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 Forestry cranes are an important tool for safe and efficient timber harvesting 

with forestry machines. However, their complex manual control often led to 

inefficiencies and excessive energy usage, due to the many joysticks and 

buttons that must be used in a precise sequence to perform efficient 

movements. To address this, the industry is increasingly turning to partial 

automation, making manual control more intuitive for the operator and, 

consequently, achieving improvements in energy efficiency. This article 

introduces a novel approach to energy-optimal motion planning that can be 

used along with a feedback control system to automate crane motions, taking 

over portions of the operator’s work. Our method combines dynamic 

movement primitives (DMPs) and an energy-optimization algorithm. DMPs 

is a machine learning technique for motion planning based on human 

demonstrations, while the optimization algorithm exploits the crane’s 

redundancy to find energy-optimal trajectories. Simulation results show that 

DMPs can replicate human-like controlled motions with a 25% reduction in 

energy consumption. However, our energy optimization algorithm shows 

improvements of over 40%, providing substantial energy savings and a 

promising pathway towards environmentally friendly partially automated 

machines. 
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1. INTRODUCTION 

In recent years, the forestry industry has seen a rise in the use of automation technologies to increase 

productivity and reduce human workload. One area that has received particular attention is the automation of 

forestry cranes, which are used for maneuvering heavy loads inside the forest. In a previous article, we 

introduced a motion planning method based on dynamic movement primitives (DMPs), in order to plan 

trajectories that can help operators execute portions of their crane work autonomously. In this article, we 

propose an additional optimization algorithm that can be used in conjunction with the DMP-based method to 

plan energy-optimal motions. By combining these two approaches, we aim to further improve the 

performance of partially automated forestry cranes in terms of energy efficiency and overall productivity. 

Cut-to-length (CTL) timber harvesting is a modern logging method that involves felling trees and 

processing them into logs of specific lengths directly in the forest. This method uses specialized forestry 

machines equipped with advanced heavy-duty cranes, to harvest and process trees quickly and efficiently. 

Among these machines, two primary ones are known as the harvester and forwarder. The harvester uses a 
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harvesting head to cut the tree at the base and then cuts it into a log of a desired length, while the forwarder 

collects and transports logs from the harvesting site to the roadside landing. CTL timber harvesting is the 

primary method used in Fennoscandinavia, making this region one of the largest exporters of pulp and sawn 

timber [1]. 

While the use of heavy machines in forestry offers many benefits, efficient and safe control is 

critical to the success of the entire operation. These machines often have many joysticks, pedals, and buttons 

that must be used in the correct sequence to perform a specific task. Therefore, operating these machines can 

be challenging, as this requires a high degree of hand-eye coordination, spatial awareness, and mental focus 

for long periods of time. As this can be hard to master, the work with these machines leads to high energy 

consumption, environmental pollution [2], and long learning curves for new operators [3]–[5].  

Research studies have shown that automation technology has the potential to improve the 

productivity and energy efficiency of forestry cranes [6]–[9]. This has led to an increased interest in 

automation technology among machine manufacturers, with examples including John Deere’s Intelligent 

Boom Control, Komatsu Forest’s Smart Flow and Smart Crane, and the intelligent hydraulic valves paving 

the way for the development of these new products [10]–[12]. These technologies are early versions of 

operator support technology that utilize automation software to facilitate manual control of forestry cranes. 

However, they do not exploit the full potential of automation, as they still require the operator to control 

every aspect of the crane work. Nonetheless, there are other advanced automation functions currently under 

research, such as the ability to perform autonomous motions as a complement to manual control [13], [14], 

which are attractive for today’s market. 

In [15], we introduced a framework for analyzing the patterns of how operators control crane 

motions while performing standard forwarding tasks. These tasks include picking up logs from the ground to 

the forwarder’s trailer and unloading the logs at the landing area. Our study revealed that experienced 

operators have the ability to control cranes using repetitive motion patterns, resembling an automated system. 

This finding serves as our foundation for developing automated functions that simplify the operators’ work, 

by letting a control system perform portions of the crane’s motions autonomously. Building on this result, 

in [14], we present the first study of automating forwarder crane motions using machine learning. We 

proposed a motion-planning framework based on dynamic movement primitives (DMPs), a machine learning 

approach that teaches a system to mimic human motions [16] and can be used to generate smooth, adaptable, 

and robust movements. This is a technique that we believe is better suited to forestry than other standard 

motion-planning techniques used in robotics.  

Many robotics applications, as summarized in [17], report that dynamic movement primitives 

(DMPs) are a useful tool in motion planning for several reasons. First, they provide a flexible and efficient 

way to learn and generalize movements from demonstrations. This means that a robot or machine can learn 

how to perform a task by observing a human or another machine perform the task, rather than relying on pre-

programmed rules. Second, DMPs allow for easy modification of movement behavior in terms of speed and 

amplitude, which is crucial in dynamic environments where the robot or machine needs to respond quickly to 

changes in the environment. Third, DMPs are capable of adapting to external disturbances, which makes 

them more robust and adaptable in complex real-world environments. Finally, DMPs have a mathematical 

basis that allows for easy integration with other motion planning and control methods [16]. 

Our previous study [14] shows how DMPs can reliably reproduce human-like crane-controlled 

motions, but their performance is highly dependent on the quality of the demonstration dataset. One 

limitation of machine learning approaches like DMPs is that they can adopt suboptimal behaviors that exist in 

human demonstrations. In the case of forestry cranes, human operators struggle with multitasking and 

coordinating the control of all joints simultaneously, leading to inefficiencies in motion performance [4], [5], 

[18]. Thus, we can conclude that the motion data of cranes recorded with professional operators are likely to 

present similar inefficiencies [3]. This bottleneck in performance can be addressed by exploiting the crane’s 

redundancy to produce optimal motions based on a performance criterion like energy. However, this is not 

directly part of the DMPs framework and requires additional optimization algorithms to be incorporated. 

This article aims to build upon our previous study presented in [14] in the following way. Firstly, 

we introduce a novel approach to motion planning capable of generating energy-optimal motions. By 

integrating mathematical optimization into the DMPs, we seek to exploit the crane’s redundancy to find 

alternative joint trajectories that minimize energy costs [19]. Our goal is to mimic the Cartesian space 

motions performed by machine operators while simultaneously identifying new joint trajectories having 

better energy performance. 

Secondly, we aim to demonstrate the potential for significant energy savings using our proposed 

optimization method. Our approach has the potential to be used not only for planning energy-efficient 

motions in automation but also as a tool for training new machine operators in energy-efficient practices. 

Currently, machine operator training relies heavily on the teacher’s experience, without any formal analysis 
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or guidance. By developing analysis tools such as ours, we hope to take the first step towards providing new 

operators with instruction and analysis of energy-efficient practices. 

The example case of the motion planner presented here is to perform an autonomous motion to bring 

the logs back into the machine’s trailer, once the operator has manually operated the crane to grab the logs 

from the ground. As outlined in [14], this is a progressive development step to be provided to machine 

operators as an autonomous function that can be accessed with the click of a button to reduce the operator’s 

workload. 

 

 

2. METHOD  

2.1.  Materials 

2.1.1. Machine used for the study 

The machine used for recording data is a Komatsu Forwarder 830 [20] equipped with a crane from 

the company CRANAB (model CRF 5.1) having a maximum length of 9.3 m when the crane is fully 

extended [21]. This machine has been used in many of our previous studies, e.g. [4], [13], [15]. Referring to 

Figure 1, the crane was equipped with four high resolution quadrature encoders able to measure the joint 

rotations with a resolution of 0.072 degrees (0.0012 rad) for the angular joints and 0.0007 m (0.7 mm) for the 

telescope. A real-time data acquisition unit (DAQ) was installed to record the data. This DAQ operated at a 

frequency of 1 KHz, i.e., 1,000 recordings per second. 

 

 

 
 

Figure 1. Forwarder crane [14]: hydraulic manipulator with four main degrees of freedom without counting 

the end-effector’s tool; the sensors measure the joints known as the slewing q1, inner boom q2, outer boom q3, 

and telescope q4; the end-effector tool is a grapple used to grab logs and it is attached to move freely at the 

boom-tip 

 

 

2.1.2. Recorded data 

As shown in Figure 2, the control of crane movements for loading logs involves two distinct actions 

that can be done on either side of the machine. The first action is to extend the crane from the trailer toward 

the logs for pick up. The second action is to return the crane loaded with logs back to the trailer. To avoid 

hitting the poles of the trailer, the return path is higher than the exit path, as can be observed in Figure 2. The 

exit path can be much lower because the crane can exit the trailer through the empty spaces between the 

poles to the sides. In the rest of the article, the exit and return paths are referred to as crane expanding and 

retracting motions. 
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Figure 2. The paths described here refer to those for performing the actions of grabbing logs from one side of 

the machine, and accumulating them in the trailer [12] 

 

 

2.1.3. Motion data set 

Successful application of DMPs requires a rigorous data processing step that we perform off-line 

because when data is being recorded on a forestry machine, it does not have software that can automatically 

distinguish either the movements or the tasks being performed. Therefore, to make sense of recorded data, a 

crucial aspect of data processing is to separate the motions described in 2.1.2. This is done by trimming the 

data into individual tasks and arranging them in the form of vectors. This article is a continuation of our 

previous work on DMPs, and the data referenced here is the same as that presented in [15]. 

The data is shown in Figures 3 and 4. They correspond to the Cartesian trajectories of the boom tip 

and the telescopic link used to retract the crane from the left side of the vehicle. The dark bold signals are the 

averaged trajectories that are used in the learning process of the DMPs method. Figure 3 shows data plotted 

according to a monotonic parametric variable θ(t). This variable is the path curve length and it is shown in 

Figure 4 plotted with respect to time to show the duration of motions. Note that the duration of motion varies 

between trajectories because it depends on how much load the crane is holding: the higher the load, the 

slower the movement. 

 

 

 
 

Figure 3. Cartesian coordinate trajectories 𝑝(𝑡) found after trimming the original data set, including the 

telescopic link q4. The bold signal represents the average of all trajectories [14] 
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Figure 4. Normalized curve length in respect to time [14] (the bold signal is the averaged length used for 

interpolations) 

 

 

2.2.  Methods 

We have chosen to work with dynamic movement primitives (DMPs) due to their various properties 

and successful applications reported in the field of robotics [16]. DMPs provide a formal mathematical 

framework for defining motion planners in terms of stable differential equations. Consequently, the solutions 

of these differential equations are used as desired trajectories and can be varied in velocities and amplitudes 

by simply changing the numerical values of some parameters [17]. In addition, this method satisfies some 

engineering requirements for industrial development. Specifically, DMPs are easy to implement in software, 

have low computational cost, and can be adapted by the machine operator without the need for coding. The 

following subsections provide the mathematical tools that are essential to apply DMPs. 

 

2.2.1. Forward kinematics analysis 

Referring to Figure 1, forwarder cranes are redundant manipulators composed of four main joints 

with one degree of redundancy [22]. The crane’s open kinematic chain follows an RRRP convention, where 

the joints’ positions measured through sensors can formally be written as the vector of generalized 

coordinates 𝑞 =  [𝑞1, 𝑞2, 𝑞3, 𝑞4]𝑇  ∈  ℜ. Each of these joints is industrially referred to as: i) the slewing q1, ii) 

the inner boom q2, ii) the outer boom q3, and iv) the telescope q4. 

The Cartesian coordinates of the boom tip as shown in Figure 2 can be calculated using the forward 

kinematics equation derived from the Denavit-Hartenberg (DH) convention [22]. Therefore, given the 

measurements of the generalized coordinates 𝑞, the boom-tip coordinates 𝑝 can be explicitly given by (1) 

 

𝑝 = [
𝑥
𝑦
𝑧

] = 𝑓(𝑞) (1) 

 

where 𝑓 (𝑞) is the forward kinematic equation detailed in [14]. 

 

2.2.2. Inverse kinematics analysis 

Being a redundant manipulator, a closed-form solution to the inverse kinematics does not exist for 

this kind of crane [22]. However, given the fact that the crane resembles a two-link manipulator with variable 

length at the second link, a closed-form solution to the inverse kinematics problem can be given if the input 

data are the positions of the Cartesian boom-tip 𝑝(𝑞) and telescope q4. In such a case, the inverse kinematics 

can be formulated as (2), 

 

𝑞1,2,3  =  𝐹 (𝑝, 𝑞4) (2) 

 

where the function 𝐹 (·) to perform this calculation is detailed in [14]. Thus, having a specified path 𝑝 ∗ (𝑡) 

and a trajectory for 𝑞4
∗(t), the remaining degrees of freedom can be found explicitly through (2). 
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2.2.3. Mechanical power as a measurement of energy 

Euler-Lagrange formulations help describe the crane dynamics as (3), 

 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝑢 (3) 

 

where 𝑀 (𝑞) is a symmetric and positive-definite matrix of inertia, 𝐺(𝑞) is the gravity vector, and 𝐶(𝑞, �̇�) is 

the matrix of Coriolis forces [22]. The right hand side u denotes the torques and forces required to perform a 

motion. Consequently, mechanical power can be computed from (4), 
 

𝐸 = ∫ 𝑢(𝑡)
𝑇

0
· �̇�(𝑡) 𝑑𝑡 (4) 

 

and it acts as a metric for the energy spent on motion, which correlates to fuel consumption [23]. Thus, 

torque can be calculated by replacing the values for joint positions 𝑞(𝑡), velocities �̇�(𝑡), and accelerations 

�̈�(𝑡) in (3). Consequently, energy can be computed using (4) for the motion interval 𝑡 ∈ [0, 𝑇], having T as 

the time duration of the motion. 

 

2.2.4. Dynamic movement primitive framework 

As initially presented in [14], DMPs main concept is to use the following stable dynamical system 

for planning motions [16], 

 

𝜏𝑛 ̇ = 𝛼𝑛(𝛽𝑛(𝑔 − 𝑚) − 𝑛) + 𝑓 

𝜏𝑚 ̇ = 𝑛  (5) 

 

The desired trajectory’s position, velocity, and acceleration are given by the values of [𝑚, �̇�, �̈�] respectively. 

𝜏 is a scaling constant that influences the velocity of the motion, and g is the goal position. f is a nonlinear 

forcing term determining the shape of the response. When f=0, the remaining system is a globally stable 

second-order linear system with (𝑛(𝑇 ), 𝑚(𝑇)) = (0, 𝑔) as unique point attractor from the initial state =, 

𝑚(0)) = (𝑛0, 𝑚0). The choice βn=αn/4 makes (5) a critically stable damped system that converges 

monotonically towards the point attractor g [16]. 

The solution of the first-order canonical system, 

 

𝜏�̇� =  −𝛼𝑠𝑠,  (6) 

 

defines the evolution of motion, removing the dependency on time. αs is a constant that defines the 

monotonic rate of convergence from s0=1 being the start of the motion, to s0 ≈ 0, being the proximity of the 

goal g. The complete system (5) and (6) has a unique equilibrium point at (n, m, s)=(0, g, 0). 

The purpose of DMPs is to find the nonlinear function f using human demonstrations, such that the 

solution of the system (5) and (6) resembles the demonstrated reference motion. To this end, the authors of 

[16] suggest a procedure using a machine learning approach based on Gaussian kernels. For our particular 

example, this approach is fully described in [14]. 

 

2.2.5. Training procedure applying the standard DMPs framework 

For our purposes, using the DMPs framework for developing a motion planner consists of finding 

four differential equations of the form (5). These differential equations are for planning desired boom-tip path 

trajectories [𝑝∗𝑡, �̇�∗𝑡] and the desired telescope trajectory [𝑞4
∗(𝑡), �̇�1

∗(𝑡)]. They can be formulated as (7) 

and (8). 
 

𝜏�̈� =  𝛼𝑛(𝛽𝑛(𝑞𝑝 − 𝑝) − �̇�) + 𝑓𝑝 (7) 

 

𝜏�̈�4 =  𝛼𝑛(𝛽𝑛(𝑞𝑞4
− 𝑞4) − �̇�4) + 𝑓𝑞4

 (8) 

 

Consequently, the desired trajectories for the remaining degrees of freedom [𝑞1
∗(𝑡), 𝑞2

∗(𝑡), 𝑞3
∗(𝑡)] can be 

found explicitly by calculating the inverse kinematics through (2). The data used for training the model (5) 

are shown by the bold black signals in Figure 3, corresponding to collecting logs from the left side of the 

vehicle. Nevertheless, forestry cranes perform similar motions to collect logs from either side of the machine. 

Therefore, it is sufficient to train the model with this data. Due to the properties of the model (5), all other 

variations of similar motions can be done consequently, irrespective of which side of the vehicle the motions 

are directed to, being an advantage of this approach. In the paragraphs below, we refer to the differential (7) 

and (8) found with the standard DMP framework as the standard motion planner. 

file:///C:/Users/ASUS/Dropbox/DATA%20FAIZAH/IJRA/20547%20IJRA%20DB%20blm%20cek%20similarity.docx%23_bookmark38
file:///C:/Users/ASUS/Dropbox/DATA%20FAIZAH/IJRA/20547%20IJRA%20DB%20blm%20cek%20similarity.docx%23_bookmark7
file:///C:/Users/ASUS/Dropbox/DATA%20FAIZAH/IJRA/20547%20IJRA%20DB%20blm%20cek%20similarity.docx%23_bookmark8
file:///C:/Users/ASUS/Dropbox/DATA%20FAIZAH/IJRA/20547%20IJRA%20DB%20blm%20cek%20similarity.docx%23_bookmark9


                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 13, No. 2, June 2024: 180-193 

186 

2.2.6. Training procedure including energy optimization 

Optimization of motion consists of exploiting the crane’s redundancy to obtain optimal joint 

trajectories. One method consists in finding joint trajectories mimicking the paths p(t) demonstrated by 

operators, but in a way that they minimize performance criteria involving energy in (4). To this end, our 

method is to find a better trajectory profile for the telescopic link q4(t) along the demonstrated path p(t), 

because the trajectories for the remaining degrees of freedom can be found explicitly by calculating the 

inverse kinematics (2). This allows the operator to demonstrate suitable paths based on their experience, and 

better vision ability, while the optimization process finds the best energy-efficient joint trajectories to be used 

for the DMP approach. 

As observed in Figures 2 and 3, the starting position of the telescope q4 when grabbing a log 

depends on the habits of how the operator tends to manually control the crane. Typically, during the lifting 

motion, operators retract the telescope fully by the time the crane reaches the bunk [15]. As indicated in the 

work of [19], the initial condition of the telescope plays an important role in energy, because it affects the 

potential energy of the system. However, according to research studies [4], [15], machine operators are not 

able to use this link properly, because it demands multitasking and difficult coordination. As stated earlier, 

this inefficiency can be observed in data of the operator (see Figure 3), because the average telescope range 

of motion is within less than 20% of its maximum range. Thus, leaving plenty of space to exploit 

redundancy. 

To optimize the motion, a method consists of finding a better initial condition q4(0) for (8) that can 

lead to minimizing energy. Thus, the only change with the optimization algorithm is the telescope’s range of 

motion, as reusing (8) leads to motions having the same intrinsic properties taught by the machine operator. 

In addition, using a differential equation rather than a polynomial function reduces the complexity of the 

optimization search problem. To make sure that the telescopic link can close fast enough when starting from 

larger initial conditions (perhaps from a fully opened position), we can add a term to (8) in the form [16]: 

 

𝑓𝑎 = 𝑘(𝑚 − 1.5 · 𝑘) (
1.𝑠𝑖𝑔𝑛(𝑚−1.5·𝑘)

2
) (9) 

 

resembling the behavior of an additional attractor, where fa is the additional term, and k represents a spring-

damper constant. The function involving sign is a mathematical form of an if-else command used to tell the 

system when to activate or deactivate this function. Thus, the new motion planner for q4 has the form: 

 

𝜏�̈�4 = 𝛼𝑛(𝛽𝑛(𝑔𝑞4
− 𝑞4) − 𝑞 (10) 

 

In summary, the optimization task is to find the initial conditions q4(0) and the constant k for the optimization 

problem formulated as, 

 

min
{[𝑞4(0),𝑘]∈ℜ}

1

2
𝐸(𝑞4(0), 𝑘)

2
 

 

subject to 

 

𝑞4
{𝑚𝑖𝑛}

<  𝑞4(0) <  𝑞4
{𝑚𝑎𝑥}

  (11) 

 

𝑘{𝑚𝑖𝑛} <  𝑘 <  𝑘{𝑚𝑎𝑥} (12) 

 

𝑢 =  𝑀(𝑞)�̈� +  𝐶(𝑞, �̇�)�̇� +  𝐺(𝑞) (13) 

 

𝜏�̈�𝑝 =  𝛼𝑛(𝛽𝑛(𝑔𝑝 −  𝑝) −  �̇�𝑝) +  𝑓𝑝 (14) 

 

𝜏�̈�{𝑞4} =  𝛼𝑛(𝛽𝑛(𝑔{𝑞4} − 𝑞4) −  �̇�{𝑞4}) +  𝑓{𝑞4} +  𝑓𝑎 (15) 

 

𝑞{1,2,3} =  𝐹(𝑝, 𝑞4) (16) 

 

where q4
min and q4

max are the minimum and maximum ranges of the telescope. Similarly, kmin and kmax are 

minimum and maximum values for the constant k. 

Notice that the differential equations working as motion planners for the Cartesian coordinates 𝑝(𝑡), 

given by (7), are still the same ones found with the standard training procedure described earlier. The 
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difference of an optimized motion planner is only the differential equation for q4(t), given by (10). In the 

paragraphs below, we refer to this new differential equation as the optimized motion planner. 

 

2.2.7. Evaluation of motion planners 

The following evaluations are designed to present a comparison between the performance between 

the standard and optimized motion planner against each other, and against data from the machine operator. 

To this end, this article presents two simulation cases. 

Test 1 consists of simulating the standard and optimized motion planner using as initial conditions 

all those from the machine operator’s demonstrated trajectories. A graphical representation of these initial 

conditions is sketched in Figure 5. The total energy is determined by summing up the energies of all 

trajectories. This process is performed a) for the standard motion planner, b) for the optimized motion 

planner, and c) for the machine operator. Consequently, a quantitative comparison of energy among these 

three cases can be provided. The objective is to assess the energy efficiency improvements achievable 

through automation as opposed to manual crane control by operators. 

 

 

 
 

Figure 5. Different initial conditions for testing: dark dots represent the locations of the logs, from which 

the motion planning starts [15] 

 

 

Test 2 consists of simulating the final motion planers using different initial conditions, resembling 

the act of collecting logs from different locations. These locations are chosen as the places where the machine 

operator grabs logs more frequently and would use the automatic motion planner to bring the logs into the 

machine’s log bunk. Figure 5 depicts six different variations around the y-axis, located on both sides of the 

machine, selected based on the operator’s crane control patterns [15]. It is assumed that five similar loads are 

collected at each location, giving a total of thirty motions. The goal is to demonstrate the motion planners’ 

capability to handle differences in initial conditions, motion amplitude, and velocities, despite training with 

only one dataset. Additionally, the comparison of energy for the standard and optimized model’s trajectories 

is presented to showcase their performance differences. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Results of applying the DMPs framework 

3.1.1. Final motion planning resulting from the standard DMPs framework 

Figure 6 shows a comparison of the original data set and the desired trajectory as a result of using 

the standard motion planner given by (7) and (8). In the figure, the grey signals are the data set used for 

training the model, and the dashed black signals are the position trajectory using model (5). Results show the 

ability to replicate the averaged demonstration data set with a mean accuracy of 96.3%. 
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Figure 6. Comparison of the demonstrated position trajectories against the results of the motion planning 

model (5) [14] 

 

 

3.1.2. Final motion planning after optimization 

Referring to Figures 3 and 7, results show that the operator in this study uses the range of motion of 

the telescope within small ranges compared to its maximum. As explained in [15], this differs from operator 

to operator and it mainly depends on their multitasking skills. Nevertheless, using the telescope while 

coordinating the remaining joints is commonly difficult for machine operators. 

 

 

  
(a) (b) 

 

Figure 7. Results of (a) comparison of the standard and optimized telescope motion q4(t) and  

(b) calculation of energy as result of using these two variations (grey signal: standard motion planner,  

black signal: optimized one) 

 

 

For the data used here, we see that the operator’s averaged trajectory starts at nearly 12% of the 

maximum opening, i.e., q4(0)=0.4 [m]. It is seldom that the operator uses up to nearly 50% of the opening of 

the telescope, i.e., q4(0)=1.7 [m], as deducted from Figure 3. This leaves plenty of space where energy 

optimal motions may exist. 

As described in section 2.2.6., we only modify the trajectory for the telescope q4(t) to optimize the 

motion over the operator’s averaged path. For the optimization problem formulated by (16), the range for the 

telescope’s initial conditions goes from qmin=0 to qmax=3.5 meters. The range for k is made half the 

telescope’s maximum opening. 
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To solve this optimization problem, we use the optimization toolbox from MATLAB. Results of 

optimization are presented in Figure 7(a), showing that using the telescope around a range of 72%, i.e., 

q4(0)=2.5 [m], provides energy saving in the range of 25%, as one can observe from Figure 7(b). The value 

found for k=0.2. Thus, results show that optimization has the ability to improve energy performance as we 

originally expected. 

 

3.2.  Simulation tests for evaluating the motion planners 

3.2.1. Test 1: Total energy 

Figure 8 shows an example comparing energy for a total of 38 trajectories out of the whole data set 

shown in Figure 3. The black bars represent the energy spent by the trajectories of the operator. The grey bars 

represent the energy spent by the trajectories from motion planning. Figure 8(a) is a graphical representation 

showing that the standard motion planner has the ability to reduce energy for most trajectories. However, it is 

notorious that the optimized motion planner, shown in Figure 8(b), can substantially reduce energy in relation 

to the standard case. 

 

 

  
(a) (b) 

 

Figure 8. The comparisons of (a) the standard model energies in relation to the operator’s trajectories and 

(b) the optimized model energies in relation to the operator’s trajectories (grey: the DMPs model, 

black: operator’s data) 

 

 

Overall, the standard motion planner shows a 25% improvement in energy efficiency over 

trajectories produced by the operator when considering all of the trajectories in the data set displayed in 

Figure 3. In contrast, the optimized motion planner surpasses the machine operator by planning motions that 

consume 40% less energy. These results demonstrate that both the standard and optimized motion planners 

can reduce energy consumption, but the optimized planner achieves higher energy savings, averaging 15% 

better than the standard planner. Notably, as observed in Figure 8(b), most crane motions require a 

comparable amount of energy when using the optimized motion planner. 

 

3.2.2. Test 2: Different initial conditions 

This test shows the ability of both models to handle the uncertainty in initial conditions, i.e., the 

ability to plan motions from any desired position. The results are based on initial conditions visually sketched 

in Figure 5. The results of this simulation are presented in Figure 9, displaying the paths in Cartesian space. 

The individual joint trajectories for the standard and optimized model are shown in Figure 10. The 

difference between the trajectories planned by these models is observed in the plot for the telescopic link q4, 

which contains different initial conditions according to the standard and optimized motion planners. To 

understand the benefits of the optimized motion planner, Figure 11 shows the energy comparison. The black 

bars represent the energy for the motions planned by the standard motion planner, while the grey bars are for 

the optimized case. In average, the optimized case behaves 12% better than the standard one, when 

considering the total energy of all trajectories. 
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Figure 9. Cartesian coordinate plot for all simulated paths (grey signals: trajectories planned by the model (5), 

dark dots: new initial conditions used for the simulation, solid bold line: the path used as data set for learning) 

 

 

 
 

Figure 10. The grey signals are the trajectories planned by the model (5) 

(solid bold lines: trajectories used as data set for learning) 

 

 

 
 

Figure 11. Comparison of the standard model energies in relation to the optimized model  

(grey signal: the energy of the optimized model, black signal: the energy of the standard model) 
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3.3.  Discussion 

Dynamic movement primitives are useful frameworks to develop dynamic motion planners based on 

demonstrated actions. In [14], we examined the standard application of DMPs for performing one particular 

action, i.e., bringing the crane loaded with logs into the machine automatically once an operator has grabbed 

them using joysticks. We argued that this action is a feasible incremental step in automation functions to be 

provided to machine operators in the near future. 

In this article, our study was centered on proposing a complementary method to apply the DMP 

framework, with the purpose of developing a motion planner capable of planning energy-optimal motions. 

The argument for using optimization is that human demonstrations in this kind of machine can have some 

inherited inefficiencies due to the complex manual control involved in them. Therefore, our contribution is to 

incorporate an optimization routine used to exploit the crane’s redundancy for developing a motion planner 

able to plan trajectories having better energy characteristics. In this way, the new motion planner is able to 

replicate human-like controlled motions in Cartesian space, but it is able to exploit redundancy in the joint 

space to achieve better energy performance. These results are novel within the context of applying DMPs and 

can be expanded to plan motions meeting different performance criteria specifications than the one used in 

this article. 

 

3.3.1. Discussion about results 

The first objective of the study was to determine to what extent the motion planner could replicate 

the demonstration data set. The results showed that the motion planner, using the standard DMP 

framework, was able to reproduce the demonstrated motion with over 95% accuracy. However, the 

operator’s habit of using the telescopic link within only 12% of its maximum range may not lead to 

energy-optimal motions. 

To improve energy efficiency, an optimization procedure was proposed and applied to the motion 

planner. The results showed that the optimized motion planner was able to save 40% energy while 

reproducing the same Cartesian motion as the demonstration data set. To this end, the optimized motion 

planner used the telescopic link within 72% of its maximum range. These findings demonstrated that using 

unusual joint movements in the motion planner could help optimize energy usage and that modifying the 

DMP framework could provide the motion planner with the ability to exploit redundancy to meet 

performance specifications. 

To further explore the benefits of motion planners, two different tests were performed. The first test 

quantified the total energy consumption of all trajectories shown in Figure 3. The standard motion planner 

provided better energy performance than the operator’s motions, reducing energy consumption by almost 

25%. The optimized motion planner achieved even better performance, reducing energy consumption by 

nearly 40%. The second test involved simulating a scenario of collecting logs from different initial points, as 

shown in Figure 5. Both motion planners were able to adapt to different initial conditions and reproduce 

motions similar to the demonstration data set. However, the optimized motion planner had better energy 

performance than the standard one, achieving a 12% energy reduction. 

Lower energy consumption in forestry machines translates to lower emissions and fuel consumption, 

which are important environmental factors for manufacturers. The study showed that automation can bring 

benefits to the forestry industry by improving both productivity and energy efficiency. Instructing operators 

to handle standard cranes based on analytical methods can lead to further increases in productivity and 

efficiency in manual operation. Training simulators can be programmed with tools that help students practice 

imitating energy-optimal joint reference trajectories, leading to better education for operators. 

 

 

4. CONCLUSION  

In conclusion, this study has demonstrated that combining the DMP framework with mathematical 

optimization can substantially improve energy efficiency in automated forestry crane motions. By exploiting 

redundancy in crane movements, the motion planner can reduce energy consumption by up to 40% compared 

to traditional operator-controlled motions. The potential benefits of these findings include the possibility of 

improving energy efficiency in partially automated forestry machines, as well as providing a potential tool 

for training new machine operators. However, the study also acknowledges several limitations that must be 

addressed, including the need for motion feedback control systems to execute the motions planned by the 

DMP algorithm and the current lack of computer vision systems in forestry machines. At present, our motion 

planner is blind, because computer vision systems are not available in forestry machines, and it will take a 

while for them to become available in this industry. Therefore, the application of our approach is directed 

towards the Scandinavian cut-to-length system, which leads to obstacle-free work for forwarder cranes. 

Additionally, the energy improvements reported are subjective and may vary across different operators. 
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Nevertheless, similar findings will exist when analyzing any machine operator, as the work with forestry 

cranes is today not necessarily efficient. 
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