
IAES International Journal of Robotics and Automation (IJRA)

Vol. 13, No. 1, March 2024, pp. 96~104

ISSN: 2722-2586, DOI: 10.11591/ijra.v13i1.pp96-104  96

Journal homepage: http://ijra.iaescore.com

Script late injection: a framework to introduce JavaScript into

web pages

Bhanu Prakash, Sandhya Sampangiramaiah
Department of Computer Science and Engineering, RV College of Engineering, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jul 17, 2022

Revised Aug 10, 2023

Accepted Nov 27, 2023

 Script injection is one type of fault present in web, which mostly utilizes

user data to execute code without applying any type of filters. Script

injection can impact both client and server making exposing them to

vulnerabilities. Security and related products may need to execute logic on

the client-side generally in a browser. In order to achieve this, proxy servers

inject appropriate JavaScript code into the responses they proxy. Typically,

the injection point is at the end of the body element. The framework

introduced in this paper rather uses a stack-based approach to determine the

injection point in the web page. Ten kilobytes from the end of a web page

are given as a string input to the framework, after tokenization and

construction of the vector of tokens. A stack is used to determine the

injection point. Along with the position of the injection point, a warning flag

is also estimated indicating the correctness of the injection point. Different

types of web pages were considered for running the unit tests and fuzzy tests

on the framework. These classes of pages are determined by crawling most

used web pages. The injected scripts are executed once the body content is

completely loaded. Hence, it can retrieve maximum information without

affecting end-user performance. It also does the job at a low cost.

Keywords:

Hypertext markup language tags

Injection parsers

Proxy servers

Script injection

Web security

This is an open access article under the CC BY-SA license.

Corresponding Author:

Bhanu Prakash

Department of Computer Science and Engineering, RV College of Engineering

Mysore Road, RV Vidyaniketan post, Bengaluru, Karnataka, 560059, India

Email: bhanuprakashshettigar@gmail.com

1. INTRODUCTION

Asynchronous JavaScript and XML (AJAX) has gained major attention in the current day with

Web2.0 [1]. One major concern in software development is accessibility and accessibility of any website can

be improved with JavaScript being used suitably with utmost care. JavaScript injection is the inclusion of

one’s own code in a webpage by checking the cross-site scripting (XSS) vulnerability in any website. These

changes can only be seen at the client end since it is a ‘client-side’ language. Some common methods to

inject are, employ developers console for inserting script, inclusion of the script within the address bar,

inclusion of scripts into comment field or other forms – XSS.

JavaScript is enabled and supported by default in most of the major browsers. It is a widespread tool

employed to develop browser interfaces since it is simple and is fully integrated with HTML/CSS.

Communication over internet to the server can be done with ease regarding the origin of the current page. But

the ability to obtain data from other sites is crippled. Even though this should be possible, it becomes

essential to enter into an explicit agreement from the remote side which is a safety limitation.

Web security recommends defensive measures and protocols that organization must embrace in

order to protect themselves from cyber-attacks and dangers of utilizing web channels. To implement web

security, it is important to get essential information from the end user. This is where proxy servers come in.

https://creativecommons.org/licenses/by-sa/4.0/

IAES Int J Rob & Autom ISSN: 2722-2586 

Script late injection: a framework to introduce JavaScript into web pages (Bhanu Prakash)

97

They inject script into the responses and then forward it to the end user. This entire transaction is shown in

Figure 1. A proxy server is a computer framework or switch that facilitates a transfer between client and

server. A caching hypertext transfer protocol (or HTTP) proxy handles the HTTP/HTTPS requests that arrive

at the server to serve content to the end user. The proxy also has web application firewall capabilities, where

the traffic is inspected, and security policies are enforced.

Figure 1. A request response exchange with reference to script late injection

Script late injection (SLI) is a framework which can be used by the proxy servers to inject

JavaScript at appropriate position in the page based on the last N kilobytes, generally 10 kilobytes of chunk

from the hypertext markup language (HTML) page. Most common injection point is at the end of body

element (at the ending </body> tag). Among other things, this helps to achieve low impact to end user's

performance. Two approaches were used so far. First, Parse the whole page from the start using page modify

parser, locating tags </body>, inject “<script>...</script>” before that. Second, Treat the page as plaintext,

search string “</body>” and replace it with “<script>...</script></body>”. Both have shortcomings in

functionality and most importantly processing cost. Script late injection (SLI) solution is offered which is

developed as standalone library and later integrated with the proxy server configurations.

Mao et al. [2] uses identification of function-level execution information model for application

vulnerabilities. It is possible for attackers to inject the code and activate it under the same conditions as in the

original app. In such cases, this approach may miss the injection within a target function. Li et al. [3]

explains data object model analysis-based method to crawl the web applications using JavaScript injection

and runtime analysis. This raises difficulties, for example, the parallel and cross-browser compatible

crawling, specific domain websites crawling which demand an aide from domain information, focused

website crawling and so on. Control of traffic through traffic analysis [4] is demonstrated for a given pattern

of traffic request at a proxy server that suits the analytic model. An ideal situation is assumed with finite size

of web proxy cache memory. The approach employed limited number of files to determine bandwidth

requirement considering hit rate and hit misses however packet jitter is proposed to be included for matching

up with the real-world scenario. Kishore et al. [5] uses drive by download defense model for preventing

malicious JavaScript injection attacks. This is a browser extension and hence needs enabling of extensions in

browser, which is not available in all scenarios. Extensions are not available for mobile devices, and all the

browsers do not support it.

Barua et al. [6] utilizes code randomization model combined with a static analysis strategy to

forestall JavaScript infusion attacks. This technique has no offline analysis, possibilities of incorrectly

modeling the internal application programming interfaces (APIs) of the browser, runtime protection

framework. The browsers when deliver the embedded non-HTML files that contain malicious JavaScript

code in the form of HTML files, would result in the possibility of content sniffing attacks [7]. Though there

are approaches to handle these kinds of attacks, the existing approaches face certain limitations. Therefore, an

approach to simulate the behavior of browser via sample download testing and detection mechanism at server

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 1, March 2024: 96-104

98

side to detect content sniffing attack is addressed. The proposed approach is evaluated on real world PHP

programs and obtained results indicate that sniffing attacks could be overcome by preventing the upload of

malicious files.

Shahriar et al. [8] uses comment injection-based model for preventing JavaScript injection attacks.

Randomness in JavaScript comments is not reliable parameter for detection of injected code. Pre-processing

of JavaScript, for example, the expulsion of comment tags and deletion of return keywords in event handlers

is computationally expensive and could take additional time. Several advanced features of browsers were

initially extensions from third party. Though these features provided some of the powerful extensions to

browser, these if employed inappropriately could lead to security threats. Hence few browsers restricted the

extension capabilities. Therefore the work [9] proposes verified security for browser extensions in form of

high level languages in contrast to API based approach. Comparison of attacks built using web content

filtering policies with content-sniffing XSS attacks is presented with reference to a scenario of conference

management system is presented. Content sniffing algorithms [10] considering 3 browsers for specific web

applications is proposed that describes filter based models that block XSS attacks for content sniffing. Due to

increased popularity of XSS in web developers who fail to validate user data, poses some crucial security

threats to web applications. Secure web application proxy [11] is described that detects and prevents XSS

attacks at the server side. The HTML responses are caught by a reverse proxy that detects and mitigates

several vulnerabilities.

Browser extensions based on JavaScript [12] are popular among browsers like Firefox and its

related tools. Current attacks illustrate that JavaScript extensions (JSE) pose threats to browser security,

therefore security architecture for browser extensions that tracks information in-flow and detect if malicious

content is passed is described. The approach mainly dealt with explicit flow of information and cross-domain

flows in Firefox browser. Further this was evaluated on JSE that contained both malicious and benign cases

that also analyzed the runtime overheads. When malicious content is embedded in browser extension, the

attacker would also modify the display mode to make the effect of malicious display transparent to users.

Therefore abnormal visibility [13] that proposes display features to highlight embedded malicious code. This

approach is observed to provide higher efficiency with reduced cost for maintenance.

Li et al. [14] uses chunk dependence graph-based model for real-time content transformation of web

pages. Content transformation of streaming web data might increase the performance but there is no security

aspects described. Byte-streaming, chunk-streaming, and whole-file buffering methods are susceptible to

serious web attacks. In view of optimizing bandwidth and improving performance at the server side

approaches such a proxy servers [15] or caching servers are introduced. The functionality of proxy servers

was extended to match up the current web 2.0 trends. As compared to reusing of passive cache objects by the

proxy servers functionalities such as prefetching content and distribution of cached content was researched

and proposed as next generation proxy servers. As the demand of services catered on web is increasing, wide

variety of services on web/web applications are gaining popularity. To match these demands good caching

policies are being researched. Since traditional caching do not meet the requirements of web 2.0 due to varied

reasons various cache replacement [16] algorithms are discussed. These cache replacement algorithms [17]

are mainly dealt considering the key parameters to make them possible for adapting as policy for proxy

servers. The main consideration here is for any sample of the workload, the approach needs to adjust

dynamically the changes in the sample. The approaches thus employed for caching in proxy servers achieve

reduced miss rates, increased hit rates that leads to reduced cost incurred while a miss happens in cached

environment. The approach of caching suitably addresses the performance for mobile environments [18].

Mobile devices are constrained by battery and hence mostly get disconnected quite frequently for optimizing

the battery usage. To add on these issues bandwidth is also limited in such environments. In order to address

these issues an IR-based cache invalidation algorithm that effectively brings down the latency and bandwidth

usage is proposed that is observed to significantly improve the throughput. When the web application

accesses an object that is not in local cache, it is to be downloaded and transmitted from the server which

incurs cost in terms of latency, bandwidth and power. The main aim of any approach is bring down these

while fetching/prefetching the data item. Data prefetching [19] schemes that effective communicate data

from server over wireless channel that experience fluctuation to mobile terminals is extensively researched.

Such a scheme aims to dynamically prefetch data by choosing an appropriate power level for transmitting

data and also exhibit potential trade-offs in terms of performance.

Hung et al. [20] uses adaptive proxy-based web content transformation model. Data-type specific

content transformation, such as selective filtering and compression are not enough for effective security and

performance. The transformations mentioned are data specific and does not involve security enhancement or

performance enhancement. Although citations mentioned in the literature review analyzed the injected

JavaScript, or the content transformations, they never posed a solution for determination of injection point for

JavaScript, which is addressed in this paper.

IAES Int J Rob & Autom ISSN: 2722-2586 

Script late injection: a framework to introduce JavaScript into web pages (Bhanu Prakash)

99

Response time reduction at the proxy servers can be realized through caching. Reducing response

time by means of an effective cache replacement algorithm forms crucial in optimizing the performance

metric. Though these cache replacement algorithms use a subset of documents it becomes critical that they

maintain consistency of these documents that are cached. Unified cache replacement algorithms [21] that

integrates consistency in the replacement algorithms is discussed along with performance study is presented.

Multimedia access over WWW requires guarantee of quality of service (QoS) that transforms the

content adaptively based on the agreement of bandwidth by estimating the network conditions. Hence the

discussion on negotiating the bandwidth [22] for guaranteeing the web presentation delivery that ensures the

requirements in a dynamic network for matching faster and reliable access is presented. The concept of

spatial and temporal locality [23] is modeled for the requests that coming on to web servers is discussed.

Self-similarity is employed for modeling the spatial locality of references. It was shown through the results

that the self-similarity in traces of requests to web servers show correlation in the data set. This correlation in

the distribution aid in achieving better cache performance. Performance gains for distributed information

systems is proposed through two different approaches viz data dissemination mechanism and speculative

service [24], while the former propagates the information from the producer to consumer which in turn

reduces the traffic and balances the load, the later serves the other end with rest of the other documents along

with the one that is requested based on the property of spatial location.

Based on desired grade of service, an approach for determining the bandwidth requirement [25] for

both type of connections included the individual and multiplexed connections is described. Control

procedures are invoked for optimizing the network usage along with using the link metrics. In order to

minimize the amount of raw data accessible at various levels of IoT architecture, an approach the employs

fog and edge computing [26] is described. Though this approach is shown to be efficient it is vulnerable to

device level attacks.

2. RESEARCH METHOD

In this section, the approach undertaken in this paper is discussed comprehensively. The following

activity diagram in Figure 2, shows the different processing stages in the framework after generation of

proper HTML from the input. A string (interpreted as 8-bit byte stream) of size N kilobytes (by default

10 kilobytes) is given as input to the framework, which essentially is the last N kilobytes of the HTML page

to which script needs to be injected. A token represented by the name of the tag, type of the tag (open/closed)

and the position in the given string. The default end_tag_html is initialized as EOF which points to the end of

file.

Figure 2. Different processing stages in the framework after generation of proper HTML from the input

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 1, March 2024: 96-104

100

2.1. Proper HTML string generation from input

To minimize the cost a fixed size (generally 10 kB) chunk from end of HTML file is considered to

detect the injection point. Most of the pages are larger than 10 kB. So, construction of proper HTML is an

important step in this algorithm. HTML string received is tokenized and required tokens are extracted. The

input string is tokenized into HTML tokens. The loop is executed until all the tokens that are generated by the

tokenizer is used.

The list shown in the Figure 3, includes those tags which are self-closing (empty element) because

these tags obviously will not enclose the HTML content. Tags which appear inside head and other tags like

script style will not contain any HTML. They are used for scripts/styling in the HTML Script, Canvas,

NoScript, and Style. These tags either used for manipulating document object model (DOM) or for styling the

page. Hence, inside they have CSS or JavaScript, or canvas scripting API code. Hence, these tags are ignored.

Both the start and end tags are ignored as per the list. In each iteration, token obtained from tokenizer is

checked if it is a token to be ignored (self-closing tags and tags in head section), if it is not, then the token is

pushed to a vector for further processing. Then it goes for the next token obtained from tokenizer.

Figure 3. List of self-closing tags

2.2. Determining the missing opening tags in the input string

Consider the input string as last N kilobytes of HTML shown in Figure 4. Tokenization of the input

generates the set of vectors shown in Figure 5. The vector of tokens is reversed. For each token in the vector

if it is an ending or closing tag it is pushed to the stack, if it is a starting or opening tag the token at the top of

the stack is popped after checking if it has the same name as shown in Figure 6.

Figure 4. Input string to the SLI framework

Figure 5. Vector of tokens

Figure 6. Stack after push and pop of tags

IAES Int J Rob & Autom ISSN: 2722-2586 

Script late injection: a framework to introduce JavaScript into web pages (Bhanu Prakash)

101

Now the tokens remaining in stack are those ending tags which do not have corresponding starting

tags. Until the stack is empty, each token is popped, and corresponding starting tag is appended to the vector

of tokens as shown in Figure 7. This forms the vector of tokens which contains “proper” HTML content.

Now reverse these tokens again. An empty string is initialized. For each token in vector, if it is a starting tag

string of “<“+name+“>” is appended to string, else, string of “</”+name+”>” is pushed to string which

gives the preprocessed string. Finally, the pair of original vectors of tokens and the preprocessed string is

returned as shown in Figure 8.

Figure 7. Vector of tokens

Figure 8. Proper HTML string

2.3. Determination of resultant token and warning flag

A variable for resultant token is initialized to end of the file if </html> is absent. Otherwise, it is

initialized to </html>. Tokenize the tags again by the approach explained in previous step. Again, using the

same approach pop closing tags for encountering its corresponding opening tags until the stack is empty, if

the last token popped is </body> then it is initialized as resultant token. In other cases of resultant token

warning is raised. Warning flag is raised if any of the conditions given in Table 1 is true. Position of result

token and warning flag is returned as output from the algorithm. For the given example string the result is:

(21, false).

Table 1. Conditions for raising warning flag
Sl. No. Condition

1 If body token is not the result token.

2 If there are more than one body tags
3 If html end tag is absent

4 If there are trailing data (comments, html data) after end of body tag or html tag

5 If there are attributes in html or body end tags (which is uncommon)

3. RESULTS AND DISCUSSION

After the development of this framework, it was important to make sure it works not only against the

standard HTML endings but also for the variety of classes of tags defined in Table 2. A repository classifying

500,000 most used websites into these categories was prepared in the preliminary stages of this project. The

“*” indicates the position of injection and “(…)” indicates the rest of the data. Therefore, Google test was

used to test the SLI framework. Unit tests were developed for all varieties of page endings found in the

Table 2 which are verified against the result from the SLI framework. The position of injection as well as

warning is checked.

Miscellaneous tags like nested body tags are also tested. Fuzzing tests are written with the help of

Domato, an open-source DOM fuzzer from google which generates HTML string in run time. Custom HTML

strings are also generated by Domato just by changing the configurations in the template file, and tested.

Component tests were written for the methods defined in the framework which were responsible for

preprocessing the HTML string, and to determine the trailing tags, attributes, or comments to raise the warning.

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 1, March 2024: 96-104

102

Table 2. Varieties of HTML endings
Sl. No. Type of Ending Example

1 Basic (…) *</body>/html>
2 Trailing data with html tags (…) *</body>/html>XPM

3 Trailing data with comments (…) *</body><!-- hi -->/html>><!-- hi -->

4 Implicit (…) *</html>
5 Multiple body tags within and out

of comments/scripts

(…) </body>(…)><!--(…<body> and </body>)(…) -->(…)*</body></html>

(…)<script>document.write(“(…)</body></html>“)</script>*</body></html>

As mentioned in introduction section, standard approaches for script injection that were used so far

are page modify parser and find and replace. Page modify Parser tokenizes entire HTML page into set of

tokens then identifies the point of injection as specified by the metadata in the request received or the

configurations in the proxy. Later, it injects the script at the identified position. For example, if the metadata

indicates to inject before </body>, then <script>...</script> will be injected before that. Find and Replace

approach considers the entire page as plain text then processes the page character by character to find the

required tag to replace. Later, it will be replaced with concatenation of script that is to be injected and

original tag. For example, if the metadata indicates to inject before </body>, then it will be replaced with

<script>...</script></body>.

It is important for any computer algorithm, especially for the one that operates on the fly and has

significant impact on user experience to be efficient and reliable. To measure the efficiency, web pages of

size from 500 kB to 4 MB are considered. On each of these web pages, injection of JavaScript at the end of

the body tag is performed using script late injection parser, page modify parser and find and replace parser

respectively. Space efficiency and time efficiency of approaches to script injection is shown in Figure 9 and

Figure 10 respectively. Each of the data point represents arithmetic mean over twenty iterations. For a web

page of size 2 MB, script late injection takes 207872 bytes to complete the transformation, page modify

parser takes 7261923 bytes to complete the transformation, while find and replace takes 4034205 bytes to

complete the transformation. For a web page of size 2 MB, script late injection takes 0.004132 seconds to

complete the transformation, page modify parser takes 0.01545 seconds to complete the transformation,

while find and replace takes 0.03456 seconds to complete the transformation. From both point of analysis

script late injection parser performs way better than other two parsers. From the above analysis, it is vividly

justified that script late injection is better than other two approaches in both time and space efficiencies.

The limitation of this approach is, if the window picks last 10 kilobytes from the arithmetic ‘<’ or

‘>’ symbol in the JavaScript section of the HTML page, there might be problem to determine the tags. This is

because the tokenizer considers ‘<’ as start of a HTML tag. The subsequent stream of characters is treated as

name of the tag until ‘>’ symbol is discovered again. This might cause the tokenizer to crash or generate

erroneous opening tag. Consider the following example <script> if (x<y) console.log(“hi”) </script>. In

this case the tokenizer finds tags as <script>, < y) console.log(“hi”) </script>while the expected tags are

<script>,</script>. This problem is handled by using a static map at present which contains all the existing

HTML tags, but this cannot be a permanent solution as HTML tags can depreciate or new tags can be added

over time which might be ignored by the tokenizer.

Figure 9. Space efficiency of approaches to script injection

IAES Int J Rob & Autom ISSN: 2722-2586 

Script late injection: a framework to introduce JavaScript into web pages (Bhanu Prakash)

103

Figure 10. Time efficiency of approaches to script injection

4. CONCLUSION

In this research paper a novel approach was proposed for script injection to the web pages by proxy

servers for security and other purposes. The framework designed is not only faster than other two approaches

but also is cheaper in terms of computational cost. This approach of injection executes the JavaScript once

the complete page is loaded and hence it retrieves the maximum information from the end user with minimal

impact on their performance. The results conclusively show that the SLI parser performs better than the

conventional parsers that are present in the industry. Future enhancements can be done to eliminate the

limitation of this approach.

ACKNOWLEDGEMENTS
I would like to offer my profound gratitude to Mr. Krzysztof Baczkowski and Mrs. Ramya Naidu,

supervisors of my work, for their valuable guidance, relentless support, and constructive criticism on this

research project. I likewise want to thank Dr. Sandhya S, for her recommendation and help with keeping my

project on track with time. My sincere gratitude also to Akamai Technologies who gave me the opportunity

to work on this project.

REFERENCES
[1] T. O’Reilly, “What is web 2.0?: design patterns and business models for the next generation of software,” The Social Media

Reader, pp. 32–52, 2012.

[2] J. Mao et al., “Detecting malicious behaviors in JavaScript applications,” IEEE Access, vol. 6, pp. 12284–12294, 2018, doi:
10.1109/ACCESS.2018.2795383.

[3] Y. Li, P. Han, C. Liu, and B. Fang, “Automatically crawling dynamic web applications via proxy-based JavaScript injection and

runtime analysis,” in 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), Jun. 2018, pp. 242–249,
doi: 10.1109/DSC.2018.00042.

[4] S. Kanrar and N. K. Mandal, “Traffic analysis and control at proxy server,” in 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS), Jun. 2017, pp. 164–167, doi: 10.1109/ICCONS.2017.8250702.

[5] K. R. Kishore, M. Mallesh, G. Jyostna, P. R. L. Eswari, and S. S. Sarma, “Browser JS Guard: detects and defends against

Malicious JavaScript injection based drive by download attacks,” in The Fifth International Conference on the Applications of
Digital Information and Web Technologies (ICADIWT 2014), Feb. 2014, pp. 92–100, doi: 10.1109/ICADIWT.2014.6814705.

[6] A. Barua, M. Zulkernine, and K. Weldemariam, “Protecting web browser extensions from JavaScript injection attacks,” in 2013 18th

International Conference on Engineering of Complex Computer Systems, Jul. 2013, pp. 188–197, doi: 10.1109/ICECCS.2013.36.
[7] A. Barua, H. Shahriar, and M. Zulkernine, “Server side detection of content sniffing attacks,” in 2011 IEEE 22nd International

Symposium on Software Reliability Engineering, Nov. 2011, pp. 20–29, doi: 10.1109/ISSRE.2011.27.

[8] H. Shahriar and M. Zulkernine, “Injecting comments to detect JavaScript code injection attacks,” in 2011 IEEE 35th Annual
Computer Software and Applications Conference Workshops, Jul. 2011, pp. 104–109, doi: 10.1109/COMPSACW.2011.27.

[9] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy, “Verified security for browser extensions,” in 2011 IEEE Symposium on

Security and Privacy, May 2011, pp. 115–130, doi: 10.1109/SP.2011.36.
[10] A. Barth, J. Caballero, and D. Song, “Secure content sniffing for web browsers, or how to stop papers from reviewing

themselves,” in 2009 30th IEEE Symposium on Security and Privacy, May 2009, pp. 360–371, doi: 10.1109/SP.2009.3.

[11] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “SWAP: mitigating XSS attacks using a reverse proxy,” in 2009
ICSE Workshop on Software Engineering for Secure Systems, May 2009, pp. 33–39, doi: 10.1109/IWSESS.2009.5068456.

[12] M. Dhawan and V. Ganapathy, “Analyzing information flow in JavaScript-based browser extensions,” in 2009 Annual Computer

Security Applications Conference, Dec. 2009, pp. 382–391, doi: 10.1109/ACSAC.2009.43.

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 1, March 2024: 96-104

104

[13] B. Liang, J. Huang, F. Liu, D. Wang, D. Dong, and Z. Liang, “Malicious web pages detection based on abnormal visibility

recognition,” in 2009 International Conference on E-Business and Information System Security, May 2009, pp. 1–5, doi:
10.1109/EBISS.2009.5138008.

[14] X. Li, J. Li, H. Xie, and C. Chi, “Modes of real-time content transformation for web intermediaries in active network,” in 2005

IEEE 7th Workshop on Multimedia Signal Processing, Oct. 2005, pp. 1–4, doi: 10.1109/MMSP.2005.248558.
[15] W. V. Wathsala, B. Siddhisena, and A. S. Athukorale, “Next generation proxy servers,” in 2008 10th International Conference on

Advanced Communication Technology, Feb. 2008, pp. 2183–2187, doi: 10.1109/ICACT.2008.4494223.

[16] A. Balamash and M. Krunz, “An overview of web caching replacement algorithms,” IEEE Communications Surveys & Tutorials,
vol. 6, no. 2, pp. 44–56, 2004, doi: 10.1109/COMST.2004.5342239.

[17] H. Bahn, K. Koh, S. H. Noh, and S. M. Lyul, “Efficient replacement of nonuniform objects in Web caches,” Computer, vol. 35,

no. 6, pp. 65–73, Jun. 2002, doi: 10.1109/MC.2002.1009170.
[18] G. Cao, “A scalable low-latency cache invalidation strategy for mobile environments,” IEEE Transactions on Knowledge and

Data Engineering, vol. 15, no. 5, pp. 1251–1265, Sep. 2003, doi: 10.1109/TKDE.2003.1232276.

[19] S. Gitzenis and N. Bambos, “Power-controlled data prefetching/caching in wireless packet networks,” in Proceedings Twenty-
First Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1405–1414, doi:

10.1109/INFCOM.2002.1019391.

[20] C. C. Hung and L. Y. Hong, “Adaptive proxy-based content transformation framework for the world-wide web,” in Proceedings
Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, 2000, pp. 747–750,

vol. 2, doi: 10.1109/HPC.2000.843537.

[21] J. Shim, P. Scheuermann and R. Vingralek, “Proxy cache algorithms: design, implementation, and performance,” in IEEE
Transactions on Knowledge and Data Engineering, vol. 11, no. 4, pp. 549-562, 1999, doi: 10.1109/69.790804.

[22] C. C. Hung and L. Yan-Hong, “Dynamic application-level bandwidth negotiations for WWW,” Proceedings Fourth International

Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, 2000, pp. 726-731 vol. 2, doi:
10.1109/HPC.2000.843534.

[23] V. Almeida, A. Bestavros, M. Crovella and A. de Oliveira, “Characterizing reference locality in the WWW,” Fourth International
Conference on Parallel and Distributed Information Systems, 1996, pp. 92-103, doi: 10.1109/PDIS.1996.568672.

[24] A. Bestavros, “Speculative data dissemination and service to reduce server load, network traffic and service time in distributed

information systems,” Proceedings of the Twelfth International Conference on Data Engineering, 1996, pp. 180-187, doi:
10.1109/ICDE.1996.492104.

[25] R. Guerin, H. Ahmadi and M. Naghshineh, “Equivalent capacity and its application to bandwidth allocation in high-speed

networks,” in IEEE Journal on Selected Areas in Communications, vol. 9, no. 7, pp. 968-981, Sept. 1991, doi:
10.1109/49.103545.

[26] M. Hagan, F. Siddiqui and S. Sezer, “Enhancing security and privacy of next-generation edge computing technologies,” 2019

17th International Conference on Privacy, Security and Trust (PST), 2019, pp. 1-5, doi:10.1109/PST47121.2019.8949052.

BIOGRAPHIES OF AUTHORS

Bhanu Prakash is working as a software engineer with the Security Ghost

Team, in application security subdivision of Security Technology Group, Akamai

Technologies. Bhanu holds a Bachelor of Engineering degree in computer science from

Rashtreeya Vidyalaya College of Engineering, Bangalore. His research interests include

application security, machine learning at edge, and threat analysis. Bhanu Prakash has

significant contributions in development, verification, and continuous monitoring of security

features of Akmai Edge. He has been awarded with Certificate of Excellence for completion

of Project from Samsung PRISM during April 2021 to Feb 2022. He can be contacted at:

bhprakas@akamai.com.

Sandhya Sampangiramaiah is working as an assistant professor (senior

scale) in the Department of Computer Science and Engineering, RV College of Engineering.

Her research interests include networking, genetic algorithm and optimization, security, deep

learning, and high-performance computing. She has worked on consultancy projects funded

by Cisco Pvt Ltd., Citrix R&D India Pvt., Samsung Pvt Ltd. She is currently working on a

research project funded by the Government of Karnataka’s K-Tech Centre of Excellence in

Cybersecurity (CySecK). She has published more than 25 paper publications in both

international journals and international conferences. She is working as member of editorial

board in open access peer reviewed international journals and worked as reviewer for several

IEEE international conferences and Scopus journals. She has worked as Advisory/Technical

Program Committee Member and has been session chair for several IEEE international

conferences. She has been Awarded Certificate of Excellence for completion of project from

Samsung PRISM during January 2021 to February 2022. She can be contacted at:

sandhya.sampangi@rvce.edu.in.

mailto:bhprakas@akamai.com
mailto:sandhya.sampangi@rvce.edu.in
https://orcid.org/0000-0002-1370-1282
https://scholar.google.com/citations?user=H1ciRQ4AAAAJ
https://www.webofscience.com/wos/author/record/GNM-8490-2022
https://orcid.org/0000-0002-9512-6575
https://scholar.google.co.in/citations?user=vAzXisoAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=35185484500
https://www.webofscience.com/wos/author/record/O-6978-2016

