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ABSTRACT

Machine vision or robot vision plays is playing an important role in many indus-
trial systems and has a lot of potential applications in the future of automation
tasks such as in-house robot managing, swarm robotics controlling, product line
observing, and robot grasping. One of the most common yet challenging tasks
in machine vision is 3D object localization. Although several works have been
introduced and achieved good results for object localization, there is still room
to further improve the object location determination. In this paper, we introduce
a novel 3D object localization algorithm in which a checkerboard pattern-based
method is used to initialize the object location and followed by a regression
model to regularize the object location. The proposed object localization is em-
ployed in a low-cost robot grasping system where only one simple 2D camera
is used. Experimental results showed that the proposed algorithm significantly
improves the accuracy of the object localization when compared to the relevant
works.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Xiem HoangVan
Department of Robotics Engineering, Faculty of Electronics and Telecommunications
Vietnam National University - University of Engineering and Technology
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
Email: xiemhoang@vnu.edu.vn

1. INTRODUCTION
Nowadays, machine vision technology has been playing an important role in automation and industrial

4.0. A large number of applications have been introduced such as: part identification of complex systems,
defect inspecting, optical character recognition (OCR) reading, 2D code reading, and especially object picking
[1]. Figure 1 illustrates a general structure of typical industrial vision systems. The system includes three main
parts: a computer or embedded processor to be connected with a camera, a manipulator (arm) Robot and a
flat table or conveyor [2]. In such systems, the computer is employed to process images captured from the
camera. This is achieved by applying special-purpose image processing analysis and classification software.
The position of the camera is usually fixed. In many cases, machine vision systems are designed to inspect
and pick only known objects at variable positions. The scene is then appropriately illuminated and arranged to
facilitate the reception of the image features necessary for processing and classification.

In machine vision systems, camera calibration is a necessary step to extract information from 2D-
image to understand the real 3D object and to devote the identification of pixel/mm ratio between a projected
object in the image and real 3D object [3]. This parameter is fundamental for the correct valuation of the object
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under inspection or picking. To achieve object localization, several methods have been introduced such as
plumb line method [4], two-stage method [5].

Figure 1. Illustration of a machine vision system

Plumb line method [4] is one of few approaches to achieve camera calibration which implements a
practical model to solve the problem that the lenses are not symmetrical due to manufacturing. The disadvan-
tages of this method lie in the manual determination of calibration points and the complexity in determining
the real principal points at the offset from the ideal axis of the lens.

The two-stage method [5] proposed by Tsai. uses the same camera model in [4], but focuses more
on the characterization of real-time operation. This method uses a checkerboard pattern to compute the scale
factor in the first stage and computes the effectiveness of focal length, distortion coefficients in the second
stage. Due to the assumption of a simple camera model (e.g. pinhole model) and ignorance of the projection
of 3D objects in 2D images, this method still has limits in many cases.

The methods proposed in [6]-[11] are based on direct linear transformation (DLT) assumption. The
strategy is to find the radial and tangential distortion coefficients based only on linear transformation. Re-
searchers [7], [8] the DLT is utilized to simplify the algorithm of the plumb line method. Sturm and Maybank
[9] proposed using a 3D calibration pattern composed of 3 planes with calibrated dots on each. This method is
simple to implement and general, but requires an accurate 3D calibration pattern.

Meanwhile, Zhang study a different technique of camera calibration [12], [13]. The method requires
only a simple planar pattern but needs several pictures of the pattern taken from different orientations, which is
not certain and also hard to implement in the industrial context.

Modern methods [14]-[21] tend to utilize deep learning to efficiently estimate the parameters in the
camera model [14], [15], or expensive devices(e.g. lidar or 3D camera) to localize objects on the z-axis [16]-
[19]. These methods either only focus on undistorting images and do not consider the actual position of each
object on the images (caused by deep learning hypothesis) or require modern firmware, which is costly and not
suitable in the industrial context.

Although all the mentioned methods give good results in localizing flat objects (e.g. books, papers,
and smartphones). They tend to fail in the case of localizing 3D-shaped objects. Due to their 3D natural
shape, the location determined by calibration methods is in fact the location of their projections on the image
instead of their real location. Therefore, the error distance to the real location of the objects still remains. In
many cases, which we will examine in Section 2, this error is crucial and can greatly affect the performance
of the grasping system. To address this problem, in this paper we propose a machine learning – regression-
based method for improving the accuracy of 3D object localization. The proposed method is created based
on a mathematical modeling of 3D objects and their projected image in the 2D plane and followed with a
regression-based algorithm to achieve model parameters. Experimental results captured from our practical
machine vision system demonstrated the advancements of the proposed regression model in both location
accuracy determination and low complexity time requirement.
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The organization of this paper is as follows. Next, Section 2 presents the system design of our machine
vision system and introduces a regression model for correcting the 3D object localization. Section 3 evaluates
the performance of the system. Finally, Section 4 gives some conclusions and works for the future.

2. RESEARCH METHOD
2.1. Machine vision system design

To study the machine vision problems, we examined a popular system design for robot picking objects
[2]. Figure 2 illustrates a system where a camera is located at the top of a frame and connected with a PC. Here,
we use a manipulator robot with 4DoF (degree of freedom) to be controlled with an Arduino processor, and
a camera connected with a personal computer (PC). Figure 2(a) shows Illustration of our robot vision system,
Figure 2(b) shows object and robot from top view, and Figure 2(c) shows object and robot from side view. The
system is designed to adaptively pick and move objects. The image captured with the camera will be used to
detect and localize the object and sent to the robot for the picking task. For easy demonstration, we used a
checkerboard pattern with 3×3 cm each square (black or white) at the bottom of the frame. This checkerboard
pattern will be used in determining the location of the object, see Figure 3.

(a) (b) (c)

Figure 2. Machine vision system (a) Illustration of our robot vision system, (b) object and robot from top view
and (c) object and robot from side view

Figure 3. Proposed object localization flow

To achieve the object location, we take a picture of the checkerboard floor to get checkerboard corners.
Then, with each object image, we employ a convolutional neural network (CNN) based object detection method
[22] to find their image coordinates. Combining those two pieces of information, we interpolate real coordinates
of the objects as illustrated in Figure 4(a), and finally regulate the location with a regression method.

In checkerboard corners detection, we find the correlation between the image coordinates and real-
world coordinates. Practically, the distances on images and their respective real-world distances are not always

An efficient regression method for 3D object localization in machine vision systems (Xiem HoangVan)



114 r ISSN: 2722-2586

linearly dependent due to lens distortion. Camera calibration methods [23] tried to solve this problem by finding
radial and tangential distortion coefficients to undistort the image by detecting patterns (usually a checkerboard)
with a fixed size. In most industrial cases, a camera calibration method is employed and real-world coordinates
are then acquired by scaling up distances on the image. This method is simple to deploy thus suitable for the
industrial environment, yet needs a good camera which is costly.

In a small region, the error caused by the camera lens is low, we can instead employ the checkerboard
pattern as a grid net and acquire real-world coordinates of the object by interpolating from coordinates of
neighbor checkerboard corners. Figure 4 shows initial object location can be determined as the following
steps: i) Step1. Determine the checkerboard edges and the coordinates of their intersections (checkerboard
corners) using the Hough transformation [24] (as illustrated in Figure 4(b)); ii) Step 2. Assume that the Robot
is located at (x0, y0) in the center of a checkerboard cell, and the coordinate system created by the chessboard
is nearly parallel to the image coordinate system. Then the corner at (xC , yC) has the real coordinates of(

[2dxC/l]
2 , [2dyC/l]

2

)
with dxC = xC −x0; dyC = yC − y0 ; l and r is average length of a cell on the image and

in real world respectively; the “[]” notation denotes floor function; iii) Step 3. With the image coordinates (x,
y) of the object. We find 4 checkerboard corners that are closest to the object in 4 ways: left top, right top, left
bottom, right bottom. And simply utilize a bi-linear interpolation [25] to compute the object’s real location as
shown in Figure 4(c).

(a) (b) (c)

Figure 4. Object detection result (a) object determination with CNN, (b) corner detection results,
and (c) object localization result

2.2. Proposed regression method
Although estimating the object location with the checkerboard calibration method is simple and easy

to deploy in the industrial field, it tends to be inefficient when the object is not flat but a 3D-shaped object.
In such cases, the bounding box of the object detected by deep learning techniques (described in Section 2.1)
may not accurately match the location of objects. Specifically, the coordinates of the center of the bounding
box will hardly be the coordinates of the center of the object on the resulting image. Note that the center of
the bounding box can only be the center of the object if and only if the object is placed in the center of the
projection of the camera onto the floor.

To reveal this fact, we tested the checkerboard calibration method for some cases as shown in
Figure 5. The bounding box obtained by 2D object detector [22] with the red center indicates the coordi-
nates of the projection of the object while the blue center is the actual coordinates of the object. The obtained
results demonstrate the difficulty of the checkerboard calibration method with 3D objects.

Here, two main factors are affecting the error of 3D object coordinate estimation with the checkerboard
pattern method are the height of the object: the higher the object, the larger the error and the relative position
of the object to the camera: the farther the object is placed from where the camera projects down on the floor,
the greater the error. In this study, we will analyze the second feature, which is the influence of the position of
the object, and apply this feature to correct the error of estimating the coordinates of the object.

Figure 6 illustrates the relative position of the object to the camera. We can easily recognize that when
the object is placed in the center of where the camera projects on the floor (object 1), the bounding box can
accurately reflect the projection of the object and thus the position of the center of the bounding box coincides
with the center of the object. Whereas with object 2 placed deviated from the position of the camera, the center
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of the object and the center of the bounding box and the center of the object will not coincide.
Roughly speaking, if we know the distance from the camera to the floor, the height of the object,

and the position of the camera, we can use geometric methods to determine the difference between the actual
coordinates object and its projection coordinates if the camera is considered as a light source, see Figure 7.

Figure 5. Error in object localization caused by object shape and tilt angle it made with the camera. The red
box and dot denotes the object bounding box and center detected by you only look once (YOLO) respectively.

While the blue box and blue dot is the base and center of the object on the floor

Figure 6. Illustration of relative position of objects
to the camera

Figure 7. Illustration of the projection of object on
the floor

According to Thales theorem, we have (1).

PA

PC
=
hA
hC

(1)

Here, PA is the distance from the object to its projection on the floor, PC is the distance from the
camera’s projection of the object and is determined by (2).

~PC = ~OP − ~OC (2)

Then PA can be determined by (3).

PA = PC.
hA
hC

(3)

Where O is the origin coordinates of the robot. Then, the actual position of the object can be calculated
as (4).

~OA = ~AP + ~PO (4)

However, practically with the robot vision system, we usually do not know the height of the object as
well as the distance from the camera to the floor. Therefore, we propose a machine learning method, using a
regression technique to estimate the actual position of the object from the position of the center of the bounding
box of the projection obtained from the checkerboard calibration method.

To determine the distance from the actual position of the object to the position of the projection,
(AP) we state the following two propositions. i) Proposition 1: There always exists a point of convergence
(called C - convergence) at which the coordinates of the projection P coincides with the coordinates of object
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A. Proof: This can be easily seen as in the previous section. Here, the convergence point C is the coordinates
of the camera projection to the floor; ii) Proposition 2: The distance from the object to the convergence point
C is proportional to the distance from the object to its projection. Proof: This proposition can be proved by
geometric methods as illustrated in Figure 8, two objects A and B have the same shape and size but are placed
in two different distance to C. We can easily prove that (5).

PA

PC
=
hA
hC

=
hB
hC

=
P ′
B

P ′
C

(5)

Figure 8. Illustration of distance from projection to object in different locations

Based on propositions 1 and 2, we can model the relationship between the distance of the convergence
point C - the object’s position and the distance between the object’s position and the projection’s position as
(6).

‖C −A(i)‖2 = α‖P (i)−A(i)‖2 + β (6)

Here, the location of C is fixed, A(i) and P (i) are the position of the object and the bounding box
corresponding with ith example respectively. α, β are the model parameters to be determined. Bias parameter
β can be added to handle error caused by object shape, camera tilt angle etc. In our experiment we simply set
β = 0.

We can estimate the location of convergence point C(xC , yC) and α, β using linear regression with
least square optimization, i.e. minimize the following objective function as (7).

α, β, C = argmin f(α, β, C) (7)

With :

f(α, β, C) =
1

n

n∑
i=1

(‖C −A(i)‖2 − (α‖P (i)−A(i)‖2 + β)2 (8)

Or:

f(α, β, xC , yC) =
1

n

n∑
i=1

(
α−

√
(xC − xA(i))2 − β√

(xP (i)− xA(i))2 + (yP (i)− yA(i))2

)2

(9)

To be simple, we solve the problem with β = 0, the remaining case can be solved similarly.
Set
√

(xP (i)− xA(i)2 + (yP (i)− yA(i))2 = γ(i), we have (10).

α, xC , yC = argmin
1

n

n∑
i=1

(
α−

√
(xC − xA(i))2

γ(i)

)2

(10)

Then α, xC , yC can be determined by solving as (11a) to (11c) and (12a) to (12c).
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df

dα
= 0 (11a)

df

dxC
= 0 (11b)

df

dyC
= 0 (11c)

Or:

1

n

n∑
i=1

2

(
α−

√
(xC − xA(i))2

γ(i)

)
= 0 (12a)

1

n

n∑
i=1

−2

(
α−

√
(xC − xA(i))2 + (yC − yA(i))2

γ(i)

)
2(xC − xA(i))

γ(i)
√

(xC − xA(i))2 + (yC − yA(i))2
= 0 (12b)

1

n

n∑
i=1

−2

(
α−

√
(xC − xA(i))2 + (yC − yA(i))2

γ(i)

)
2(yC − yA(i))

γ(i)
√

(xC − xA(i))2 + (yC − yA(i))2
= 0 (12c)

From (12a), we have:

α =

n∑
i=1

√
(xC − xA(i))2 + ((yC − yA(i))2

nγ(i)
(13)

Therefore, can be calculated based on (xC , yC). The problem then only has 2 variables xC and yC .
Equation (12b) and (12c) can’t be solved directly, instead we can use the gradient descent algorithm to estimate
root as algorithm 1:

Algorithm 1
Step 1. Randomly set (xC(0), yC(0)). Calculate α0 based on (13).
Step 2. Update the value of (xC(k + 1), yC(k + 1)) by (xC(k), yC(k)) using gradient descent:

xC(k + 1) = xC(k)− σ df

dxC(k)
(14)

yC(k + 1) = yC(k)− σ df

dyC(k)
(15)

In which σ is learning rate. In our work we simply set σ = 1.
Step 3. Calculate α(k + 1) based on (13).
Step 4. If df

dxC(k+1) and df
dyC(k+1) are small enough, stop. Else back to step 2.

Finally, the obtained regression model parameters, α, β and the convergence location, (xC , yC), are
fed to (6) to determine the actual object location.

3. RESULTS AND DISCUSSION
3.1. Experiment setup

To examine the proposed object location estimation method, we set up a machine vision system with
a camera on top, parallel and 60 cm away from the floor. For the interpolation phase we use a checkerboard
pattern with size of each square is 3x3 cm2. Images taken from the camera is shown in Figure 9.

A Robot system with 4DoF and Arduino processor was employed for object picking in this machine
vision system. To examine the accuracy of object location, we apply a k-fold validation strategy on 20 obtained
images. Specifically, we divide the 20-image dataset into 4 folds, with 5 images in each fold. In each step, we
use 1 in 4 folds to be the test set and the remaining folds be the training set.

An efficient regression method for 3D object localization in machine vision systems (Xiem HoangVan)
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Figure 9. Several images in our dataset

3.2. Object localization evaluation
Table 1 describes error in real world coordinates of predicted location with ground truth location based

on x, y axis and Euclidean distance when using traditional method (described in section 2) and our proposal
(Err =

√
∆x2 + ∆y2).

Table 1. Results of performance evaluation of our regression method in error reduction (mm)

Fold Sample
Traditional method Proposed method

4x 4y Err 4x 4y Err
1 1 8.10 14.80 16.87 0.99 2.43 2.63

2 10.40 15.20 18.42 0.13 0.38 0.40
3 15.00 8.20 17.10 0.63 0.29 0.69
4 3.60 10.40 11.01 3.13 1.67 3.55
5 19.20 6.10 20.15 1.96 2.17 2.93

2 1 20.20 2.30 20.33 4.22 5.82 7.19
2 2.20 11.90 12.10 2.80 0.32 2.81
3 5.80 13.30 14.51 1.99 0.93 2.19
4 12.20 14.00 18.57 1.60 1.56 2.24
5 14.30 15.40 21.02 0.28 0.29 0.40

3 1 13.50 3.50 13.95 4.37 3.25 5.45
2 0.10 15.60 15.60 0.76 2.03 2.17
3 20.20 6.90 21.35 0.59 5.85 5.88
4 4.70 4.60 6.58 0.67 2.25 2.35
5 0.10 5.00 5.00 0.58 1.89 1.98

4 1 8.30 2.40 8.64 0.87 2.54 2.68
2 15.20 7.30 16.86 0.48 1.43 1.51
3 8.80 12.80 15.50 3.57 0.20 3.57
4 15.30 13.30 20.27 2.68 2.61 3.74
5 12.69 9.00 15.56 1.72 0.07 1.72

Average 10.49 9.60 15.47 1.70 1.90 2.80

From the obtained results, some conclusions can be derived as i) The proposed regression method
significantly improves the accuracy of object localization in machine vision system for all experiments; ii) The
distance error with the proposed method can achieve up to 0.4 mm; iii) The proposed method can reduce 82%
of distance error (i.e. from 15.5 to 2.8 mm) when compared to the conventional object localization without
regression.

We also examine the training and validation time of the regression module in 4 folds described above.
The result is shown in Table 2.

Table 2. Processing time of proposed method in training and validating phases (unit: ms)
Fold Train time Validation time (Whole) Validation time (Each)

1 138.81 0.13 0.03
2 137.94 0.12 0.02
3 165.41 0.07 0.01
4 346.35 0.13 0.03

As we can see in Table 2, the processing time of the regression model is small in both training and
testing phases. Therefore in practice, adding this module after the existing object localization and calibration
model won’t affect the performance of the whole.
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3.3. Model assessment
To assess the model accuracy, we verify the relationship between the distance from the center of

the projection of the object to the convergence point and the received error by visualizing results over the
dataset. The visualization results are shown in Figure 10. The Figure 10(a) is showing R2 measure 0.8747,
Figure 10(b) is showing R2 measure 0.8797, Figure 10(c) is showing R2 measure 0.8781, and Figure 10(d) is
showing R2 measure 0.8755.

As we can see through the visualization, the accuracy of the proposed linear model is nearly 0.88 with
R2 measure. In addition, the proposed method is not relying much on the data, notably the R2 obtained with
four different folds is similar, it can be seen that these two quantities have an almost linear correlation with
each other.

(a) (b)

(c) (d)

Figure 10. Correlation between the distance from the center of the object’s projection to convergence point
and the error in calibration phase with measure (a) R2 = 0.8747, (b) R2 = 0.8797, (c) R2 = 0.8781,

and (d) R2 = 0.8755 (Unit: mm)

3.4. Proposed model with bias
We expanding our method with β 6= 0. The result of model parameters in case of and Euclidean error

in result and is shown in Table 3.

Table 3. Comparison of the parameters found in case of β = 0 and β 6= 0
(Coordinates of point C is the coordinates relative to the origin of the robot arm, unit: mm)

Fold
Proposed method without bias Proposed method with bias

xc yc α Err xc yc α β Err
1 0.37 123.23 9.19 2.77 -3.31 46.43 7.76 -8.29 5.60
2 -0.78 120.96 9.49 3.74 -8.21 36.27 7.75 -9.30 5.43
3 2.18 118.56 9.71 1.70 14.70 -146.21 7.05 -27.61 9.48
4 3.84 108.28 10.02 2.47 -0.24 71.84 8.95 -4.52 3.32

Avg 1.40 117.76 9.60 2.67 0.74 2.08 7.88 -12.43 5.96

From the obtained results in Table 3, it can be concluded that adding a bias term, β, may not improve
the accuracy of the estimated object location. The results show that our method is fast and effective in reducing
error caused by the projection of 3D-shaped objects, and thus easy to deploy in industry. On the other hand,
the proposed method is still simple as we focused only on the distance to the convergence point and did not
consider all the information of the shape and orientation of objects. Therefore the error is still large in some
specific cases. We will take all this information into account to improve the accuracy in some future works.

An efficient regression method for 3D object localization in machine vision systems (Xiem HoangVan)
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4. CONCLUSION
In this paper, we introduced a novel regression model to reduce errors in 3D object localization, a

very important and common step in machine vision problems. The proposed method is created based on the
geometry relation between the real object location and its projection information obtained with a CNN model.
The proposed method significantly reduces the average error of object location from 15.47 to 2.80 mm, which
is small enough to be deployed in a grabbing robot system. For future work, we can further improve the model
accuracy with online learning process.
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