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 The aim of the research is to create logic-free vector computing, leveraging 

read-write transactions in memory, to solve the problems of modeling and 

simulation stuck-at-fault combinations for complex logic elements and digital 

structures. At the same time, the problem of creating smart data structures 

based on logical vectors, truth tables, and deductive matrices is considered to 

simplify algorithms for parallel stuck-at-fault simulation. Vector computing 

is a computational process based on read-write transactions on bits of a binary 

vector of functionality, where the input data and faults are the addresses of the 

bits. A method for the synthesis of deductive vectors for propagating input 

fault lists is proposed, which has a quadratic computational complexity of 

read-write transactions. Deductive vectors, combined into a quadratic matrix, 

represent explicit data structures for parallel simulation of single and multiple 

stuck-at-faults. The initial information for constructing a deductive matrix is 

a logical vector and a bit-recoding matrix. Matrix is easily obtained using a 

recursive procedure based on the combinatorial properties of the truth table. 

Considering emerging trends, focused on in-memory computing, an algorithm 

for fault, as addresses, simulation is proposed, using logical and deductive 

vectors placed in memory. The simulation algorithm is proposed not to use 

commands of powerful processors. 

Keywords: 

In-memory computing 

Logical vector 

Matrix of deductive vectors 

Read-write transaction 

Sequencer of vector deductive 

fault simulation 

Vector model of input faults 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Vladimir Hahanov 

Design Automation Department, Kharkiv National University of Radioelectronics 

Kharkiv, Ukraine 

Email: hahanov@icloud.com 

 

 

1. INTRODUCTION 

The motivation of the research is defined by leveraging a vector form of logic [1] organization in-

memory computing (simulation). The relevance of this direction can be seen from the latest research by 

Gartner, which published computational storage (CS) as a trigger trend, which transfers data processing from 

the central processor to the memory where they are located. Big data should be processed at the place of their 

storage. The relevance of the application of in-memory computing (IMC), near-memory computing (NMC), 

and processing-in-memory (PIM) computing is confirmed by [2]–[9]. Creation of a model of deep neural 

networks (DNN), especially in the field of processing natural language processing (NLP) reduces power 

consumption by 36.3% and improves big data algorithm performance by 22.6%. The main goal of IMC 

architectures is to reduce power consumption as much as possible to increase autonomy by reducing data 

transfer between the memory and the computing unit using bitwise logical operations (NOT, AND, OR, and 

XOR) inside and next to the memory array, promoting the concept of in-memory computing (CiM). Bandwidth 

and power consumption have become the most critical bottleneck in von Neumann's computing architecture 

https://creativecommons.org/licenses/by-sa/4.0/
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due to the separation of processor and memory. The realization of computing unity and memory in one place 

opened a promising direction for research in-memory computing (CIM). Techniques that bring computation as 

close as possible to the memory array, such as in-memory computation (IMC), near-memory computation 

(NMC), and in-memory processing (PIM), can reduce the cost of moving data between the core and memory. 

In-Memory Computing delivers speed and up to 78% energy savings. This type of IMC-computing is devoted 

to more than 64,000 publications in IEEE Xplore, which indicates the relevance of the problem of big data 

analysis using simple CPU-free models placed in memory. In-data (in memory) computing is a computational 

process based on read-write (logic) transactions in memory, minimizing time and energy consumption for 

processing big data. 

The idea of the study is based on the superposition of components: in memory computing, the use of 

vector data to describe the logical functionality and read-write transactions instead of a powerful processor to 

simulate single and multiple faults, like addresses. This makes it possible to increase the speed of deductive 

simulation, and transfer of computing to a lower level of computational processes (read-write transaction), 

where the von Neumann architecture and the post-Jablonski theorem about functional completeness can be 

ignored [10]–[12]. Vector computing is based on read-write transactions on vector data structures in address 

memory. The relevance of this direction can be seen from the latest Gartner Hype Cycle, which highlighted 

computational storage (CS) as a trigger trend of transferring data processing from the CPU to the memory 

where they are located [13]. Big data must be processed where it is stored. 

Vector computing is a computational process based on read-write transactions on the bits of a binary 

vector of functionality that forms computational storage, where the input data (conventional memory) are bit 

addresses. Data (fault vectors) in the proposed vector-deductive simulation method are used as addresses for 

processing the data itself. 

The input data models can be represented in several ways, as shown in Figure 1: i) sets, which are 

compact data that require a complex and sequential algorithm for processing inputs, ii) vectors, which provide 

unitary data coding, use a parallel register algorithm for data processing and sequential algorithm for processing 

inputs, iii) addresses, which provide a compact encoding of unitary data and a sequential algorithm for their 

processing by read-write transactions in memory free of logic and processor with parallelism in address 

columns. Based on the associative law, it is possible to increase the number of input variables by expanding 

the vector memory elements: (((𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8)𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15)𝑥16𝑥17𝑥18𝑥19𝑥20𝑥21𝑥22). 

The vector Q= 01101001 is a function of three variables that form addresses from the data to be analyzed. 

 

 

 
 

Figure 1. Input data models 

 

 

In design and testing, all problems are solved based on project representation using standard hardware 

description languages (VHDL, Verilog, System C). They allow you to combine the efforts of many developers 

and link individual projects into a system. It is possible to use powerful compilers for the synthesis and analysis 

of digital projects. All industrial systems have data structures that are the strictest secret of all leading 

companies in the EDA market. This is because the data structures determine the efficiency of compilers and 

synthesizers by 80%, which cost a lot of money in the EDA market. If we talk about the classification of 

software products created for the EDA market, these are, first, simulation of correct behavior, fault modeling, 

synthesis of digital projects and their verification by logical and temporal parameters, diagnosing defects, and 

building tests. There are hundreds of companies in the EDA market dealing with these issues. The largest 

companies are Cadence and Synopsys. 
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In design and testing, three main forms of describing models are used: tabular, analytical, graph [10]–

[21]. Analytical and graph requires for its interpretation complex solvers and a powerful system of processor 

instructions. Tabular models are an explicit form of specifying functionality and therefore do not require 

processor instructions for their interpretation. At the same time, a table and a vector are two forms of description 

of functionalities focused on memory computing that pass into each other. The logical binary vector is a 

compact view of the truth table in the form, ordered by the addresses of the sequence of bits, as the output 

states of the functionality [11]–[20]. Here and below, the logical vector passes from a part of the truth table 

into an independent compact form to set the functionality to create a vector logical in - memory computing for 

processing big data. 

The main problems of fault simulation are: i) The combinatorial analysis algorithms are characterized 

by high computational complexity at the register level of model description. ii) The algorithms for modeling 

and simulating sequential circuits are associated with an unpredictable number of iterations [11]. iii) A 

significant amount of data structures for the analysis of digital systems-on-chips negatively affects the 

performance of fault simulation methods and test synthesis [15]–[22]. iv) Fault simulation algorithms for high-

dimensional logic or the analysis of circuits with converging branches are complex [10]. v) The parallel 

solution of the problems of modeling and simulation of functionalities and digital structures is problematic [9]–

[12]. vi) In addition, the crisis of modern computing is associated with two problems: a long time for analyzing 

big data on a processor-memory pair, as well as a catastrophic increase in power consumption for processing 

big data on modern microelectronics of powerful processors. Further, an original solution to the indicated 

problem is proposed based on the axioms of in-memory vector-logical computing: i) All data is in memory. 

There is no functionality or structure that cannot be implemented as logical vectors in memory. ii) There is no 

data that cannot be used as addresses for processing by vector logic in memory. iii) There is no computational 

process that could not be implemented using read-write transactions in memory. iv) The most technologically 

advanced and smart structure for read-write transactions to analyze big data is a vector. v) The logical vector 

or truth table contains addresses as explicit solutions to any combinatorial problem, including big data analysis. 

The goal is to develop a vector-deductive method for modeling faults, as addresses, for the analysis 

of logical functionalities and circuits of any dimension. Tasks are i) the development of a vector method for 

the synthesis of deductive matrices for transporting input faults to the output of an element, ii) the use of a 

logical vector for parallel simulation of faults in digital functionality, and iii) the use of a logical vector for 

deductive modeling and simulation of faults in a digital circuit. 

The problem of transferring the von Neumann architecture to memory and replacing a powerful read-

write processor with transactions on logical vectors is solved to reduce energy and time costs when modeling 

and simulation of logical functionality of any dimension. The object of research is in-memory computing, 

which reduces energy and time costs when processing big data. The subject of research is in-memory modeling 

of SoC logical components, of any dimension, using read-write transactions on logical vectors. The main idea 

of the fault modeling method is to develop sequencer blocks for vector-deductive modeling of single and 

multiple constant faults. The research formula is an in-memory fault as address simulation via read-write 

transactions on logic vectors. The metric of a vector-deductive simple and reliable simulator for processing 

vectors of single stuck-at faults can be represented by Figure 2. 
 

 

 
 

Figure 2. Metric of the vector-deductive simulator 
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The problem of the von Neumann machine is solved, which consists of the exchange of data 

between the processor and memory, which causes a significant increase in data processing delay and  

energy consumption. It is proposed to replace the powerful command system of the central processor  

with read-write in-memory transactions for processing data like addresses. Smaller computing element is 

more efficient for big data analysis. The essence of the solution to the problem is the creation of  

in-memory read-write computing to simulate faults for verification of the quality of IP-core SoC tests.  

In-memory fault simulation technologies are designed to reduce computing latency and improve energy 

efficiency. 

 

 

2. DEDUCTIVE VECTOR MATRIX SYNTHESIS METHOD FOR FAULT SIMULATION  

The equation T⨁F⨁L=0 conceptually solves all problems of modern deterministic and 

probabilistic computing. The equations allow for solving three classical problems. The first one is  

𝑇 = 𝐹⨁𝐿, which is the test generation based on the model for a given fault list. The second one is 𝐹 = 𝑇⨁𝐿, 

which is the synthesis of a reference model of functionality through faults and tests of the device. The third 

problem is 𝐿 = 𝐹⨁𝑇, which is detecting and diagnosing faults of a device on a given test. Including  

the computing equation solves the problem of deductive modeling and simulation of a digital project when 

models of digital devices are presented in any of three types: analytical, tabular, and vector.  Further, only 

the vector form of representation of functionalities is used, which differs from Armstrong's method [23], 

which used the analytical form of representation of digital structures. The articles [19]–[21], [24]–[29]  

are free from analytical forms of specifying logical functionality that require complex solvers of logical 

equations, as well as the presence of a processor with a powerful command system for implementing 

algorithms. The novelty of the proposed research is to replace the analytical models for fault simulation  

with vector ones [10], [14]–[18], which must be implemented in memory. Further, it is proposed to use  

a logical vector for the synthesis of a deductive matrix, which is used to transport the input lists of faults  

to the output of a logical element, of any complexity. In this case, the synthesis of deductive analytical  

forms is not used, it is separated from simple procedures for analyzing smart data structures, which  

include logical vectors, deductive matrices, and truth tables for recording combinations of faults in  

them [10], [14]–[22], [24]. At the same time, the procedures for analyzing deductive matrices are parallel, 

where the degree of parallelism depends on the complexity of the functional element. The more variables  

a logic element has, the greater the degree of parallelism it has. In this case, the truth table is an ideal model 

for storing and modeling and simulation of the combination of single and multiple faults. 

The method for synthesizing deductive vectors using a Q-vector has two steps. The first step  

is the modification of the Q-vector of the element, as shown in Figure 1, on the input i-set according to  

the rule: L = Q⨁𝑌𝑖 . Here, 𝑌𝑖 is the state of the logical element on the input set 𝑥𝑖. The second step  

is the determination of the deductive vector for the i-input set by Dj = LHij
, j = 1,  2𝑛̅̅ ̅̅ ̅̅ ̅, which permutes the 

bits according to the permutation matrix H, which can be easily obtained through recursion . 

 

Hij(1,2,3) = [
01
10

] →
[
01
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] [
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32

]

[
23
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] [
01
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]
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] [
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] [
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]

[
45
54

] [
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] [
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[
01
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] [
23
32

]

[
23
32

] [
01
10

]

 

 

The algorithm ends when all deductive vectors for all input 2𝑛 sets have been generated. Thus, the 

matrix of deductive vectors is obtained based on the execution of the operator 𝐷 = (𝑄⨁𝑌)𝐻 that is a result of 

the superposition of the operators: 𝐿 = 𝑄⨁𝑌 and 𝐷 = 𝐿𝐻 . The synthesis of matrices of deductive vectors for 

based 2-input logic is shown in Figure 3. 

The synthesis of deductive formulas for mutually inverse elements: 𝑄 = 0110 and 𝑄 = 1001 gives 

the same values of the matrix of deductive vectors, which degenerate into one vector 0110 on all input sets. 

The computational complexity of executing this operator is С= 2× 2𝑛 × 2𝑛 =  22𝑛+1. In the case of parallel 

execution of register operations on vectors, the computational complexity of this operator will be equal to  

С =  2 × 2𝑛 .  
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Figure 3. Synthesis of deductive vectors for based 2-input logic 

 

 

3. DEDUCTIVE ANALYSIS OF A LOGIC CIRCUIT  

Verification of the deductive fault simulation method was carried out based on the digital structure 

having four logical elements as shown in Figure 4. For these elements, deductive matrices were created for 

transporting faults from inputs to output based on logical vectors (1011, 0110, 0111, 1101). Then, the circuit 

was simulated on the test set X=01101 in order to transport fault lists L={L1, L2, L3, L4, L5} to the circuit 

output L9 = F[X, L(xi)]. 

 

 

 
 

Figure 4. Digital structure of four elements 

 

 

To solve this problem, it is necessary to use deductive vectors, which are built based on the logical 

vector of functionalities. Each element of the circuit contains a functionality vector Q, as well as vector D 

(white color), which specifies the procedure for propagating input fault lists to the output for a given input 

vector. In this case, pairs of input fault-vector coordinates of the same name are considered as addresses for 

reading a bit of the deductive vector to the output of the element. The read bits sequentially form a vector of 

output faults propagated from the element inputs. How does the proposed research differ from publications 

that are devoted to fault modeling methods [10], [14]–[22], [24]? A few major differences are that i) vector 

tabular deductive fault simulation uses smart data structures based on logical vectors; ii) instead of a powerful 

processor, read-write transactions in memory are used to implement the algorithm; iii) the method allows 

parallel processing of single and multiple faults, which are placed in truth tables; and iv) the method is focused 

on processing IP-core SoC functionality for modern digital devices under the control of the IEEE 1500 SECT 

standard. 
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4. DEDUCTIVE MATRIX SYNTHESIS OF GATE AND RTL LOGIC 

Also of interest is the process of creating deductive models of the main logic elements, which can be 

used as a library for creating and analyzing circuits. Below are tables for the synthesis of deductive vectors to 

check the quality of tests of logical circuits. The most primitive elements are the inverter (Q=10) and the 

repeater (Q=01). Even though these are different elements, they have the same deductive vectors, which allow 

providing digital logical activity to transport the fault vector from input to output without distorting it as in 

Figure 5. 

 

 

 
 

Figure 5. Synthesis of deductive vectors for primary mutually inverse elements: 10 and 01 

 

 

The next frame is devoted to the process of synthesizing deductive formulas for a three-input logic 

element given by vector coverage 10000001 as shown in Figure 6. Such an element should be considered as a 

black box or RTL-level function representation in relation to its structure, which can be implemented 

differently when specifying its behavior in a vector. Here, the result of propagating lists of activities from the 

input to the output of this element is of interest. In this case, it is not interesting which paths are involved within 

a particular implementation of a logical element. Nevertheless, the synthesis of deductive formulas for this 

element showed that on all input actions, the activity propagation formula has the same value on pairs of sets: 

1–16 and 5–6. The remaining sets, having symmetry, are not repeated in the matrix of deductive vectors. Here 

and below, the zero coordinates of the matrices L and D are represented by empty cells for the purpose of 

figurative perception of information. 

 

 

 
 

Figure 6. Synthesis of deductive vectors for a three-input 10000001–element 

 

 

The circuit in Figure 7 has the property that the deductive vectors in the generated MDV matrix are 

the same and equal to 00110011. The analytic form of such a vector after elementary transformations is D=𝑋2 

on all input sets. This means that three of the four functionality variables are non-essential and cannot be 

activated by input faults. 
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Figure 7. Synthesis of deductive vectors for a three-input 11001100–element 

 

 

The next frame is devoted to the process of synthesizing deductive formulas for a 4-input logic circuit, 

the gate structure of which is known as the “Schneider circuit” [21], which is shown in Figure 8. RTL-model 

of the circuit is specified by vector coverage Q=1000000000000001, shown in Figure 9. Naturally, for each 

deductive vector, we can obtain an analytical form in the form of a DNF for propagating faults on a specific 

set. But this way is technologically complex and computationally expensive, which means it is not applicable 

to the market of electronic technologies. 

 

 
 

Figure 8. Gate implementation of the 4-input Schneider circuit 
 

 

 
 

Figure 9. Synthesis of deductive vectors for 4-input circuit Q=1000000000000001 
 

 

An example of simulating input faults of a 4-input element on the deductive vector 0000001100000000 

(line 7 of the above MDV) is shown in Figure 10. For four automatic cycles, the vectors of input faults were 

propagated to the output with the result obtained in the form of one vector of output faults 0110. Solving this 

problem on the gate structure of this circuit would require 32 automaton cycles. 
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Figure 10. Simulation of 4-input circuit Q=1000000000000001 

 

 

Increasing the number of inputs of RTL functional element leads to an increase in simulation 

performance since more input fault vectors are simulated in parallel to obtain an output fault vector. Using an 

8-input element improves simulation performance by a factor of 11 compared to its structural gate equivalent. 

In the general case, the improvement in simulation performance for RTL circuits having n inputs, compared 

with the analysis of the DNF structure of two-input gates, is given by 𝑄 =
n

2
+ n–1, with n=4, 8, 16 …. 

Of interest is the technological simplicity of the algorithm for synthesizing the H-matrix of coordinate 

permutation Hi= [
H1

i−1 H2
i

H3
i H4

i−1
], i=1,2,3… is the number of input variables, which has 3 items. 

− The first and fourth quarters of the matrix are taken from the previous recursive calculation of the matrix 

for n=i–1 variable, here the equalities H1
i−1 = H4

i−1, H2
i−1 = H3

i−1 are satisfied. 

− The second quarter of the matrix, which is depicted in Figure 11, is found based on the expression 

Hi,j+2n−1 = (2n − 1) − Hi,2n−1−j, j = 0,2n−1–1, i= 0,2n−1– 1. 

− The third quarter of the matrix is found by copying the second part of the matrix into the third area  

H3
i = H2

i .  

Despite the technological simplicity of the proposed algorithm for generating a matrix of deductive 

vectors, this approach has an obvious drawback associated with the dimension of the tables with many input 

variables. It can be eliminated if only one deductive vector is promptly generated on the input test set to 

simulate faults. To do this, you just need to use a single operator Di=(Q⨁Yi)Hij
, described earlier. The 

computational complexity of this procedure is equal to 2n, n is the number of variables in the logical element, 

which is determined by permuting the bits in the Q-vector of the H-matrix to obtain the D-vector. In this case, 

the deductive simulation of faults will not differ much in speed from the fault-free simulation of a digital circuit. 

The processing time delta of one logic element ∆T=TD–TG=tD+tF=2𝑛+1 will be represented by the deductive 

vector generation time tD and plus the processing time of input fault vectors tF. 

 

 

 
 

Figure 11. Synthesis of vector recoding matrix D=L(H) 
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5. VECTOR–DEDUCTIVE SEQUENCER 

The matrix of deductive vectors is a certain redundancy of a digital project, which is the cost for a fast 

and technological solution to the problem of assessing the quality of test patterns and generating a fault 

functions table to detect faults at the stage of functioning a digital product. The proposed deductive matrix has 

six properties, which are compactness, parallel data processing, technological placement in address memory, 

data uniformity in size and properties, simultaneous simulation of fault-free behavior of the element and all 

faults of previous elements and focus on the technological solution of the problems of simulation, testing, and 

diagnostics of any logical systems. 

The vector structure of deductive modeling and simulation in-memory, as depicted in Figure 12, is 

the simplest implementation of the computing device for deductive fault simulation of a digital circuit (element) 

to assess the quality of the tests in the class of single stuck-at faults. The main and single memory block stores 

a matrix of deductive vectors, which has a dimension of 2𝑛 × 2𝑛, where the first number is the number of 

deductive vectors for a logical element of n-variables, and the second one is the dimension of each vector. 

Therefore, the first macro input of the memory block Vector address has n binary variables that allow 

addressing any of the 2𝑛  deductive vectors of the matrix. The second macro input of the memory block byte 

address also has n, but already registers binary variables, which allows addressing any of the 2𝑛 bits of the 

vector, selected by the first macro input, by their binary combination. The output of the memory block fault 

list has a bit width equal to the second macro input, determined by the power of the simulated input faults that 

must be propagated through the element of the digital structure. 
 

 

 
 

Figure 12. Vector sequencer of deductive simulation implemented in the memory block 
 

 

There is a one-to-one correspondence between the components of the two schemes (Mathematic 

structure → Memory structure): Input set → Vector address, Input fault vectors → Bit address, Deductive vector 

matrix → Deductive vector matrix memory, Output fault vector → Read memory cells vector. Here, the input 

binary set (data) entered in the gate is interpreted as the address to access the deductive vector in matrix memory. 

The vector of output faults propagated from element inputs is formed by reading the coordinates of a deductive 

vector placed in matrix memory. Unusual or paradoxical is the fact that combinations of bits of input fault vectors 

(data) act as addresses of deductive vector bits for reading them from memory. Simply put, the faults (input data) 

are used as addresses to read the deductive vector bits from the matrix memory to form the output fault list. 

An example of the operation of the deductive fault simulation sequencer on the memory block is 

shown in Figure 13. The first two logical inputs with their values 𝑥1𝑥2=10 form the address of the deductive 

vector 0010. After that, each pair of input binary signals on the vectors 𝑋1𝑋2 forms the bit address of the 

previously selected vector. The content of the selected bit at each simulation cycle forms the bit of the output 

fault vector obtained because of propagating the input fault lists through the element. 
 

 

 
 

Figure 13. An example of deductive simulation on a memory block 
 

 

For example, the first signal pair 𝑋1𝑋2=00 addresses the 0-th memory cell of the vector 0010 (in cell 

number format: 0123), where 0 is located, forming the first cell of the output fault vector. The second pair of 
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signals 𝑋1𝑋2=10 addresses the second memory cell of the vector 0010, where 1 is located, forming the second 

cell of the output fault vector. Thus, pairs of signals in the same-named bits of the input fault vectors play the 

role of the cell address of the selected deductive vector of the matrix. The number of simulation cycles is equal 

to the power of the fault vectors of the input variables. In this case, there will be eight simulation cycles, which 

form eight bits of the output fault vector. Deductive-vector fault simulation of an arbitrarily complex digital 

circuit is reduced to a primitive memory transaction represented by an addressable read-write operation. No 

traditional logic is required. The same result was obtained earlier for simulating fault-free behavior of digital 

systems [13], [25], [27], [29], where the vectors of logic element output states were used as descriptions of 

them. The structure of the device for vector-deductive fault modeling and simulation, which is proposed in the 

work, has some differences from analogs: vector-logical assignment of functionalities, the use of read-write 

transactions to implement the in-memory algorithm, and smart data structures that simplify the fault modeling 

and simulation procedures. 

The metric of a functional n-input element F, represented by a vector of 2𝑛 states of output coordinates 

and its deductive model DF, represented by an MDV matrix of 2𝑛 deductive vectors with a dimension of 

2𝑛 binary coordinates, is shown in Figure 14. Here, the Bit address for the deductive element MDV is formed 

by the same-named coordinates or bits of the input fault vectors, and the Vector address is formed by the input 

binary set entered on the inputs of the functional element. The bit address for the functional element F is formed 

by the input binary word or set. 

Thus, the ratio of the two models by memory is F/DF=2𝑛/2𝑛 × 2𝑛=1/2𝑛. The computational 

complexity of synthesizing a matrix of deductive vectors is estimated by Q=n× 2𝑛 + 2𝑛 × 2𝑛, the first term 

determines the complexity of generating address-disordered input variables of the deductive vectors in register 

operations on vectors, the second term determines the complexity of the coordinate operations for reducing the 

bits of deductive vectors according to the order of the binary addresses, composed by input variables. The 

computational complexity of the analysis of the matrix of deductive vectors when performing deductive 

simulation is Q=k× 𝑅, where k is the dimension of input fault vectors, R is the duration of the operation of 

reading the contents of the addressable bit of the deductive vector from the MDV memory. The significant 

deductive redundancy of the project pays for the quality and reliability of the digital system, which also allows 

for generating tests, evaluating their quality, and solving any problems related to diagnosing faults in the design 

and operation of a digital device in critical areas of human activity. 

 

 

 
 

Figure 14. Metrics of functional and deductive elements 

 

 

6. VERIFICATION OF THE VECTOR-DEDUCTIVE METHOD FOR FAULT SIMULATION 

The scheme for verifying the simulation method is taken from library C17, as in Figure 15, which has 

converging fanouts (2,7,8). The input set 11111 was simulated. Each circuit element has a logical vector equal 

to Q=1110. Based on this logical vector, a deductive simulation matrix is built, which is determined by four 

vectors: 0001, 0010, 0100, and 0111. The simulation results are presented in Figure 16. Only single fault 

constants on the input lines of the elements and the circuit were considered. The lines of the table show the 

defects that are checked by the test on the corresponding lines of the circuit. The fault that is checked by the 

test will always be inverse with respect to the healthy state of this line. The last line of the table contains actual 

defects, which are checked by the input text set 11111. Different variants of deductive fault simulation are 

presented in [25], [27], [29]. 

It should be borne in mind that the choice of the deductive vector of each element is based on the 

input binary word of the input variables 𝑥1𝑥2. There are four such words for each element: (00,01,10,11), 

according to the matching number of deductive vectors. The simulation table has empty coordinates, which 
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correspond to the 0th value of the signals. To explain the procedure for using the table for manually modeling 

output fault lists, the diagram in Figure 17. Here, fault lists are simulated as column addresses, with preselection 

of deductive vector number three. 

 

 

 
 

Figure 15. Scheme C17 with reconvergent fanouts 

 

 

 
 

Figure 16. Fault simulation table for circuit C17, input set 11111 
 

 

 
 

Figure 17. Simulation of faults as addresses for the formation of fault list for the 12-output circuit 

 

 

The computational complexity of the proposed deductive vector method is determined by 

Q=
1

2
× k × 𝑛2, where k is the data read from memory, n is the complexity of the circuit, determined by the total 

number of input, internal and output lines, ½ is part of the table modeling data that needs to be processed. 

Figure 18 shows the simulation of faults as addresses for the input set 11001. The red color along the diagonal 

of the table marks the ones that always identify the faults checked at the output of each element. 

In Figure 19, one procedure shows the results of combining two simulation iterations of two test cases: 

11111 and 11001. These results give a total of 9/24=37.5% of tested faults. In general, a test is considered good 

if it checks for more than 95% of the faults on the circuit lines. On each line of the circuit, the stuck-at-1 and 

stuck-at-0 must be detected, which together, when combined, gives the symbol x = {0,1} denotes a detection 

on the line ≡0 and ≡1. Thus, the verification of the fault simulation method as addressed is shown here. The 

method is easy to implement in memory and the construction of vector logical data structures for fault modeling 

does not require complex expensive synthesis. Also, the method does not require a powerful command system 

of a universal processor, but it can be easily managed using read-write transactions in memory. The method is 

economical in terms of energy consumption and the time of the stuck-at-fault simulation. 
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Figure 18. Vector–deductive simulation of a circuit on an input set 11001 

 

 

 
 

Figure 19. Fault coverage matrix 

 

 

The problem of the von Neumann machine is solved, which consists of the exchange of data between 

the processor and memory, which causes a significant increase in data processing delay and energy 

consumption. It is proposed to replace the powerful command system of the central processor with read-write 

in-memory transactions for processing data like addresses. Smaller computing element is more efficient for big 

data analysis. The essence of the solution to the problem is the creation of in-memory read-write computing to 

simulate faults for verification of the quality of IP-core SoC tests. In-memory fault simulation technologies are 

designed to reduce computing latency and improve energy efficiency. 

Comparison with existing analogs in the field of fault modeling is carried out according to the time-

money-quality metric [10], [15], [17], [18], [30]–[35], [36]–[45], [46]–[51]: i) The complexity of the algorithm 

implementation. Here, instead of a powerful system of more than 300 processor instructions, one instruction 

for read-write transactions over memory is used. This is a plus. ii) Redundancy of data structures. The data 

structures of the explicit vector assignment of logical functions and the matrix of deductive vectors are used. 

This is a minus. iii) The computational complexity of simulation faults, as addressed, does not depend on the 

number of gate inputs as in other simulation systems. This is a plus. iv) The computational complexity of 

algorithms for processing smart data structures for simulating faults as addresses is determined by the 

components Q=
1

2
×k× 𝑛2, where k is the time to read a vector bit from memory; n is the number of lines in the 

circuit; 1/2 is half of the simulation table. Approximately the same estimates have all existing industrial analogs 

of fault simulation. So, it can be concluded that the proposed in-memory computing technology focuses on 

embedded simulation for servicing IP-core SoC. 

 

 

7. CONCLUSION  

The scientific novelty of the proposed research in-memory vector fault, as address simulation is 

formed by some components: First, the computing equation T⊕ F⊕L=0 is used to solve the problems of 

modeling and simulation single and multiple stack-at-fault. Second, built a model of smart data structures for 

in-memory computing, which include logical vectors of the truth table and deductive matrix. Third, algorithms 

for parallel analysis of smart data structures have been developed to simulate faults as addresses of the in-

memory truth table. Fourth, efficient procedures for constructing a matrix of deductive vectors based on 

elementary transactions in memory have been developed. Fifth, data structures, methods, and procedures are 

verified based on fault simulation for complex logic elements and digital circuits. Sixth, the method can be 
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used for parallel processing big data, which is interpreted as cell addresses of deductive and/or logical vectors 

that compose the computational memory on which read-write transactions are performed and no logic. The 

method can be the basis for a new deterministic quantum logic-free computing based on the execution of 

photonic (quantum) transactions on a structure of stable subatomic particles considered as memory. In addition, 

the proposed method can effectively solve the problem of recognizing any activity in the cyber-physical space. 

Seventh, the implementation of vector deductive logic models in the FPGA LUT will allow one to obtain the 

performance of fault simulation of real SoC digital blocks at the level of hundreds of nanoseconds. 
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