signs contribute to successful traffic inspection, road system maintenance, and
driver safety. Urban elements are key guidance assets within the road system; hence, pedestrians and drivers
have to be easily detectable. Recurrent inspections of road elements guarantee their visibility, maintenance, and
ability to provide the necessary road information. Unfortunately, the costs of road infrastructure maintenance
increase as roads deteriorate. From this perspective, MLS systems promise to be a feasible solution to prevent
serious road deterioration through constant monitoring, even though it is necessary to prove the advantages of
both automatic and manual acquisition inspections. The latest works on road sign detection revolved around
using D-ANNs, implying that this path might be the best for urban element identification. Even though the
results are favorable, there is still some uncertainty surrounding the use of such a powerful tool for a small
problem. Choosing deep learning and classical methods of machine learning depends on several factors, such
as the amount of data to be identified. For some urban elements, their identification is sometimes troublesome,
even with well-known and well-defined variables occluded, altered, or damaged. In this case, it is advised to
consider both D-ANNs and machine learning options.
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[67] P. Babahajiani, L. Fan, J. -K. Kämäräinen, and M. Gabbouj, “Comprehensive automated 3D urban environment modelling using
terrestrial laser scanning point cloud,” 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2016, pp. 652-660, doi: 10.1109/CVPRW.2016.87.
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