
IAES International Journal of Robotics and Automation (IJRA)
Vol. 12, No. 4, December 2023, pp. 394∼404
ISSN: 2722-2586, DOI: 10.11591/ijra.v12i4.pp394-404 ❒ 394

DEMAP: differential evolution mapping for network on
chip optimization

Maamar Bougherara1,2, Rafik Amara2,3, Rebiha Kemcha2,4
1LIMPAF Laboratory, Bouira University, Bouira, Algeria

2Department of Computer Science, High Normal School of Kouba, Algiers, Algeria
3LTIR Laboratory, Faculty of Electronics and Computational Science, USTHB University, Algiers, Algeria

4LIMOSE Laboratory, Boumerdes University, Boumerdes, Algeria

Article Info

Article history:

Received November 4, 2022
Revised January 25, 2023
Accepted March 4, 2023

Keywords:

Communication cost
Differential evolution
Mapping
Network on chip
Optimization

ABSTRACT

Network-on-chip (NoC) is a new paradigm for system-on-chip (SoC) design,
which facilitates the interconnection and integration of complex components.
Since this technology is still new, significant research efforts are needed to ac-
celerate and simplify the design phases. Mapping is a critical phase in the NoC
design process, as a mismatch of application software components can signif-
icantly impact the final system’s performance. Therefore, it is essential to de-
velop automated tools and methods to ensure this step. The main objective of
this project is to develop a new approach that can be used to map applications on
the NoC architecture to reduce communication costs. To achieve this goal, we
have opted for an optimization algorithm, specifically the differential evolution
algorithm.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Maamar Bougherara
LIMPAF Laboratory, Bouira University
Bouira, Algeria
Email: bougherara.maamar@gmail.com

1. INTRODUCTION
The network-on-chip (NoC) concept originated from the need to accommodate the increasing size,

complexity, and heterogeneity of applications running on system-on-chip (SoC). As the traditional communi-
cation bus between components failed to fulfill all the demands, the idea of establishing a network on a chip
was conceived based on computer network principles. A critical stage in designing a NoC is the mapping of
intellectual property (IP) cores to the architecture. This process has a significant impact on the performance of
the system, affecting factors such as energy usage, latency, and load distribution. This process is considered
an NP-hard problem, as more than one critical performance factor must be considered to develop the optimal
mapping algorithm. Thus, several methods have been proposed in the literature to address this issue, often
relying on heuristic algorithms. Differential evolution (DE) is one such algorithm that delivers better perfor-
mance with lower complexity. However, in this paper, we aim to enhance DE’s efficacy by coordinating it with
other techniques. The remainder of this paper is organized as follows: section 2 provides an overview of NoC;
section 3 highlights some relevant studies; section 4 discusses the application mapping problems, followed by
a description of the Mapping problem with the differential evolution algorithm. In section 5, we showcase the
experimental outcomes. In the last section, we conclude our work with a conclusion.
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2. NOCS GENERALITIE
The idea of NoC is derived from the networks initially developed for supercomputers, comprising a

group of interconnected devices on a single chip that communicate through packets sent over a scalable inter-
connection network. Compared to traditional bus architectures, NoC offers several advantages, such as energy
efficiency, reliability, bandwidth scalability, and reusability [1]. The topology of a NoC is determined by how
its components are interconnected to create the on-chip interconnect, which can take on various forms, such
as 2D mesh, torus, and ring. In addition to the topology, other characteristics of NoC include communication
mode, flow control mechanisms to prevent deadlock issues, and storage strategies Figure 1 presents an NoC
with 9 tiles in 2D mesh topology.

Figure 1. A 3×3 2D mesh NoC

To design a NoC, the system involves multiple stages. Initially, the application is decomposed into a
set of communication tasks that can be executed concurrently. After that, each task is assigned to an available
core that is selected and scheduled. In the end, these cores must be mapped onto the NoC to complete the
system design [2].

This paper specifically concentrates on the final stage of application mapping, which is a critical
but still unresolved search problem. The optimal mapping solution can yield energy savings of up to 51.7%
compared to ad hoc implementations, as demonstrated in [3]. To achieve high performance, finding the optimal
mapping solution is essential. For instance, if there are m tasks to be mapped onto an NoC consisting of n
cores where (m <= n), the number of potential solutions can reach up to n!/(n−m)!. Application mapping
is a combinatorial optimization problem that is classified as NP-hard. In order to find a suboptimal solution,
heuristic algorithms are typically used.

3. RELATED WORK
In NoC mapping, various approaches have been proposed, with particular attention given to the two-

dimensional mesh topology. In this study, we review the most cited mapping techniques that consider mono-
objective mapping. These techniques can be divided into two classes: meta-heuristic algorithms and heuristic
approaches.

Meta-heuristic algorithms are widely used to solve NP-hard problems and strive to achieve a solution
that is close to optimal. Examples of such algorithms include genetic algorithms, ant colony optimization, and
particle swarm optimization. For example, GBMAP [4] and CGMAP [5] use genetic algorithms, and in [6],
an ACO-based algorithm is proposed to minimize the bandwidth requirement. In reference [7], a technique
for optimizing performance using deterministic initial solutions has been proposed. Specifically, a discrete
multiple particle swarm optimization (PSO) based mapping technique was utilized, where the behavior of
swarm intelligence serves as a meta-heuristic.

Unlike meta-heuristic algorithms, heuristic approaches are tailored to a specific problem and rely
on specific cues to guide the search process. These cues are determined by the nature of the problem being
addressed. For instance, NMAP [8] selects an application’s core and maps them to tiles repeatedly, while
BMAP [9] maps the cores according to traffic loads of cores. The CastNet algorithm described in reference
[10] generates multiple solutions for mapping by using multiple tiles as initial tiles. The algorithm uses the
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symmetric characteristics of a mesh to determine the optimal solution for each core, the number of available
neighboring tiles for each tile is considered.

Chmap [11] determines the priority of each core by analyzing the communication needs and the data
in the spanning tree. Next, the algorithm maps the chosen cores to the suitable tiles based on their priorities by
establishing the mapping order of the cores. The ONYX algorithm [12] utilizes four moves to assign a core to
the tiles on a lozenge-shaped path and achieves a lower communication cost than previous mapping techniques.
The Spiral approach, described in [13], involves mapping the task with the highest priority at the center first,
followed by the remaining tasks using a spiral path. Exact methods are also used in mapping but require a large
amount of calculations over time, such as those based on integer linear programming (ILP) [14], or the branch
and bound search method [15].

4. APPLICATION MAPPING PROBLEM
Our research focuses on mapping steps that involve two key inputs: NoC and its architecture, and the

application that is supposed to run in the NoC. In our case, we used a NoC with a 2D mesh topology shown in
Figure 2. An application is made up of multiple concurrent tasks that need to be placed onto a core on the NoC.
The goal of the mapping process is to achieve the best placement with minimum communication cost, which
is a crucial factor that we consider in our paper. The optimal mapping solution is one that achieves the best
placement while minimizing communication costs. The resulting mapping solution is presented in the form of
a table, where each task is represented by an index i, and the contents of the table represent the number of tiles
assigned to each task during mapping.

Figure 2. Application mapping problem

4.1. NoC Model
The problem is defined using three distinct definitions.
Definition 1: The core graph is constructed using a directional graph G(V,E). In this graph, each

vertex vi represents a core, while a directional edge ei, j indicates the link between core vi and core vj . The
weight of edge ei,j reflects the extent of communication between the two corresponding vertices.

Definition 2: A graph A(T, L) represents the NOC architecture, where every vertex ti denotes a tile
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within the NOC architecture. Meanwhile, each edge li,j represents a physical link originating from ti and
terminating at tj .

Definition 3: The mapping function that associates each vertex vi in the core graph with a vertex tj in
the NOC architecture is defined as follows.

map : V → T map(vi = tj),∀vi ∈ V ∃tj ∈ T

In the core graph, each edge is considered as a flow of a single commodity, denoted as ck. This value
represents the required bandwidth and can be expressed as vl ck. The set of all commodities is represented by

C = ck : vl(ck) = commi,j k = 1. . . |E|commi,j ∈ E

with

source(ck) = map(vi) and destination(ck) = map(vj)

To determine the quantity of communication between vi and vj , it is necessary to count the number of hops
between tilei and tilej . On a 2D mesh NoC, the X-Y routing algorithm is employed, and the number of hops
can be determined using (1).

Hops(tilei, tilei) = |Xi −Xj |+ |Yi − Yi| (1)

In 2D mesh NoC the tiles i and j are represented by (Xi, Yi) and (Xj , Yj), respectively.

4.2. Objective function
This paper aims to minimize communication costs when mapping two tasks onto the NoC. The pri-

mary strategy involves reducing the number of hops required for each communication within the application.
The calculation of the communication cost formula involves utilizing (2).

commcost =

|E|∑
k=1

vl(Ck) ∗ nbhops(src(Ck), dist(Ck)) (2)

The source of a communication Ck is denoted by src(Ck), while its destination is represented by dist(Ck).

4.3. Differential evolution (DE)
In 1997, Price and Storn [16] proposed DE as an enhanced version of genetic algorithms. Like ge-

netic algorithms, DE relies on an initial population and employs the same operator’s crossover, mutation, and
selection. However, DE utilizes these operators in a different order, as illustrated in Figure 3.

The primary distinction between genetic algorithms and DE lies in their respective approaches to
building better solutions. Genetic algorithms utilize crossover, while DE relies on the operation of mutation.
In DE, the mutation operation is the primary mechanism for searching and exploring potential regions in the
search space, and the selection operator directs convergence toward those regions.

According to [16], the DE/x/y/z notation is frequently employed to describe a DE strategy. The
symbol x denotes the vector that will undergo mutation, which may be either a randomly selected population
vector (rand) or the vector with the lowest cost in the current population (best). y specifies the number of
differential vectors employed to perturb the target vector, and z denotes the crossover scheme, which could be
either exponential or binomial.
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Figure 3. Genetic agorithm vs differential evolution

4.4. Differential evolution algorithm steps
DE is a global optimization algorithm that operates at the population level. At the outset, it creates

a population of NP individuals, each of dimension D, where each individual encodes a potential solution,
denoted by Xi,G = X1

i,G, ..., X
D
i,G, with i = 1, ..., NP and G indicating the generation to which the population

belongs [16].
As noted in reference [16], DE is a population-level global optimization algorithm. Initially, DE

creates a population consisting of NP individuals, each with a dimension of D. Each individual in the DE
population represents a possible solution to the optimization problem being addressed represented by Xi,G =
X1

i,G, ..., X
D
i,G, where i = 1, ..., NP and G represents the generation to which the population refers. The DE

algorithm starts by generating an initial population of individuals, which are randomly distributed across the
search space. Subsequently, the algorithm follows a set of primary steps [17].

4.4.1. Mutation Operation:
In the DE algorithm, during the generation G, the population is perturbed by the mutation operator

which modifies each individual Xi,G using a corresponding mutant vector Vi,G. The mutation operator can be
generated using different strategies, among which the most frequently employed ones are listed in [18].

− DE/rand /1 :

Vi,G = Xr1,G + F.(Xr2,G −Xr3,G) (3)
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− DE/best/1:
Vi,G = Xbest,G + F.(Xr1,G −Xr2,G) (4)

− DE/best/2:
Vi,G = Xbest,G + F.(Xr1,G −Xr2,G) + F.(Xr3,G −Xr4,G) (5)

− DE/rand/2:
Vi,G = Xr1,G + F.(Xr2,G −Xr3,G) + F.(Xr4,G −Xr5,G) (6)

− DE/current-to-best/2:

Vi,G = Xi,G + F.(Xbest,G −Xr1,G) + F.(Xr2,G −Xr3,G) (7)

− DE/current-to-rand/2:

Vi,G = Xi,G + F.(Xr1,G −Xr2,G) + F.(Xr3,G −Xr4,G) (8)

The variable Vi,G represents the mutant vector that is being created. The integers r1, r2, r3, r4, and r5 are
randomly generated constants within the range [1, NP ] and different from the index j. The variable Xbest,G

corresponds to the best individual in the population at generation G. The scale factor F is a real constant that
is typically selected in the range [0, 1] and determines the degree of amplification of the difference variation.

4.4.2. Crossover operation
Following the mutation phase, the diversity of the population is increased through the application of

the crossover operation in DE. This operation utilizes the mutant vector Vi,G created during the mutation phase
to exchange its components with the target vector Xi,G, thereby producing the test vector Ui,G. The crossover
operation can be expressed using the formulation presented in [19].

U j
i,G =

{
V j
i,G If(randj [0, 1] ≤ CR)or(j = jrand)

Xj
i,G Otherwise

(9)

In the aforementioned expression, j is an integer that varies between 1 and D. The variable randj corresponds
to the jth evaluation of a uniform random number generator that produces values within the interval [0, 1], as
described in [20]. The crossover rate, denoted by CR, is a constant specified by the user and takes values
within the range [0, 1]. Additionally, jrand is a random integer selected from the range [1, D], as stated in [20].

4.4.3. Selection operation
Once the test vector Ui,G has been created through the crossover operation, the selection operation is

carried out to maintain the population size for the next generation. To accomplish this, the objective function
is evaluated for both the target vector Xi,G and the test vector Ui,G. The vector that yields a better fitness
value is retained in the population for the subsequent generation. More specifically, if the fitness value of the
test vector is superior to that of the target vector, then the test vector replaces the target vector. On the other
hand, if the fitness value of the target vector is better, it remains in the population. The selection procedure is
mathematically represented as shown in [21].

Xi,G+1 =

{
Ui,G Iff(Ui,G) ≤ f(Xi,G)
Xi,G Otherwise (10)

The three steps (mutation, crossover, and selection) are repeated for each generation up to a termination crite-
rion.

The DE algorithm is characterized by the interaction between the different particles. The mechanism
responsible for generating new potential solutions is the imitation of the global behavior of the neighborhood.
Algorithm 1 presents a classic version of the DE [16] algorithm.

The parameters used in this algorithm 1 are:
− D The dimension of the problem.
− N The number of individuals.
− F The values of the scale factor.
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− Cr The crossover rate.
− Maxit The maximum number of iterations Maxit.
− The choice of mutation strategy.

Algorithm 1 Differential evolution algorithm
Initialize the individuals of the population
Evaluate all individus
Initialize the best solution (Best)
iteration := 0
while iteration < max iteration do

for each individu do
(a) Generate a mutant vector using the mutation operation4.4.1.
(b) Generate the test vector using the crossover operation4.4.2.
(c) Evaluate the try vector
(d)If the test trial is better than the individual, replace it 4.4.3.

end for
Update The Best solution
iteration := iteration + 1

end while
Return the best solution

5. EXPERIMENT RESULT
To assess the performance of the NoC, a group of benchmarks, as described in [14], are employed.

A benchmark comprises a series of tasks that communicate with one another. Figure 4 (a) to (c) represents
three commonly used benchmarks in testing, which are the Video Object Plane Decoder (VOPD) benchmark,
(b) Moving Picture Experts Group (MPEG4) benchmark, and (c) Multi-Window Display (MWD) benchmark,
respectively.

(a) (b) (c)

Figure 4. The benchmarks utilized in the study include (a) VOPD benchmark, (b) MPEG4 benchmark, and (c)
MWD benchmark

Before presenting the result, it is crucial to specify the parameters that were employed in our study. A
4×4 NoC was utilized, and the parameters are listed in Table 1.

Table 1. Parameter of DE used in experiment
Paremeter Value used

CR 0.001 ... 1.0
F 0.01 ... 1.0

Pop size 200; 500; 1,000
Max it 500; 1,000; 2,000

After conducting multiple test attempts, we concluded that each application requires its own set of
parameters to achieve the best results. Therefore, we have adopted the parameters presented in Table 2.
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Table 2. Parameter used in DEMAP algorithms
Noc Size CR F Pop Zise Max it

4×4 0.0001 0.85 1,000 2,000

We utilized multiple mutation operations to determine which one would lead us to the optimal out-
come. The results obtained from the five mutation operations are shown in Table 3.

Table 3. Result obtained
Application Rand/1 Rand/2 Current to best/1 Best/1 Best/2

VOPD 4701 4743 4965 4119 4119
MWD 1280 1216 1248 1184 1184

MPEG4 3660 3666 3667 3470 3470

Figure 5 enables a visual assessment of the mapping performance, based on the five mutation strategies
utilized during the experiment, as executed by the DEMAP algorithm. The outcomes indicate that utilizing the
best strategy consistently yields the optimal results, surpassing the alternative strategies employed in DEMAP.
To further establish the effectiveness of our approach, we compared the results achieved using our best approach
with some other techniques, as shown in Table 4. Figures 6 to 8 provide a visual comparison between the
communication cost results of DEMAP mapping and the compared approach, allowing for an easy analysis of
the best results.

VOPD MWD MPEG4

2,000

4,000

Rand/1 Rand/2 Current to best/1 Best/1 Best/2

Figure 5. Comparison of DEMAP with the mutation strategy

Table 4. DEMAP result compared to other approach
Results VOPD MWD MPEG4

DEMAP 4119 1184 3470
GBMAP 4217 - 3572
ONYX 4242 - 3612

CGMAP 4300 - 3600
NMAP 4265 1344 3852

CHMAP 4167 1344 3852
ILP 4119 1120 3567

Castnet 4135 1280 3852

DEMAP: differential evolution mapping for network on chip optimization (Maamar Bougherara)
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Based on the obtained outcomes, we can infer that DEMAP produces superior results compared to
other meta-heuristic approaches. The results are also comparable to the best outcomes achieved using heuristic
approaches, even though these approaches are typically more effective in optimizing a single objective.

6. CONCLUSION
The process of mapping applications onto a network-on-chip (NoC) is a complex task that is known to

be NP-hard. To address this challenge, we introduce a novel approach based on evolutionary strategy, specif-
ically the differential evolution (DE) algorithm. Our approach, named DEMAP, employs a mono-objective
strategy that seeks to minimize the communication cost. The experiments were carried out on an actual Cores
Graph, and the results indicate that DEMAP can produce better outcomes when the algorithm parameters are
appropriately tuned. As a part of our future work, we plan to investigate the effectiveness of collaborative
techniques in multi-objective optimization mapping and compare it with other established methods.
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