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ABSTRACT

The article analyzes the problem of self-organization of randomly placed
wheeled robots around a stationary reference point, into a given shape of a regu-
lar polygon. The paper gives an answer to the question how virtual forces from
virtual spring-damper connections between robots allow self-organization of the
swarm into the desired shape. The presented method of control is described in
detail with the description of i-th robot dynamics and tested numerically and
experimentally. The swarm’s self-organization is aimed at moving randomly
spaced robots with a random frame orientation to a given distance to a reference
point, reaching and maintaining a given distance between neighboring robots.
The paper presents the results of numerical tests and experimental research and
ends with discussion and conclusions. The paper’s results could be expanded for
applications related to spacial distribution of mobile robots.
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1. INTRODUCTION
Self-organization in swarm robotics is a process that allows achieving global structures form local

interactions [1]–[3]. In the literature, additional features of self-organization are presented i.e: adaptation to
changing working conditions without modification of swarm structure and distribution of robots. It allows for
finding an optimal solution for swarm objective or automatic modification of swarm topology when new robots
are added or existing robots are taken out of the swarm [4]–[6]. A swarm has an ability to reorganize its struc-
ture or behavior without external intervention. Unfortunately it is difficult to precisely predict the behavior of
a swarm in the process of self-organization [7]. In literature we can find methods of swarm control based on
robot-human interactions [8], often used graph theory methods [9] or game theory [10]. In coordinated move-
ment of a robotic swarm, the control methods relay often on virtual potential field, virtual physics or so called
Physicomimetics [11]. The robots have to reach and maintain the desired distance between themselves (some-
times resulting in creation of formation) and move in coordinated manner following the desired trajectory or
moving to the goal point. As examples of methods used for swarm control, similar to the idea of physicomimet-
ics, we can distinguish: the virtual heading method, the artificial forces method and the virtual potential field
method. The virtual heading is a reference by which robots are able to determine their direction relative to
other robots [12]. Based on the sensors, the distance to the nearest neighboring robots and the swarm’s vir-
tual direction, the swarm is able to achieve coherent coordinated movement, maintaining the ability to avoid
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obstacles without knowing the direction to the goal. In the work [13] a modification of the communication
method between robots was suggested, by means of which a given heading to the target is transmitted. The
method of artificial potential fields [14]–[20] is a generalization of the method of virtual forces by introducing
the relationship between the value of the virtual force and the virtual potential field. The environment in which
the robot is located is depicted as a sum of virtual potential fields from obstacles, other robots and the goals
pursued by individual robots and swarms.

The article analyzes the problem of self-organization of randomly spaced robots around a stationary
reference point into a shape of a regular polygon. The swarm’s self-organization is aimed at moving randomly
spaced robots with a random frame orientation to a given distance to a reference point, reaching and maintaining
a given distance between neighboring robots. The presented method of control is based on virtual forces that
are used to calculate the kinematic parameters of the robots.

This paper is an expansion on the method presented in the article [21] allowing for practical application
of the self-organization method on a real swarm of robots. The article replaces the swarm leader with a reference
point whose coordinates are known to all robots and introduces the concept of a geometrical center as a quality
indicator of self-organization of the swarm. It solves a problem of modeling the behavior of a swarm based on
robots used in the experiment, by describing in detail the robot dynamics as well as the swarm control method.
The paper describes solutions to the application problems of the presented method. The adopted solutions are
verified on a robotic arena equipped with motion capture system. The paper presents the results of numerical
tests and experimental research and ends with a discussion on the obtained solutions with conclusions.

2. SWARM MODELING AND CONTROL
2.1. Single robot model

The swarm consists of two-wheeled robots with two spherical support wheels 3,4, as shown in Figure
1(a). We assume that the motion of the i-th robot takes place on a smooth surface, without slippage. The robot
is driven by two DC motors as marked in Figure 1(a) as 1 and 2 with wheels marked as 7 and 6 as shown in
Figure 1(b), with radius r and geometric centers marked as points B, C. The center of gravity of the robot is at
point Si on the robot frame 5. Point Si lies on the axis of symmetry of the drive wheels at a distance d from
the center of the wheel segment — CB — marked as point Ai. Rotation angles of wheels 6 and 7 were marked
as α1i, α2i. Point D is the frame’s instantaneous rotation center, and βi is the frame’s instantaneous rotation
angle.
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Figure 1. The schematics of the i-th wheeled robot in the swarm of robots (a) robot frame and (b) robot wheels

The i-th robot moves along a specific trajectory expressed as a function of the angular velocity of
the drive wheels α̇1i, α̇2i. The angular velocities of the robot’s driving wheels are the robot configuration
coordinates, determined from the following (1):

α̇1i =
vAi

r
+ β̇i

L

r
, α̇2i =

vAi

r
− β̇i

L

r
, (1)
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as well as (2):

β̇i =
r

2L
(α̇1i − α̇2i), ẋAi =

r

2
(α̇1i + α̇2i)cos(βi),

ẏAi =
r

2
(α̇1i + α̇2i)sin(βi),

(2)

where: α̇1i,α̇2i - angular velocities of driving wheels, r - radius of the robot’s driving wheel, L - half the length
of the robot’s driving axis. Robot kinematic parameters are α1i, α2i, α̇1i, α̇2i.

The dynamic equation of motion of a two-wheeled robot are known in literature [22]. The adaptation
of the dynamic equations for the above robot will take form:

Mq̈Mi + C(q̇Mi)q̇Mi + F (q̇Mi) = Ui, (3)

where: qMi = [α1i, α2i]
T - vector of generalized coordinates,M - inertia matrix, C(q̇Mi)q̇Mi - vector

of centrifugal and Coriolis forces, F (q̇Mi) - vector of friction forces, i = [M1i,M2i]
T - control inputs of the

i-th robot (driving torques of wheels 6 and 7).
By properly grouping matrix elements M,C(q̇Mi) and vector F (q̇Mi) we will have:

M =

[
a1 + a2 + a3 a1 − a2
a1 − a2 a1 + a2 + a3

]
, F (q̇Mi) =

[
a5sgn(α̇1i)
a6sgn(α̇2i)

]
,

C(q̇Mi) =

[
0 2a4(α̇2i − α̇1i)

−2a4(α̇2i − α̇1i) 0

]
, Ui =

[
M1i

M2i

]
.

(4)

The parameters vector a = [a1, a2, a3, a4, a5]
T results from the expansion of the dynamics equations. The

elements of the vector are (5):

a1 = (2mw +m5)
(r
2

)2

,

a2 = (2mwL
2 +m5d

2 + I5S + 2Izw)
( r

2L

)2

,

a3 = Iyw, a4 = m5

(r
2

)2
(
rd

l2

)
, a5 = N1f1, a6 = N2f2,

(5)

where: mw - weight of wheels 6 and 7, m5 - robot frame weight, Iyw - mass moment of inertia of wheel 6
about axis Y6 and wheel 7 about axis Y7 as seen in Figure 1(a), Izw - mass moment of inertia of wheel 6 about
axis Z6 and wheel 7 about axis Z7 as seen in Figure 1(b), I5S - mass moment of inertia of the robot frame
calculated with respect to the axis perpendicular to the frame and passing through point Si as seen in Figure
1(a).

Because of the usage of drive modules with high gear ratios, we can extended the model of the i-th
robot with the servomechanism model. Taking into account the dynamics equations of the robot’s drive motors
[23] can be written as (6):

Mq̈Mi + C(q̇Mi)q̇Mi + F (q̇Mi) = ui, (6)

where:

M =

[
(a1 + a2 + a3)r

2
k + Jk1 (a1 − a2)r

2
k

(a1 − a2)r
2
k (a1 + a2 + a3)r

2
k + Jk2

]
,

C(q̇Mi) =

[
0 2a4r

2
k(α̇2i − α̇1i)

−2a4r
2
k(α̇2i − α̇1i) 0

]
,

F (q̇Mi) =

[
a5r

2
ksgn(α̇1i) +B1α̇1i

a6r
2
ksgn(α̇2i) +B2α̇2i

]
,ui =

[
u1i
u2i

]
umax,

umax =
KMrk
R

Vmax for k = 1, 2, u1, u2 ∈< −1, 1 > .

(7)

where: u1i, u2i - normalized control signals, KM - torque constant, rk - gear ratio, Vmax - the maximum
allowable voltage at the power supply input of the motors DC, k - drive module number.
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In the process of parametric identification, the following values of the above parameters were obtained:
a = [7.3125 ·10−5, 8.97 ·10−9, 5.543 ·10−6, 0.0126, 0.917] and B1 = 3.01 · [10]−5, B2 = 3.37 · [10]−5. From
the documentations we can define other parameters: r = 0.03[m], L = 0.069[m],KM = 0.048[−], R =
2.17[Ω], rk = 1/120[−], Vmax = 7.4[V ]. The presented model is used in simulations.

2.2. Swarm self-organization algorithm
The task of the robots is to reach and maintain a given distance to the reference point, while maintain-

ing a given distance to the closest neighboring robots. Self-organization is performed for robots with random
frame orientations, randomly placed around a known stationary reference point. The neighboring robots are
understood as j-th robots in the sensory range of the i-th robot below a certain distance. Robots know the
predefined coordinates of the reference point.

Robots can create a desired shape using only information about neighboring robots and the position
of the reference point. The shapes of the swarm and kinematic parameters of robots result from the exertion of
virtual forces on the i-th robot. If the value of the resultant forces acting on each robot reaches 0 or oscillates
near 0, the self-organization of the swarm is considered finished. The virtual forces come from virtual spring-
damper connections that link the robots to each other and to the reference point.

The behavior of the i-th robot under the influence of virtual forces can be described as shown in Figure
2. On the middle of the driving axle |CB| of the i-th robot in the swarm, a virtual force is applied from the
origin point Wi of the resultant force, moving at vw. Point Wi is a substitute point from which the FiW is
originating from Figure 2(a).
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Figure 2. Swarm self-organization algorithm (a) diagram of a virtual spring and damper connecting points Ai

and Wi (b) resultant virtual force acting on the i-th robot and

Virtual force FiW is a vector sum of virtual forces from neighboring robots and a reference point. The
i-th robot has to move to the point Wi. The closer the distance from the point Ai to the point Wi, the closer
to zero is the vector sum of the virtual forces acting on the i-th robot. The angle of inclination of the robot’s
frame to the x axis is βi, and the center of the drive axis of the i-th robot moves at the velocity vAi as shown in
Figure 2(b).

The resultant vector FiW is can be calculated using (8):

FiW = (kiW eiW + ciW ėiW )δiW , (8)

where: δiW - unit vector directed from point Ai to point Wi, eiW - virtual spring deformation. The value of
the vector of the resultant force acting on the i-th robot is:

FiW = kiW eiW + ciW ėiW , (9)

where: kiW , ciW > 0 - spring constant of the virtual resultant spring and the damping constant of the virtual
resultant damper.
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The desired configuration of the i-th robot was assumed as (10):

qWi = [xWi, yWi, 0]
T , (10)

whereas, the i-th robot present configuration is:

qi = [xAi, yAi, βi]
T , (11)

where: xWi, yWi, xAi, yAi - coordinates of the points Wi and Ai in the stationary coordinate system, respec-
tively. The error of the desired and final configuration of the i-th robot can be defined as (12):

q̃Wi = qWi − qi = [x̃i, ỹi, β̃i]
T . (12)

by defining the error vector qbi in the polar coordinates for the i-th robot, which is under influence of the
resultant force FiW , we get:

qbi = [eiW , ψiW ]. (13)

The value of ψiW angle can be determined graphically using (14):

ψiW = arctg2

(
yWi − yAi

xWi − xAi

)
− βi, ψiW ∈ ⟨−π, π⟩, (14)

whereas, the deformation value eiW is described by (15):

eiW = riW =
√
(xWi − xAi)2 + (yWi − yAi)2. (15)

In order for the robot to move in the direction of the resultant force to its source, the velocity vector of the point
Ai must have the direction of the resultant vector of virtual forces acting on this robot, so the relationship must
be satisfied:

FiW × dVAi = 0. (16)

The angle ψiW between the vectors FiW and dVAi will approach zero if the vector of the desired instantaneous
angular velocity of the robot’s frame ˙βid is proportional and opposite to the vector product (16) [24]:

˙βid = −λ1(FiW × dVAi)k = ωi, λ1 > 0, (17)

where: dVAi - infinitesimal velocity of the point Ai, k - unit vector on the axis perpendicular to the robot frame
and passing through the point Ai.

In the x, y coordinate system we can write:

FiW × dVAi =

∣∣∣∣∣∣
i j k

FiWx FiWx 0
dẋAi dẏAi 0

∣∣∣∣∣∣ . (18)

The value of the desired angular velocity will take the form:

˙βid = −λ1(FiWxdẏAi − FiWydẋAi)k. (19)

The values of the projections of virtual forces on the x and y axes are determined from the rotation equation of
the p and q coordinate system shown in Figure 3.

[
FiWx

FiWy

]
= Rot

[
FiWp

FiWq

]
=

[
cosβi −sinβi
sinβi cosβi

] [
FiWp

FiWq

]
=

[
FiWpcosβi − FiWqsinβi
FiWpsinβi + FiWqcosβi

]
. (20)

Projections of virtual forces on the p and q axes are (21):

FiWp = FiW cosψiW , FiWq = FiW sinψiW . (21)
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assuming that:

dẋAi = dVAicosβi, dẏAi = dVAisinβi, dVAi = 1. (22)

The general form of the desired angular velocity of the robot frame is:

˙βid = −λ1((FiWpcosβi − FiWqsinβi)sinβi − (FiWpsinβi + FiWqcosβi)cosβi)k. (23)

after the transformation, we get:

˙βid = λ1FiWqk = λ1FiW sinψiW k. (24)

The value of the desired angular velocity of the robot frame is:

˙βid = λ1FiW sinψiW , λ1 > 0, λ1[rad/Ns]. (25)

The value of the given projection of the acceleration of the point Ai on the p axis will be:

aid = λ2FiWp = λ2FiW cosψiW , λ2 > 0, λ2[1/kg]. (26)

The desired velocity of Ai point is:

vid = λ2

∫
(FiW cosψiW ) dt. (27)

The kinematic controls of the i-th robot are uvi and uβi. Knowing that vid = uvi and ˙βid = uβi, after
substituting the FiW from (9), we get:

uvi = λ2

∫
((kiW eiW + ciW ėiW ) cosψiW ) dt, (28)

uβi = λ1 (kiW eiW + ciW ėiW ) sinψiW , (29)

Each robot determines its own uvi i uβi control signals based on the known positions and velocities of neigh-
boring robots and the reference point.

The obtained control signals are used to determine the desired trajectory to be followed by the i-th
robot. The position of the i-th robot in relation to the j-th robot and in relation to the reference point is shown
in Figure 3.
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Figure 3. Virtual forces acting on the Ai point of the i-th robot from the neighboring j-th robots and the P
reference point

The relationship between the virtual forces and the distance between the i-th robot and neighboring
j-th robots and the reference point can be described as: the i-th robot is under influence of virtual forces from
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virtual spring-damper connections between the nearest neighboring robots Fij (between points Ai and Aj) and
the reference point Fip (between point Ai and the reference point P as shown in Figure 4). Resulting vector
FiW is the sum of its component vectors Fij i Fip. The vectors of virtual forces Fij i Fip are described by (30)
and (31):

Fij = (kijeij + cij ėij)δij , (30)

Fip = (kipeip + cipėip)δip, (31)

where δij ,δip - unit vectors from the center of the drive axis of the i-th robot Ai to the center of the drive axis
of the nearest neighboring j-th robot Aj and to the reference point P as shown in Figure 4(a), respectively.

The values of the virtual component forces are:

Fij = kijeij + cij ėij , (32)

Fip = kipeip + cipėip, (33)

where kij , cij > 0, kip, cip > 0 - the spring constant of the virtual spring and the damping constant of the
virtual damper between the i-th robot and the closest j-th robot and the reference point P , respectively.

The values of the virtual deformations are expressed by (34) and (35):

eij = rij − lij =
√
(xAj − xAi)2 + (yAj − yAi)2 − lij , (34)

eip = rip − lip =
√
(xp − xAi)2 + (yp − yAi)2 − lip, (35)

where xAi, xAj , xp ∈ R, yAi, yAj , yp ∈ R - x and y coordinates of the centers of the robots i, j, and the
reference point P, lij , lip > 0, respectively - resting lengths of virtual springs (the desired distances) between
the i-th robot and the j-th robot and between the i-th robot and the reference point P.

The values of the derivatives of virtual deformations are as (36):

ėij = vAjcosψji − vAicosψij , (36)

and to the stationary reference point P,
ėip = −vAicosψip, (37)

where: vAi, vAj ∈ R - the velocity of the center of the driving axis of the robot i and the robot j, respectively.
The value of the angles ψij , ψji shown in the Figure 4(b) result from the relationship:

ψij = γij − βi, ψji = γji − βj , ψij , ψji ∈ ⟨−π, π⟩, (38)

γij = arctg2

(
yAj − yAi

xAj − xAi

)
, γji = arctg2

(
yAi − yAj

xAi − xAj

)
. (39)

The derivatives of angles ψij , ψji, ψip are:

ψ̇ij = vAi
sinψij

eij + lij
− vAj

sinψji

eij + lij
− β̇i, (40)

ψ̇ji = vAj
sinψji

eij + lij
− vAi

sinψij

eij + lij
− β̇j , (41)

ψ̇ip = vAi
sinψip

eip + lip
. (42)

The shape of the swarm can be determined by choosing the desired distances between the robots. It is assumed
that the i-th robot is affected by virtual forces only from the closest neighboring robots and from the reference
point.
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Figure 4. The relationship between the virtual forces (a) the angular relationships between the point Ai of the
i-th robot and resultant point Wi, (b) the angular relationships between the centers of the robots’ drive axes i, j

The selection of the set distance between the robots in relation to the sensor range can be illustrated
in the case of a swarm without a reference point. The forces acting on the robots will balance each other when
the robots are placed at a given distance lij creating a mesh of equilateral triangles. This is the case when the
robot is acted on by virtual forces that come only from the nearest neighboring robots Figure 5.

lij

lij   3S
R

lij

Figure 5. Robot sensor range

The range of sensors (SR) is limited to the following inequalities:

lij
√
3 < SR < lij . (43)

The desired trajectory of the i-th robot is realized by the tracking control algorithm. Due to the
simple construction of the robot, a PD controller (”PD” block) was used as the tracking controller as shown in
Figure 6. The controller gains were selected experimentally, setting the values of kp = 0.113 and kd = 0.046.
By integrating the dynamic equation of the i-th mobile robot (block ”WMRi”) (3), the kinematic parameters
were found: α1i, α2i, α̇1i, α̇2i, which on the basis of (2) allow for calculation velocity projections of the point
Ai ẋAi, ẏAi and angular velocity β̇i (”Determining WMR position” block). Knowledge of these kinematic
parameters and initial conditions enables the determination of the coordinates of the Ai points and the βi
orientation angles of all robots. With robot kinematic parameters and reference point coordinates, based on
(34)-(37), (40), (42) the deformation values eij , eip, angles ψij , ψip and their derivatives can be calculated
(block ”determining distance and orientation ”). Knowing the distances, angles and their derivatives, we can

Self-organization of a wheeled robotic swarm using virtual spring-damper mesh (Jakub Wiech)
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find the controls uvi, uβi using the (28), (29) (”controls determination” block). Based on the (1) (”kinematics
equation” block) and (2) (” desired trajectory ”block), the desired trajectory for the i-th robot is determined.
The control scheme of the i-th swarm robot is shown in Figure 6.
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Figure 6. Schematics of swarm self-organization control in case of the i-th robot

3. RESULTS
The simulation and experiment results were obtained for five wheeled robots for the self-organization

process. It is assumed that the robots are located around the reference point with known coordinates at a
distance not greater than 6 times the desired distance to the reference point. The results are compared with
each other using the proposed quality indicator of the self-organization, i.e. the swarm’s geometric center.

The closest the coordinates values of the swarm’s geometric center to the coordinates of the reference
point the higher the quality of the swarm’s self-organization. The geometric center of the swarm T (xt, yt) is
expressed by (44):

xt =

∑n
i=1 xAi

n
, yt =

∑n
i=1 yAi

n
, (44)

the velocity of the swarm’s geometric center is:

ẋt =

∑n
i=1 ẋAi

n
, ẏt =

∑n
i=1 ẏAi

n
, (45)

where: i - robot number, n - total number of robots.

3.1. Simulation
The task of self-organization of a swarm of wheeled robots is to create a swarm of the desired shape

with randomly placed robots around a reference point. Appropriate selection of the distances set by the swarm
designer makes it possible to obtain the swarm’s shape in the form of a regular polygon. The distances between
robots and between robots and the reference point are selected in accordance with the geometric relationships
of regular polygons. It is assumed that there are no obstacles. The values of spring and damping coefficients of
the virtual spring damper connections as well as the values of the λ1, λ2 parameters are selected experimentally.

The simulation concerns a swarm of five robots that self-organize around the reference point P =
[0.0] [m]. Initially, the robots are randomly placed around a reference point. Their task is to achieve and
maintain the desired distance from each other lij and from the reference point lip. Due to the introduced sensory
disturbances, the figures show the data every twentieth sample. The simulation parameters are presented in the
Table 1, while the initial positions of Ai robots and the frame orientation angles are presented in the Table 2
and in the Figure 7.
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Table 1. Assumed parameter values for simulation
No Parameter Value
1 kij 0.8[N/m]
2 cip 1.8[Ns/m]

3 lij 0.28[m]

4 kip 0.7[N/m]
5 λ1 120[rad/Ns]

6 lip 0.24[m]

7 cij 1.8[Ns/m]
8 λ2 1[1/kg]

Table 2. Initial values of the coordinates of the Ai points and the orientation angles of the robot frames
No Parameter Initial Value
1 x01 −0.23[m]

2 y01 −0.386[m]

3 β01 −2.91[rad]
4 x04 0.378[m]

5 y04 0.371[m]

6 β04 −3.07[rad]
7 x02 0.21[m]

8 y02 −0.387[m]

9 β02 −0.53[rad]
10 x05 −0.016[m]

11 y05 0.36[m]
12 β05 −0.97[rad]

13 x03 −0.378[m]

14 y03 0.366[m]
15 β03 −3.02[rad]
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Figure 7. The initial positions of Ai points and the orientations of the robot frames no. 1-5

In the first stage of self-organization, i.e. the robots’ approach to the reference point at a distance close
to the desired distance. The inter-robot distances 6-11s, and distance between the robot no. 1 and the reference
point as shown in Figure 8 tend to go beyond the setpoints because of the high velocity vid. The robots correct
their positions by moving away from each other until the distances are close to the desired ones. In the second
stage of the swarm’s movement, i.e. in the stage of correction of the inter-robot distance and the distance to
the reference point as shown in Figure 8 11-43s, the distances oscillate around the desired values. This shows
that the robots introduce position corrections in relation to each other. The Figure 9 shows the final paths of
the robots. Due to the change in the direction of the resultant virtual force acting on the i-th robot, the robots
corrected their position to minimize the value of this force. The effect of minimizing the value of the virtual
force are different curves of the robot paths.
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Figure 8. Distances obtained between robot no. 1, the reference point and other neighboring robots in the
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Figure 9. Paths of robots

Figures 10(a) and 10(b) illustrate the geometrical parameters of the swarm movement. In the initial
stage of the swarm’s movement, the position of the swarm’s geometric center differs from the position of the
reference point. It is related to the fact that the robots did not reach the desired distance between themselves,
which translates into the movement of the robots towards or away from the neighboring robots. As the value
of the distance between the robots approaches the value of the desired distance, the force between the robots
and the reference point becomes the dominant virtual force, which causes the swarm to move towards it. In
the second stage of the swarm’s movement, the values of the coordinates of the swarm’s geometric center are
close to the coordinates of the reference point, oscillating due to the corrections of the distance between the
robots. Over the course of the simulation, the coordinates of the geometric center approach the coordinates of
the reference point as shown in Figures 10(a) and 10(b). The simulation results show that in the process of
self-organization, the robots were able to achieve the desired distance between themselves and the reference
point. Assuming that the values of the desired distances between the robots are proportional to the desired
distance to the reference point, the swarm reached the shape of a regular pentagon.
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Figure 10. Comparison of the values of the coordinates of the swarm’s geometric center and the reference
point (a) x coordinates and (b) y coordinates

3.2. Experiment
The motion capture system was used to verify the tests. The robotic arena as shown in Figure 11 is

used for experimental research and testing algorithms for controlling a swarm or a group of wheeled robots,
it consists mainly of two systems: a vision system and a wireless communication system with robots. Motion
capture [25] is a technology that allows for determination the position and tracking the movement of markers
that reflect or generate infrared light. The technology is based on a vision system consisting of more than
three infrared cameras. The experimental research presented in the paper was carried out on a research robotic
arena made available by the Federal University of Technology in Lausanne thanks to participation in the The
European Robotics Research Infrastructure Network (TerriNet) project. The robotic arena as shown in Figure
11 was equipped with infrared cameras enabling the determination of the position of passive markers placed on
the robot as shown in Figure 12 with an accuracy of 0.15 mm while maintaining 350 frames per second . The
experiment was carried out for the same values of swarm parameters as in the simulation.

Figure 11. Robotic arena Figure 12. Robotic with markers

Inter-robot distances as shown in Figure 13 over time they achieve a difference of less than 0.01[m]
from the desired value. As in the simulation Figure 8, the robots correct their positions by moving away from
each other until distances are close to the desired values. The Figures 14(a) and 14(b) show the geometrical
parameters of the motion. The coordinates of the geometric center of the swarm follow the coordinates of the as
shown in Figure 14(a) and 14(b), similarly to the simulation. The x and y coordinates of the swarm’s geometric
center decrease with time and tend to zero oscillating around it. The maximum deviation of coordinates of the
swarm’s geometric center from the reference point refers to the y coordinate and is equal to 0.05[m].
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Figure 13. Distances obtained between robot no. 1, the reference point and other neighboring robots in the
swarm
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Figure 14. Comparison of the values of the coordinates of the swarm’s geometric center and the reference
point (a) x coordinates and (b) y coordinates

Similarly to the Figure 9, the robot paths Figure 15 shows the self-organization of the swarm into the
shape of a regular pentagon. Comparing the paths of motion of the robots from the experiment to the simulation
results, a similar shape can be noticed. The paths of robot no. 1 are particularly similar to each other. The
arrangement of the robots in the final shape of the swarm is similar to the simulation results. Discrepancies
may result from inaccuracies in determining the values of the parameters of the swarm mathematical model, in
particular the robot dynamics model and disturbances.
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Figure 15. Paths of robots

4. DISCUSSION
The conducted research has shown that a swarm of five randomly placed robots in relation to a given

reference point, under the influence of virtual forces from the nearest robots and from a reference point, reaches
a shape similar to the desired shape of a regular pentagon. The obtained distances between the closest robots
and between the robots and the reference point are close to the desired value. The value of the difference in
distance does not exceed 4%. In the initial stage of the swarm’s self-organization, the position of the swarm’s
geometric center differs from the position of the reference point due to the random initial positions of the robots.
As the difference in the distance between the robots decreases, the virtual force acting from the reference point
becomes the dominant virtual force acting on the robots. This results in faster convergence of the coordinates
of the geometric center of the swarm to the coordinates of the reference point.

The experimental studies of the swarm self-organization, show that the achieved distance between the
closest robots differed by 0.01 [m] from the set value of 0.28 [m]. The error in reaching the desired distance
between the robots and the reference point was also 0.01 [m] for the desired distance equal to 0.24 [m]. The
final position of the swarm’s geometric center in the case of the simulation and the experiment was similar to
the position of the reference point. The distance between the geometric center of the swarm and the reference
point was less than 0.01 [m].

5. CONCLUSIONS
The paper presents a method of virtual forces enabling the shape control of a swarm of wheeled

robots. The analysis and synthesis of the self-organization algorithm of a swarm of robots is presented. The
research concerned the self-organization of the swarm, i.e. the arrangement of robots around a given, stationary
reference point, maintaining the given distances between neighboring robots and between the robots and the
reference point.

Numerical tests were carried out along with experimental studies of the self-organization tasks. The
experiments were carried out on a robotic arena using a motion capture system. Similar results from numer-
ical tests and verification tests were obtained for the proposed control algorithm. The obtained results of the
performed numerical tests and experimental tests prove the correctness of the model of a robotic swarm. In
the plots of coordinates values and projections of the velocity of the geometric center of the swarm, the stages
of acceleration, movement at a steady velocity and deceleration of the swarm can be distinguished. Moreover,
based on the simulation and experiment results, it can be concluded that the swarm behaves like an elastically
deformable body. The results of the conducted verification coincided with the simulation results. It can con-

Self-organization of a wheeled robotic swarm using virtual spring-damper mesh (Jakub Wiech)



82 ❒ ISSN: 2722-2586

cluded that the adopted description of the swarm’s behavior is correct and based on the experiment results, the
proposed control algorithm enables the self-organization of the swarm into a given regular pentagon shape.
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