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 Solid waste management is one of the critical challenges seen everywhere, 

and the coronavirus disease (COVID-19) pandemic has only worsened the 

problems in the safe disposal of infectious waste. This paper outlines a design 

for a mobile robot that will intelligently identify, grasp, and collect a group of 

medical waste items using a six-degree of freedom (DoF) arm, You Only Look 

Once (YOLO) neural network, and a grasping algorithm. Various designs are 

generated before running simulations on the selected virtual model using 

Robot Operating System (ROS) and Gazebo simulator. A lidar sensor is also 

used to map the robot's surroundings and navigate autonomously. The robot 

has good scope for waste collection in medical facilities, where it can help 

create a safer environment. 
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1. INTRODUCTION 

In many developing and even some developed countries, the novel coronavirus disease (COVID-19) 

has overburdened the public healthcare system. First reported in Wuhan, China, in December 2019, the 

pandemic continues to be a significant public health threat worldwide [1]. With the pandemic prolonging its 

stay, there are many hospitalizations. In addition to ensuring proper treatment of the infected patients, it 

becomes crucial to manage the healthcare waste properly. It is common to see used face masks, plastic bags, 

bottles, gloves, personal protective equipment (PPE), and other dangerous waste materials littered in public 

areas [2]. Due to the highly transmissible nature of the disease, medical waste could harbor coronavirus and 

other infectious pathogens, putting healthcare workers and citizens at risk, and raising several challenges in the 

safe disposal of affected waste [3]. This brings forth the importance of having an autonomous waste collection 

system to reduce physical contact between the worker and the waste to reduce contracting an infectious disease. 

An autonomous robot helps guarantee compliance with social distancing measures likely to remain in place 

after the COVID-19 crisis. Research in robotic technology shows the capability of robots to aid humans in 

performing hazardous tasks and rescue services in real-time [4]. Similarly, various researchers have suggested 

using robotic systems for waste collection and sorting to minimize the risk of infection [5]. Visual technology 

and computer vision advancements have become practical tools for robots to sense the external environment 

[6]. Simulation studies are significant for robot programmers to assess and predict the behavior of the robot. It 

also aids in verifying and optimizing the process path planning of the robot [7], [8]. Research has been 

conducted into making smarter robotic systems that can learn to process various new data for manufacturing 

and other industries [9]. 

https://creativecommons.org/licenses/by-sa/4.0/
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This work explains the development of an autonomous vision-based multi-terrain waste collection 

robot to collect infectious healthcare waste in hospitals. To reduce direct human interaction with contagious 

environments, this work integrates soft computing techniques and features such as neural network-based 

computer vision, motor-controlled robotic manipulator for accurate pick and place operation, object grasping 

by sensing depth, autonomous navigation, and obstacle avoidance in real-time. In previous work in robotic 

cleaning, Sivakumar et al. [10] indicated simple ultrasonic sensors for navigation and incorporates a vacuum 

suction mechanism to collect waste. This requires a high-powered motor and a bigger battery to power the 

mobile robot. This increases the weight of the robot and poses limitations on the size and weight of objects that 

get picked up and is dependent on the size of the vacuum hose and the motor power rating. Our research 

presents an improved waste collection mechanism with replacing the collection of waste items by vacuum 

suction with a gripper-based approach. The navigation mechanism is also improved by adding a lidar range 

sensor to sense the environment better and help create a map for navigation. Sengupta et al. [11] also used 

ultrasonic sensors for their robot to navigate the environment but have experimented with a neural network for 

object detection. A neural network helps identify waste objects better, but its full potential is realized when 

combined with a gripper. Our research adds a robotic gripper mechanism combined with a vision system and 

a trained neural network to produce a mobile unit that delivers more efficient waste collection. 

A design for the robot will be finalized after considering different parameters that directly affect the 

working of the robot. Finite element analysis (FEA) tools will need to be utilized to ensure that the robot frame 

can withstand the necessary loads. Different materials and their yielding characteristics will be studied to 

choose a suitable material for the frame. The robot operating system (ROS) has good potential to be used as 

the brain and command center of the robot due to the vast amount of software packages and customization it 

offers. Chitta et al. [12] detailed the implementation of the ros_control framework within the ROS and how it 

can be used to establish communication between various hardware controllers and programs like MoveIt and 

ROS Navigation Stack to enact path planning for arm and autonomous navigation, respectively. Since 

ros_control is robot-agnostic, it should be able to help create a control mechanism for this proposed robot. 

Gorner et al. [13] detailed the use of the task constructor within MoveIt software in setting tasks for planning 

actions or motions for the arm or its components. Furthermore, Hernandez-Mendez et al. [14] showed 

successful utilization of MoveIt for object grasping using a three degree of freedom (DoF) arm. This paper 

plans to apply MoveIt and its Task Constructor to accurately move a six DoF arm and execute each motion 

task in its order. MoveIt's integration with the Gazebo and Rviz helps test and simulate the working of the arm 

in a virtual environment considering all physical parameters like gravity, inertia, etc. To implement computer 

vision and object detection, this paper explores the flexibility and efficiency of the you only look once (YOLO) 

algorithm, first designed by Redmon et al. [15]. Bochkovsky et al. [16] improved upon the work of Redmon, 

with the YOLO algorithm with improvements in the speed and accuracy of object detection. This network will 

be studied to determine its efficiency when running on a low-power computing unit with a custom-trained 

dataset. Pas et al. [17] described their breakthrough in creating a very accurate object grasping algorithm that 

can work with parallel and suction grippers. This work aims to combine the grasping algorithm with MoveIt 

and establish a successful grasping action of the waste object. 

The research contribution here is implementing a design approach that creates a compact, rugged, and 

reliable robot while combining different navigation and vision sensors using software that is easily configurable 

and adaptable to the needs of the robotic system. This paper also contributes to the knowledge pool of robotic 

grasping by showcasing efficient robot grasping on low-power computers with fast object detection and 

accurate grasping. This paper is organized as follows. The conceptual designs are explored in section 2, 

followed by their structural design and FEA in section 3. A description of the motor control and the simulation 

study performed for the robot control is explained in section 4. Finally, the conclusions derived and the scope 

for future work are presented in section 5. 

 

 

2. CONCEPTUAL DESIGN AND SELECTION 

Based on the application, many criteria exist for designing a suitable robot. This section explains the 

various conceptual designs proposed for the waste collection robot and explores the parameters used to judge 

the different concepts. Figure 1 showcases four robot concept designs proposed for waste collection, 

incorporating arm and wheel variations. The designs were modeled using SolidWorks modeling software and 

scored and ranked on various parameters to choose the most appropriate design. 

SolidWorks was selected due to the ease of modeling and exporting the design to a unified robotics 

description format (URDF) format, and the variety of modeling and FEA tools offered [18]. All designs feature 

an onboard bin to collect the grasped waste items. The depth camera is placed on a raised cylindrical pedestal 

for a wider-angle view of the ground. A lidar sensor is placed between the camera and the robotic manipulator. 

The continuous tracked and conventional wheel mobile bases were considered during the design stage for the 
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robot locomotion. Legged robots were not considered since they have a more complicated control architecture 

and are expensive. Continuous tracks enable the robot to traverse rough and uneven terrain with low effort. 

However, the added weight on tracks would pose a challenge in providing the necessary power to the robot. 

Wheeled designs help the robot move quickly within indoor environments. Since this study focuses on indoor 

applications, wheeled robots are preferred over the tracked robot base. A six DoF robotic arm is desired to suit 

the pick-and-place application of biological and non-biological waste materials. The robot manipulator uses a 

gripper to easily grip waste materials like used masks, syringes, tissue paper, water bottles, plastic bags, and 

other materials. A four-bar linkage mechanism for the end effector provides a smooth open-close action [19]. 

Table 1 lists the various characteristics considered during the concept selection phase. 

 

 

Concept 1 Concept 2 

  
  

Concept 3 Concept 4 

  
 

Figure 1. CAD model of the various conceptual designs 

 

 

Table 1. Concept scoring and selection criteria 

Selection Criteria 
Conceptual Design Alternatives 

Concept 1 Concept 2 Concept 3 Concept 4 

Ease of Mobility 0.4 0.5 0.8 0.9 

Manufacturability 0.3 0.4 0.5 0.6 
Stability and Controllability 0.4 0.4 0.5 0.8 

Weight 0.3 0.4 0.7 0.8 

Workspace 0.6 0.7 0.6 0.7 
Score/continue 2/No 2.4/No 3.1/No 3.8/Yes 

 

 

Table 1 lists the scores corresponding to each concept design for five different parameters. These 

parameters include ease of mobility, manufacturability, stability and controllability, weight, and workspace. 

Concepts 1 and 3, from Figure 1, flaunts a six DoF cylindrical link design that focuses on easily navigating 

through narrow spaces. The major drawback of this design is the difficulty in clamping the motors and 

increased link weight over the arm. On the other hand, concepts 2 and 4 employ a six DOF rectangular link 

design with reduced link weight and enough sturdiness to hold the motors without much deflection. From the 

four design concepts, concept 4 was chosen as it had the best score out of all five parameters. The robot's design 

is vital to its longevity and allows for surface area allocation for various other robot parts. The design easily 

accommodates motor placement for movement, camera position for object recognition, mobility 

characteristics, and arm placement for optimal waste grasping. 

 

 

3. STRUCTURAL DESIGN AND ANALYSIS 

As described in the previous section, the proposed robot consists of two sub-parts: the robotic arm 

and chassis. It is intended to fabricate the six DoF arm using the additive manufacturing technique to lower the 

overall cost of the robot while maintaining a solid structure. Polylactic acid is considered a good option as the 

material for the robotic arm due to its being biodegradable, having good mechanical strength and wear 
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resistance, and being readily available [20]. The workspace of the robotic manipulator is analyzed through 

motion analysis in computer-aided design (CAD) software. The moment acting at the joint is maximum in its 

outstretched configuration. Hence, a simple moment-based approach reduces complexity in inverse dynamics. 

This inverse dynamic model is necessary to decide the suitable actuator for every joint. The moveable base of 

the robot is designed to have a cuboidal shape with a generous amount of surface area on top to house the bin, 

robotic manipulator, camera with its mount, laser, and other electronic components. The dimensions for the 

chassis are decided based on a static structural analysis performed in the FEA tool in SolidWorks. The results 

show that a structural cage made of Mild Steel (ASTM A36 Steel) with dimensions 1×1 inch and a thickness 

of 1.6 mm exhibits minimal deformation and stresses induced. Table 2 shows the material properties of ASTM 

A36 steel. This steel, containing 0.29% carbon per weight, is easily weldable, ductile, and strong enough to 

handle heavy loads. 

 

 

Table 2. Material properties of ASTM A36 steel 
Property Value 

Density 7.85 10-6 kg/mm3 
Young's Modulus 200,000 MPa 

Poisson's Ratio 0.26 

Yield Strength 250 MPa 
Ultimate Tensile Strength 400 MPa 

 

 

Figures 2(a) and 2(b) show the static structural analysis results for the chassis. Two middle beams on 

the chassis are subjected to a load of 900 N, while a static load of 400 N is applied on the road wheel shaft. 

Von Mises stress criterion is used to analyze yielding in the metal. The analysis results show that the maximum 

stress induced within the structure is within the safe limits of the material. This work employs the 24 V 

brushless direct current (BLDC) motors to drive the robot, considering its benefits such as high-power density, 

reduced weight, compact build, and low maintenance [21]. Six servo motors are used to provide actuation to 

the robotic arm. They are the MG995, MG996R, and MG959 servo motors. The advantages of these motors 

are their small size, lightweight build, and the provision for closed feedback control to obtain accurate motions. 

 

 

 
(a) 

 
(b) 

 

Figure 2. FEA results of chassis, in the maximum and minimum (a) stresses and (b) deformation 
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4. ROBOT CONTROL AND SIMULATION STUDY 

The simulation study of the robot control is performed on the ROS Melodic platform in an Ubuntu 

18.04. ROS enables easy connection and interfacing between the various hardware. When flashed onto a low-

cost single board computer like Jetson Nano, this distribution creates a portable computing platform that 

enables the operator to control and guide the robot, including from a remote location. Simulation of the robot 

in a virtual environment is necessary before implementing the design onto the appropriate hardware devices. 

Gazebo Simulator was chosen as the virtual environment for testing the robot code as it is easily compatible 

with ROS and can also emulate real-world physics [22]. Figure 3 shows the data flow diagram of the proposed 

waste collection robot. It illustrates how control is centralized into the Jetson Nano computer and how data 

flows between the Arduino and the Jetson Nano. A motor driver accepts velocity and other parameters from the 

Arduino controller, sent out by the ROS program on the Jetson Nano and actuates the motor [23], [24]. 

 

 

 
 

Figure 3. Data flow diagram of the waste collection robot 

 

 

The ROS_control package takes input regarding the position of links from the Joint State Interface. 

These are passed to the Joint State Publisher, which publishes the position of the links via the joint_state topic. 

For creating a motion trajectory for the arm, the joint states of each joint are read by a motion planning program, 

and a trajectory is created for the arm to reach the goal pose. The details of joint positions to be followed are 

sent to the Joint Trajectory Controller, which transmits the necessary effort, position, and velocity values to 

move each joint in the simulated as well as a real hardware interface. Interfacing of ROS with the motors and 

microcontroller is established using the MoveIt Motion Planning Framework [12]. 

The MoveIt program, designed by PikNik Robotics, has native support in ROS and can perform 

complex tasks such as motion planning, collision avoidance, inverse kinematics, control, and 3D perception 

for robotic manipulators and grippers. The CAD model is exported to the MoveIt Setup Assistant platform as 

a URDF file. The robot's physical parameters, such as gravity, frictional coefficients, and collision occurrence, 

are computed based on the defined geometry. To generate a collision-free path, MoveIt uses the open motion 

planning library (OMPL) and adds a collision detection module using a 3D representation of the robot's 

workspace [25], [26]. 

The first step with this package is to calculate the self-collision matrix that checks and describes 

whether a link collides with every other link. The sample size for generating a collision matrix ranges from 

10,000 to 100,000, with higher values enabling better collision checking. Hence, the largest sample size was 

chosen for self-collision checking in this study. The 3D perception module facilitates a three-dimensional 

vision sensor in the robot model. In this study, for simulation, the depth topic of the Kinect 3D camera is 

defined for obtaining point clouds from Gazebo simulated environment and connecting the same to MoveIt 

Rviz Visualizer. Motion planning for the manipulator is done with the help of the joint state, joint position, and 
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joint trajectory controllers. The joint state controller fetches information regarding the current state of each 

joint from the hardware interface and sends them to the controller manager. MoveIt module takes the data, 

calculates the path to the goal pose from the current pose, creates a trajectory for the arm to follow, and 

commands the Joint Position Controllers to move each joint accordingly. Figure 4(a) shows the robotic arm in 

the MoveIt platform during motion planning. The start and goal pose of the arm are shown in green and orange 

colors, respectively. Figure 4(b) depicts the arm moving around a cylindrical obstacle to avoid a collision. The 

depth sensor aids in creating an Octomap within MoveIt to help the arm since the obstacle. The position 

controllers are a better option than other controllers such as effort controllers due to the heavy arm vibrations 

caused by the latter. Joint Trajectory Controllers use proportional integral derivative (PID) loops to send 

commands to the joint actuators via a Hardware Interface that communicates with the Arduino microcontroller 

and motor driver. The controller inputs the joint efforts, velocities, and the lower and upper limits specified in 

the URDF file. These values are used to operate each joint within a safe range of movement, helping prevent 

collision between adjacent links. 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. Motion planning for arm in MoveIt platform: (a) start and goal poses of arm and (b) obstacle 

avoidance of arm 
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Collision-aware IK ensures that the arm does not collide with any obstacle scanned by the depth 

sensor. R.O.S. is equipped with a navigation stack that can navigate the robot within a map. The three necessary 

steps involved with autonomous navigation are to create an environment map, to localize the robot within the 

map, and create path planning for navigation to the desired location. 

The navigation stack accepts laser sensor data, environment maps from the map server, and odometry 

data. These are fed into various cost maps, which help fine-tune the parameters before sending a cmd_vel 

message to the robot base controller.  

This study applies the differential drive controller compatible with the ROS navigation stack and 

enables easy control and steering of the vehicle using the cmd_vel ROS topic. The primary input values taken 

by this controller include the names of left and right wheel joints, wheel radius, track width, and base frame 

name. This controller uses a PID controller to receive feedback from the encoder of the left and right motors 

and provide commands to the same [27]. The complete robot model is spawned in the Gazebo simulator along 

with the desired world to be mapped. A map was created in the turtlebot_playground world from the Turtlebot 

robot package and built-in cafe world within Gazebo. The environments were mapped by fixing a Hokuyo laser 

range finder on top of the base frame of the robot, and robot movement was initiated with the help of the 

turtlebot_teleop ROS package, which brings up key bindings for moving the robot for map creation. The laser 

creates scans of its surrounding objects and passes these scans into the Rviz visualizer [28]. The mapping 

technique here is G mapping which utilizes Rao-Blackwellized particle filters for learning grid maps [29]. The 

occupancy map shows a blueprint of the objects and boundaries in the environment. This information is stored 

as an image file and is accompanied by a YAML file pointing to the created map. The navigation stack uses 

the adaptive Monte Carlo localization algorithm to localize the robot within the map. It is a technique that 

involves using particles, which converge as the robot moves, to identify its position and orientation [30]. 

Figure 5 shows the map creation of the proposed robot in the Gazebo environment. The 2D Pose 

Estimate tool in Rviz is used to orient the robot on the map to face the same direction as the robot in the gazebo 

world. The 2D Nav Goal tool, shown as a purple arrow in the figure, is used to set the direction the robot needs 

to move and the endpoint it needs to reach. Laser data from the Hokuyo lidar sensor, displayed as a thick red 

line, helps avoid obstacles newly introduced into the map [31]. 

 

 

 
 

Figure 5. Map creation and path planning simulation in Gazebo environment 

 

 

Local and global cost maps store data regarding the proximity of obstacles locally and globally and 

aid in path planning. Common cost maps contain information common to both cost maps, such as obstacle 

range and inflation radius: parameters that decide how far away an obstacle must be detected and kept in 

memory for creating a new map. Similarly, a transformation tree (tf) shows how the coordinate frame of each 

link relates to the adjacent and base links. It allows information on individual coordinate frames to be viewed 

as a scene graph. In the case of a gripper, tf translates the coordinate position of the gripper from the viewpoint 

of the depth camera to that of the baseline or robot_footprint links. This way, motion planning can be easily 

performed, and the entire arm can be moved to grasp an object from the base onward. 
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Object detection is the crucial element that helps the robot identify waste objects before initiating 

grasping action. Several researchers have used neural networks, which can be trained to detect objects from a 

specific dataset. For instance, Li et al. [32] have used the YOLOv3 neural network to identify plastic objects 

in water bodies to help combat water pollution. Moreover, works by Ayoub and Schneider [33]. Have used the 

YOLO algorithm to successfully detect faults on power lines using a unmanned aerial vehicles (UAV). This 

leads us to believe that the YOLO algorithm is more than capable of easily handling various object detection 

tasks. For this research, several variations of the YOLO neural network were tested, and they were compared 

for speed, accuracy, and computational efficiency. It was observed that YOLOv4-tiny deep neural networks 

(DNN) having 416 layers and TensorRT support, could deliver faster detection and utilize less computing 

power to deliver detection results [16]. Table 3 lists the number of images used in this study to train the network. 

The training dataset contained several images of 7 objects: a syringe, glove, mask, bottle, plastic bag, paper 

cup and paper. The training was performed on an Nvidia GTX 1060 GPU, and the transfer learning technique 

was used to train the custom dataset using pre-trained weights. Table 4 shows the four different neural networks 

tested against the dataset and the obtained frames per second (FPS) when these programs were run on the Jetson 

Nano. 

 
 

Table 3. Details of training dataset 
Class Name Number of Images 

Gloves 105 

Mask 80 

Paper Cup 89 
Plastic Bag 94 

Bottle 68 

Paper 57 
Syringe 94 

 
 

Table 4. FPS comparison of various neural networks 
Network Used Obtained FPS 

YOLOv3 6 

YOLOv3-tiny-prn 8 
YOLOv4 13.6 

YOLOv4-tiny-416 24 

 

 

Figure 6 depicts the graph of loss vs the number of iterations. The training was run for 6,200 iterations, 

where an average total loss of 1.0529 was obtained. The training was stopped when a reasonable level of 

prediction accuracy, more than 60%, was observed. Using more images for the training dataset and a validation 

dataset may further improve detection accuracy. Figure 7 shows the bounding boxes and confidence scores of 

some of the trained objects detected by the YOLOv4 DNN when tested with a group of test images. 

 

 

 
 

Figure 6. Loss versus iteration number during training 
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Used Syringes Gloves And Mask 

  
  

Used Bottles Used Tissue Paper 

  
 

Figure 7. Result of object detection using trained YOLOv4 
 

 

After the neural network detects a trained waste object, the grasping algorithm's job coupled with 

MoveIt motion planning is to initiate the movement of the arm to object coordinates and execute a successful 

grasping action before moving it to the onboard bin. The Realsense D415 stereo camera sensor attached to the 

robot frame can capture and enhance accurate depth data. The depth data is collected in a point cloud format, 

which can capture the dimensions and physical identity of the object for easy grasping. MoveIt reads this point 

cloud data via the pointcloud2 depth topic published by the camera. Figure 8 shows a simulated depth camera 

that detects primitive shapes in front of the robot in the Gazebo simulator and sends their point cloud data to 

Moveit [34]. The grasp pose detection algorithm analyzes the point cloud and predicts the best gripper pose for 

picking the object and placing it in the bin. The grasp pose detection algorithm analyzes the point cloud. It 

detects the narrowest area where the fingers of the gripper can accurately attach themselves without slipping 

and further lifts the object. The algorithm achieves a 93% success rate and can grasp objects even from dense 

clutter [17]. It generates all possible grasp combinations based on the object's geometry and executes a pose 

with the highest probabilistic success score. 
 

 

 
 

Figure 8. Primitive shapes for object detection 
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Figure 9 shows the five different grasp possibilities arranged from grasp0 to grasp4 from the point 

cloud of a cylindrical object and sends the grasping coordinates with the highest probability of grasping to 

Moveit. The ROS tf tree helps transform the coordinates of detected objects with respect to the grasping claw 

for quickly calculating the direct path to the object. The velocity requirements for the servo motors of the arm 

to move the gripper to the desired locations are relayed through the ros_serial server to the Arduino 

microcontroller, then to the motor driver, eventually actuating the motor. 

 

 

 
 

Figure 9. Point cloud of a cylinder and grasp predictions 

 

 

5. CONCLUSION AND SCOPE FOR FUTURE WORK 

This paper explains the conceptual design and simulation of a waste collection robot. Several 

mechanical designs were generated and studied before a wheeled base was chosen for the robot. The FEA and 

simulations on the robot frame showed that the robot could carry loads up to 900N with very low deflection, 

proving that the material selection was apt. The BLDC motor selected was also adequate to drive the robot at 

a decent velocity in the Gazebo simulator. The servo motors for the arm were found capable of providing 

enough torque to perform pick and place action on the waste item. 

The robot can prove helpful in places requiring additional care due to contamination or other health 

hazards. Its ability to be trained gives the robot greater flexibility for use in more varied fields such as 

construction and manufacturing for monitoring and ensuring that the work environments are safe and clean. 

The advent of Industry 4.0 has only accelerated the use of robotic and intelligent systems in all aspects of 

modern life. This robot can help push the need for a safer approach to dealing with waste. 

Future navigation improvements may include using a more advanced mapping algorithm such as 

Hector simultaneous localization and mapping (SLAM) or real-time appearance based (RTAB) mapping to 

ensure better performance when navigating unknown areas. Even though this requires a more powerful 

computer than a single board computer such as a Jetson Nano or Raspberry Pi, this algorithm uses more reliable 

point cloud data for map construction. The training dataset could also include more items so that the robot will 

have a wide range of things that it can pick up. A waste sorting mechanism within the robot will also make it 

easier for the next stage of waste processing. Future works can also add additional features such as wireless 

and/or solar-powered charging to the robot. A vacuum suction device coupled with the robotic arm can help 

collect minute and lightweight waste particles, thus helping create a cleaner area. Collecting data about the 

frequency and type of waste observed at different locations may help the robot identify frequent areas where 

waste items are likely to accumulate. Similarly, further advancements can be added to enable the robot for multi-

purpose applications such as medical screening of patients under isolation or sanitization of infected spaces. 
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