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 Exoskeleton robotic device (ERD) for rehabilitation purposes, physically 

interacts alongside with the user where high cognitive interaction and the 

safe human-machine system is required. To ensure safe interaction, there is a 

need to detect the user’s motion intention. One of the bio-signals that have 

been found to reflect directly the individual’s motion intention is surface 

electromyography (sEMG). However, sEMG signals are inevitably full of 

noises, not to mention the unwanted recordings and other artifacts between 

muscles where they cannot be freely used as a control signal for ERD. This 

paper presents the use of the Butterworth filter for noise suppression and the 

attenuation of unwanted recordings. Using classical Butterworth filter 

typically is unable to eliminate or attenuate the unwanted contamination on 

the signal of interest to its baseline level. Therefore, it is critical to modify 

the Butterworth filter at this stage. sEMG signals from the biceps femoris 

and rectus femoris muscles of seven healthy male young adults were 

recorded in this study. The onset/offset technique is utilized to detect the 

presence of the additional signal contaminated on the signal of interest. If the 

onset/offset index points are not approximately correlated with the 

movement, this means there is a contaminated measurement on the signal of 

interest. At this interval, a filter with distributed cutoff frequency plays the 

role to have the already smoothed baseline signal. In summary, the modified 

Butterworth filter shows to have a good performance to suppress the noises 

and to attenuate the unwanted recordings adaptively which ensures a safe 

human-machine system. 

Keywords: 

Adaptive cutoff frequency 

Butterworth filter 

Robotic system 

Surface electromyography 

Unwanted recordings 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Abdelhakim Deboucha 

Department of Electrical Engineering, Ecole Superieure des Science Appliquees-Alger 

Boîte Postale 474, Place des Martyrs, Algiers, Algeria 

Email: a.deboucha@g.essa-alger.edu.dz 

 

 

1. INTRODUCTION  

Rehabilitation devices such as powered exoskeleton alter directly on the individual/patient to 

overcome some limitations [1]. Exoskeletons are intermingled assistive devices in terms that they can be 

assistive devices until the individual recover back his/her motor skill. In order to ensure safe physical 

interaction with high cognitive, there is a need to detect the user’s movement intention. Several researchers 

such as [2]–[4], have significantly deepened our understanding and open interest in the use of surface 

electromyography to control assistive devices. Indeed, sEMG amplitude is often used to trigger the motion of 

the robotic system [3], [5]. 

When using surface electrodes, adjacent /unrelated recordings other than the muscle of interest may 

also interfere with the signal. This signal contamination is often referred to as crosstalk/unwanted recordings 

https://creativecommons.org/licenses/by-sa/4.0/


IAES Int J Rob & Autom ISSN: 2722-2586  

 

The surface electromyography noise filtering and unwanted recordings … (Abdelhakim Deboucha) 

63 

which are mainly due to the pickup area of the surface electrodes. Hence, logging this signal without careful 

processing to the assistive device will accidentally trigger the latter and violate the cognitive interaction 

requirement. To result in a free contaminated signal from other artifacts, careful efforts had been undertaken 

into consideration such as selecting the appropriate electrode size, inter-electrode distance, and location of 

recordings over the muscle [6]–[8].  

Despite all of these efforts, in practice, it is often difficult to selectively record from a single muscle. 

Unwanted recordings in sEMG have been investigated by several researchers for the purpose of clinical 

neuromuscular disease investigation and ergonomics diagnosis [9], [10]. In particular, intensive research on 

the forearm to quantify the unwanted recordings between the muscles is carried out because many muscles 

are tightly gathered [11], [12]. On the other hand, lower limb muscles have been investigated by a few 

researchers to examine the aforementioned issue. There are two methods to reduce/detect unwanted 

recordings contamination, firstly is when the measurement is already recorded (offline data), and secondly, is 

before any measurement has been done. From first sight, the most common technique used to determine the 

presence of unwanted recordings is known as blind source separation (BSS). This technique is essentially 

based on principal component analysis (PCA) and independent component analysis (ICA) as reported by 

[13]. ICA technique works on the assumption to have the number of sources to be separated as the number of 

recordings, and it is the more successful technique when these sources are enclosing different frequencies 

such as an electrocardiogram (ECG) and electro-oculogram (EOG). However, it is difficult to use ICA when 

trying to separate the neighboring muscles' activities from the signal of interest due to similar electrical 

properties between muscles. Cross-correlation is also a widely used tool to identify the common component 

between two signals [11]. Nevertheless, this latter is only useful when the two signals are known. 

On the other hand, onset detection is a useful technique in sEMG analysis to detect when the EMG 

burst and when it is at rest [14]. Moreover, the onset technique is widely implemented to trigger robotic 

devices [15]. However, this technique can also be used to detect the existence of unwanted recordings when 

the experimental measurements are supported by the movement recordings, simultaneously. Due to less 

ripple in the pass-band of Butterworth filters and rapid response in the time domain, they are often 

recommended in the biomechanics field for the purpose of data smoothing [16]. Furthermore, Butterworth 

filters have gained a wide acceptance in filtering sEMG by several researchers [17], [18]. The present paper 

introduces the use of the movement recordings together with sEMG recordings to alter the behavior of the 

Butterworth filter in order to detect the onset of the sEMG. The Butterworth filter is fairly modified to be an 

adaptive filter only when it seems there is no movement by the individual. Recursive least squares (RLS) 

algorithm is utilized to modify the Butterworth filter for the purpose of attenuating the unwanted recordings 

which in turn ensure safe human-machine interaction.  

 

 

2. RESEARCH METHOD  

2.1. Subject  

Seven healthy young adult subjects in total with ages ranging from 20 to 24 years old volunteered in 

this study. Before the experiment, each subject was informed about the nature and purpose of the study and 

gave written informed consent. The mean height of the subjects was 1.70 ± 0.7 and weight 72 ± 4 kg. 

Electromyography data were recorded from a pair of surface bipolar electrodes (3 cm inter-electrode 

distance, metallic part: Ag-AgCl manufacturer: Shenzhen Amydi-med Electronics Tech Co., Ltd) placed over 

the relevant muscles connected to an EMG sensor (size: 53 mm x 32 mm x 23 mm, frequency range:  

5 to 482 Hz, max signal range: 4.4 mV, manufacturer: Shimmer discovery in motion). Kinematics data were 

obtained using a Gyro sensor (manufacturer: Shimmer discovery in motion) placed over the mid-thigh. The 

recorded electromyography (EMG)/kinematics data were sampled at 1024 samples/second using 

synchronized biomechanics software [19]. Each participant was seated on a standard chair (46 cm) and was 

asked to rise from the chair at normal speed for two trials. The experimental procedure conditions are 

summarized in Table 1. Figure 1 depicts the actual set-up experiments for the chair-rise experiments. 

 

 

Table 1. Experiment procedure for sit to stand task 
Label Description (sit to stand task) 

S00 Sitting on a 46 cm chair with knee flexion of 90 deg 
H10 Hands free, neither from the chair nor on the subject’s thighs 

R20 Chair off with normal speed (1.2 m/s) 

S30 Standing upright with knee flexion 0 deg 
S40 Sitting again with normal speed to the same position (S00) 
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Figure 1. Experiment set up for chair rising  

 

 

2.2. Butterworth filter  

From the recursive equation of a 2nd order Butterworth digital filter abstracted by [16]. It is 

concluded that a 3rd order, recursive Butterworth digital filter could be defined by (1). 

 

𝑦𝑛 = 𝑏0(𝑥𝑛 + 3𝑥𝑛−1 + 3𝑥𝑛−2 + 𝑥𝑛−3) − 𝑎1𝑦𝑛−1 − 𝑎2𝑦𝑛−2 − 𝑎3𝑦𝑛−3 (1) 

 

Choosing the 3rd order for this study was based on a comparative study between Butterworth and wavelet 

approach for filters [20]. yn is the filtered data points which are determined by the preceding points and the 

actual data x, and n is the sample index. The coefficients of the Butterworth filter are alternatively in the 

function of the frequency corner while their number is depending on the filter order. The cutoff frequency 

can be modeled as reported by [16]. 

 

𝑤𝑐 = 𝑡𝑎𝑛(
𝜋𝑓𝑐

2𝑓𝑠
)  

 

Where, fc, fs are the cutoff frequency and the sampling frequency, respectively. Usually, to translate an IIR 

filter from s plane to z plane, a bilinear transform is used [21]. The bilinear transformation operator is defined 

as 𝑧 =
1+𝑠

1−𝑠
. To have a zero-lag filter, filtering forward and backward is achieved. A 3rd order system for 

digital filter is represented in the z domain by (2). 

 

𝐺(𝑧) =
𝑏0+3𝑏0𝑧−1+3𝑏0𝑧−2+𝑏0𝑧−3

1+𝑎1𝑧−1+𝑎2𝑧−2+𝑎3𝑧−3  (2) 

 

2.3. Onset/offset detection 

The absolute values of the recorded sEMG were used to indicate the muscle activities for both the 

biceps femoris and rectus femoris. Consider a recorded sEMG raw x(n), the onset/offset algorithm takes the 

average between two points a and b before the first sEMG burst and an average between another two points c 

and d after the EMG first burst as shown in Figure 2. These two averaging points defined by (3) and (4) will 

be considered as a reference to detect the onset/offset respectively.  

 

𝑥𝑎,𝑏 =
1

𝑁
∑ (𝑥𝑏 − 𝑥𝑎)𝑁

0  (3) 

 

𝑥𝑐,𝑑 =
1

𝑁
∑ (𝑥𝑐 − 𝑥𝑑)𝑁

0  (4) 

 

Similar way, when one wants to detect the onset/offset of the 2nd, 3rd, and so forth bursts of the 

sEMG. The equations (5) present the index points of the onset and the offset along with the sEMG raw. 
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{
𝑖𝑓 𝑥(𝑖𝑛𝑑1,𝑎𝑚𝑝1) > 2 ∗ 𝑥𝑎,𝑏  𝑜𝑛𝑠𝑒𝑡

𝑖𝑓 𝑥(𝑖𝑛𝑑2,𝑎𝑚𝑝2) < 2 ∗ 𝑥𝑐,𝑑  𝑜𝑓𝑓𝑠𝑒𝑡
 (5) 

 

However, the kinematics recording data usually its baseline is centered approximately on the zero 

line, consider an angular velocity point of 70/s (standard deviation of its baseline) as a threshold point to 

detect the individual beginning of the movement.  

 

 

 
 

Figure 2. Example of an onset/offset of sEMG (offline detection) 

 

 

Figure 3 is a block diagram of the stages taken for the application of the adaptive filter. The first 

step is streaming the sEMG/Kinematis data into the system in order to detect when the sEMG is at rest and it 

is bursting. These index points will then be compared to the corresponding movement. If the EMG burst 

corresponds to a movement, then the data raws will be smoothed using a conventional Butterworth filter with 

a cutoff frequency corner of 6 Hz. However, if the sEMG onsets/offset does not correspond to any movement 

represented by the gyro, the Butterworth filter adaptively drops the cutoff corner in order to eliminate this 

contaminated burst. 

 

 

 
 

Figure 3. Adaptive Butterworth filter stages 

 

 

2.4. Recursive least squares 

The recursive least squares algorithm minimizes the sum squares error at each index point along 

with the EMG signal. The general model is given by (6). 

 

ŷ(𝑛) = 𝑤𝑇𝑋(𝑛) (6) 
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wT is the weight vector that contains the a’s and b’s of the previously defined Butterworth digital filter. Since 

the selected filer was a third order filter, the weight vector w is modeled by (7). 

 

𝑤𝑇 = [𝑏0 3𝑏0 3𝑏0 𝑏0 𝑏0 𝑎1 𝑎2 𝑎3]𝑇 (7) 

 

Defining the regression vector as 𝑋(𝑛) = [𝑥𝑛 𝑥𝑛−1 𝑥𝑛−2 𝑥𝑛−3 ŷ𝑛−1 ŷ𝑛−2 ŷ𝑛−3] and the error vector 

is defined as ∑ 𝑒(𝑛) = ∑ 𝑑(𝑛) − ŷ(𝑛) = ∑ 𝑑(𝑛) − 𝑤𝑇𝑋(𝑛), where d(n) is the baseline desired vector. The 

sum squared error then is (8) and (9), 

 

∑ 𝑒(𝑛)2 = ∑(𝑑(𝑛) − 𝑤𝑇𝑋(𝑛))
2
 (8) 

 

∑ 𝑒(𝑛)2 = ∑(𝑑(𝑛)2 + 𝑤 𝑋(𝑛)𝑋𝑛𝑇 𝑤𝑇) − 2 ∑(𝑑(𝑛) 𝑤𝑇𝑋(𝑛) (9) 

 

introducing a factor 0 << λ <1 called “forgetting factor” to the above sum squared error leads to (10). 

 

∑ 𝜆 𝑒(𝑛)2 = ∑ 𝜆 (𝑑(𝑛)2 + 𝑤 𝑋(𝑛)𝑋(𝑛)𝑇 𝑤𝑇) − 2 ∑ 𝜆 (𝑑(𝑛)  𝑤𝑇𝑋(𝑛) (10) 

 

To minimize the error, set to zero the derivatives of the term ∑ λ e(n)2 with respect to the weight w. 

 
𝜕𝑒(𝑛)

𝜕𝑤(𝑛)
= ∑ 𝜆𝑤(𝑛)𝑋(𝑛)𝑋𝑇(𝑛) − 2 ∑ 𝜆𝑋(𝑛)𝑑(𝑛)   = 0 (11) 

 

∑ 𝜆𝑤(𝑛)𝑋(𝑛)𝑋𝑇(𝑛) = 2 ∑ 𝜆𝑋(𝑛)𝑑(𝑛)  (12) 

 

Let 𝑅(𝑛) = ∑ 𝜆𝑋(𝑛)𝑋𝑇(𝑛) and 𝑅(𝑛) = 2 ∑ 𝜆𝑋(𝑛)𝑑(𝑛). This will have R(n)w(n) = P(n) which generates an 

optimal coefficient. 

 

𝑤(𝑛) = 𝑅−1(𝑛)𝑃(𝑛) (13) 

 

The weight vector w is updated recursively based on the recursive R-1(n) and P(n). The matrix P(n) could be 

defined recursively as (14). 

 

𝑃(𝑛 + 1)  =  𝜆 𝑃(𝑛)  +  𝑋(𝑛 + 1)𝑑(𝑛 + 1) (14) 

 

Whereas, the inverse matrix of R(n) is recursively updated based on lemma inversion, which is given by (15). 

 

𝑅−1(𝑛 + 1)   =   𝜆−1 [𝑅−1(𝑛) −
𝑅−1(𝑛)𝑋(𝑛+1)𝑋𝑇(𝑛+1)𝑅𝑇(𝑛)

𝜆+𝑋𝑇(𝑛+1)𝑅−1(𝑛)𝑋(𝑛+1)
] (15) 

 

To abstract more the above equation, the so called Kalman gains are defined by (16). 

 

𝑘(𝑛 + 1)   =   [
𝑅−1(𝑛)𝑋(𝑛+1)

𝜆+𝑋𝑇(𝑛+1)𝑅−1(𝑛)𝑋(𝑛+1)
] (16) 

 

The equation (15) can be re-expressed by (17). 

 

𝑅−1(𝑛 + 1)   =   𝜆−1[𝑅−1(𝑛) − 𝑘(𝑛 + 1)𝑋𝑇(𝑛 + 1)𝑅−1(𝑛)] (17) 

 

The updated weight w is then can be expressed as the following )1()1()1( 1 ++=+ − nPnRnw by substituting 

(17) and (14) into (13) and after little calculation, the updated weight is defined by (18). 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝑘(𝑛 + 1)[𝑑(𝑛 + 1) − 𝑋(𝑛 + 1)𝑤(𝑛)] (18) 

 

Another factor δ might be introduced for the initialization of the matrix R-1(n) to avoid the risk of 

singularity. Usually is defined by 𝑅 − 1(0) = 𝛿𝑰, where I is the identity matrix. The cut-off frequency could 

be then relatively easy to compute based on the updated weight w. 

 

𝑏0 =
𝑓𝑐

3

1+2𝑓𝑐+2𝑓𝑐
2+𝑓𝑐

3 with, 𝑤𝑐 = 𝑡𝑎𝑛(
𝜋𝑓𝑐

2𝑓𝑠
) (19) 
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3. RESULTS AND DISCUSSION  

Figure 4 shows a recorded sEMG from the rectus femoris (RF) muscle and its corresponding 

movement (kinematics recordings) of an individual during sit stand task for two trials. However, the second 

and the fifth bursts seem to be uncorrelated with the movement of the individual. At the 2nd burst (7 to  

11.5 seconds), the kinematic recordings (gyroscope) correspond to no movement, this means this burst 

should be at rest (baseline) therefore it is our interest to bring this burst to rest again. It is noticeable from 

Figure 5 (upper graph-blue-dashed) that using a third order Butterworth filter is unable to bring the burst to 

rest or its baseline (highlighted with ellipses). Thus, the already smoothed baseline signal of the relevant 

muscle is proposed to be the desired signal at this interval.  

 

 

 
 

Figure 4. Example of sEMG recorded on the RF muscle and its corresponding movement during sit to stand 

task for two trials 

 

 

 
 

Figure 5. Smoothed sEMG (top-blue-dashed) along with the attenuated signal (top-black-sloid) and the 

adaptive cut-off frequency 
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As mentioned earlier, to attenuate the unwanted measurements associated with the recordings of the 

muscle of interest, it is a will to bring this signal to rest which we assumed to be represented by the baseline. 

To achieve this, an adaptive filter is introduced to drive the unwanted contamination to the rest state (already 

smoothed baseline) whenever applicable. Figure 5 represents the cutoff frequency of the Butterworth filter. It 

is clear that the cutoff frequency is set at 6 Hz at first, however, whenever the unwanted signal occurs on the 

signal of interest, the cutoff drops dramatically (about 2 Hz) in order to attenuate the contaminated signal. 

 

 

4. CONCLUSION  

This study presented how a modified Butterworth filter can reduce the noises and adaptively 

attenuate the unwanted recordings contaminated on the actual EMG of the muscle of interest. The 

uncorrelated index points of starting/ending bursts between muscle activities with the kinematics data points 

gave a sign of a chance of having an unwanted muscle activity on the signal. The onset/offset detection 

method was used to verify the index of the starting/ending muscle activities with the corresponding 

movement measured by the kinematics sensor. By this means, the adaptive Butterworth was introduced when 

the unwanted muscle activities emerged along with the actual sEMG. The already smoothed baseline signal 

of the relevant muscle using a third order Butterworth with a cutoff of 6 Hz was used as a desired signal for 

the adaptive Butterworth filter. The coefficient of the adaptive filter at this stage was updated applying the 

RLS algorithm. The proposed method can detect whether the recorded signal can be applicable or otherwise. 

If the latter happened, the filter takes action adaptively to attenuate the unwanted recordings. In addition, the 

method is easy and practical for use in human-machine systems when the sEMG signals are used to trigger 

the robotic device. This certainly ensures safety between users and assistive devices.  
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