
IAES International Journal of Robotics and Automation (IJRA) 

Vol. 12, No. 3, September 2023, pp. 228~239 

ISSN: 2722-2586, DOI: 10.11591/ijra.v12i3.pp228-239      228

  

Journal homepage: http://ijra.iaescore.com 

Fault tolerance of a quadrotor via feedback linearization 

approach 
 

 

Ali Jebelli1, Alireza Najafiyanfar2, Arezoo Mahabadi3, Mustapha C. E. Yagoub4 
1Department of Mechanical Engineering, University of Alberta, Ottawa, Canada 

2Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran  
3Department of Basic Engineering Science, Tehran University, Tehran, Iran  

4School of Electrical Engineering and Computer Science, University of Ottawa, Canada  
 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 23, 2023 

Revised Apr 8, 2023 

Accepted Apr 24, 2023 

 

 A control algorithm is proposed to efficiently control the state, position, and 

height of a nonlinear dynamic model of a quadcopter. Based on feedback 

linearization, a state space model is presented for the system with the 

controller with a two-loop control structure designed and implemented in it. 

The inner and faster controller is responsible for adjusting the quadcopter 

height and angles, and the outer and slower controller is responsible for 

changing the desired figures of roll and pitch angles to control the system 

position. Whenever a rotor of the quadcopter rotor fails, the status and position 

of the system are converged and the system is stabilized. Simulation results 

based on different scenarios indicate the proper performance of the control 

system whenever there are external disturbances. Note that the gyroscopic 

effects because of the propeller rotation were not considered. 
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1. INTRODUCTION 

Present day, extensive work has been done in the field of unmanned aerial vehicles, leading to a 

significant increase in both academic research and industrial projects. Various control methods including sliding 

model [1], [2], backtracking [3], adaptive [4], adaptive backtracking [5], resistant proportional integral derivative 

(PID) [6], and linear quadratic Gaussian (LQG) [7] have been utilized in quadcopter systems to control the status 

and position of the quadcopter. On the other side, the issues of fault detection and fault-tolerant control of the 

faults within sensors, rotors, or other parts of the quadcopter have been discussed. There are two types of fault-

tolerant control systems: passive and active [8]. The control structure of a passive control system does not 

change, i.e., the control system is resistant to faults whenever there is a fault while the control system of an active 

control system is reset whenever there is a fault [9]. Several methods have been presented to design the 

controllers in case of rotor failure in the fault-tolerant control system. Sliding mode control has been used to 

control the operating conditions in the case of disturbance and rotor failure [10], [11]. Model predictive control 

has been used to control the system [12]–[14]. Robust adaptive control has been used to track the height and 

status of the quadcopter; moreover, the tracking fault is converged in the case of rotor failure [15]. A nonlinear 

adaptive discrete algorithm and a PID algorithm have been used in inner and outer loops, respectively, to control 

route tracking [16]. Optimization methods have been used to minimize the force being applied by the rotors in 

the case of their failure [17]. Intelligent control methods such as reinforcement learning [18] have also been used 

for fault-tolerant. An intelligent logic algorithm has been used to control a hexadrone; moreover, it has been 

shown that the control algorithm has a proper performance in the case of two rotors' failure [19]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In this research, a nonlinear model for the quadcopter is first introduced, and then, in order to design 

the controller, a state space model for the system is presented using the feedback linearization method, in which 

the gyroscopic effects because of the rotation of the propeller have been ignored. The fault-tolerant controller 

has a two-loop control structure in which the inner and faster controller is responsible for adjusting the 

quadcopter height and angles while the outer and slower controller is responsible for changing the desired 

figures of roll and pitch angles to control the system position. The controllers have been applied to the nonlinear 

system to investigate performance within different scenarios. In this article, after the mathematical modeling 

of a quadrotor, the state space model of the system is presented, then the details of the design of the internal 

and external controller are presented, and the simulation results and comparison of different states are presented. 

 

 

2. MATHEMATICAL MODEL 

A quadrotor is an unmanned aerial vehicle (UAV) with six degrees of freedom. It accounts for two 

pairs of rotors that rotate in opposite directions. The dynamical model of the given quadcopter is presented in 

Figure 1, where the state vector [𝑥, 𝑦, 𝑧] indicates the position of the center of the gravity of the quadcopter and 

its linear velocity in the body-frame is indicated by the vector [�̇�, �̇�, �̇�]; the Euler angles [𝜑, 𝜃, 𝜓] indicates the 

roll, the pitch, and the yaw, respectively, and [𝑝, 𝑞, 𝑟] represents its angle velocity in the body-frame. The 

dynamic equations are expressed in function of the ground frame and the body frame as (1) to (6) [20]. 

 

 

 
 

Figure 1. Quadcopter UAV 

 

 

�̈� =
𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝜓)

𝑚
𝑢1 −

𝑎2

𝑚
�̇� + 𝑑𝑥 (1) 

 

�̈� =
𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛(𝜓) 𝑠𝑖𝑛(𝜃) − 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜑)

𝑚
𝑢1 −

𝑎2

𝑚
�̇� + 𝑑𝑦  (2) 

 

�̈� =
1

𝑚
(𝑢1 𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝜃) − 𝑎2�̇� − 𝑚𝑔) + 𝑑𝑧 (3) 

 

�̇� =
1

𝐼𝑥𝑥

(−𝑎1𝑝 − 𝑞𝑟(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + 𝑢2 − 𝐼𝑧𝑧�̇�𝜔𝑟) + 𝑑𝜑 (4) 

 

�̇� =
1

𝐼𝑥𝑥

(−𝑎1𝑞 − 𝑝𝑟(𝐼𝑥𝑥 − 𝐼𝑧𝑧) + 𝑢3 + 𝐼𝑧𝑧∅̇𝜔𝑟) + 𝑑𝜃  (5) 

 

�̇� =
1

𝐼𝑧𝑧

(−𝑎1𝑟 + 𝑢4) + 𝑑𝜓 (6) 
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In (1) to (6), 𝑚 represents the quadcopter mass, 𝑔 is the accelerant of gravity, and 𝑙 is the distance from each 

rotor to the center of gravity. The vector 𝑑 = [𝑑𝑥, 𝑑𝑦 , 𝑑𝑧 , 𝑑∅, 𝑑𝜃 , 𝑑𝜓] represents the wind disturbance and  

𝜔𝑟 = (𝜔1 + 𝜔2 + 𝜔3 + 𝜔4) represents the overall residual rotor angular velocity, where 𝜔1, 𝜔2, 𝜔3, and 𝜔4 

stand for the angular speed of the propellers. Also, the control inputs u1, u2, u3, and u4 can be obtained from the 

matrix equation in (7). 

 

[

𝑢1
𝑢2

𝑢3

𝑢4

] = [

1 1 1 1
−𝑙 0 𝑙 0
0 𝑙 0 −𝑙

1 −1 1 −1

]

[
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔1
2]
 
 
 
 

 (7) 

 

It is supposed that the dynamic model of the quadrotor structure provided in (1) to (6) is rigid and symmetric, 

the body frame’s origin is the same as the gravity’s center, and the body frame’s axes coincide with the 

quadrotor inertia axes. 

 

2.1. State space model 

Let 𝒙 = [𝜑, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟, 𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�] be the state vector and 𝑢 = [𝑢1, 𝑢2, 𝑢3, 𝑢4] the input vector. 

Considering that in the case where all the rotors are working, 𝜔𝑟 is zero, and in the case of an engine failure, 

the values of  𝐼𝑧𝑧�̇�𝜔𝑟   and 𝐼𝑧𝑧∅̇𝜔𝑟 are very small,  we ignore the gyroscopic effects because of  the propeller 

rotation [21, 22], and the dynamic equations in (1) to (6) can be adjusted in a state space model as (8) to (19). 

 

�̇�1 = 𝑥4 + 𝑥5 sin(𝑥1) tan(𝑥2) + 𝑥6 cos(𝑥1) tan(𝑥2) (8) 
 

�̇�2 = 𝑥5 cos(𝑥1) − 𝑥6 sin(𝑥1) (9) 
 

�̇�3 =
1

cos(𝑥2)
(𝑥5 cos(𝑥1) + 𝑥6 sin(𝑥1)) (10) 

 

�̇�4 =
1

𝐼𝑥𝑥

(−𝑎1𝑥4 − 𝑥5𝑥6(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + 𝑢2) + 𝑑𝜑  (11) 

 

�̇�5 =
1

𝐼𝑥𝑥

(−𝑎1𝑥5 − 𝑥4𝑥6(𝐼𝑥𝑥 − 𝐼𝑧𝑧) + 𝑢3) + 𝑑𝜃  (12) 

 

�̇�6 =
1

𝐼𝑧𝑧

(−𝑎1𝑥6 + 𝑢4) + 𝑑𝜓 (13) 

 

�̇�7 = 𝑥10 (14) 
 

�̇�8 = 𝑥11 (15) 
 

�̇�9 = 𝑥12 (16) 
 

�̇�10 =
cos(𝑥1) cos(𝑥2) sin(𝑥3) + sin(𝑥1) sin(𝑥3)

𝑚
𝑢1 −

𝑎2

𝑚
𝑥10 + 𝑑𝑥 (17) 

 

�̇�11 =
cos(𝑥1) sin(𝑥2) sin(𝑥3) − cos(𝑥3) sin(𝑥1)

𝑚
𝑢1 −

𝑎2

𝑚
𝑥11 + 𝑑𝑦 (18) 

 

�̇�12 =
1

𝑚
(𝑢1 cos(𝑥1) cos(𝑥2) − 𝑎2𝑥12 − 𝑚𝑔) + 𝑑𝑧 (19) 

 

2.2. Inner control loop 

Let �̅� represents the dynamics of the state variables (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 𝑥9, 𝑥12). The state space 

model can be formulated as (20), 

 

�̇� = 𝑓(�̅�) + 𝑔(�̅�)𝑢 (20) 
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and the state variables 𝑥1, 𝑥2, 𝑥3, 𝑥9 could be written as (21), 

⌈

�̇�1

�̇�2

�̇�3

�̇�9

⌉ =

 
 
 
 
 
𝑥4 + 𝑥5 sin(𝑥1) tan(𝑥2) + 𝑥6 cos(𝑥1) tan(𝑥2)

𝑥5 cos(𝑥1) − 𝑥6 sin(𝑥1)
1

cos(𝑥2)
(𝑥5 cos(𝑥1) + 𝑥6 sin(𝑥1))

𝑥12  
 
 
 
 

= 𝑓(�̅�) (21) 

 

which is independent of the input of the system. This property will become useful while the second derivative 

of [𝑥1, 𝑥2, 𝑥3, 𝑥9]
𝑇 is being calculated as (22), 

 

⌈

�̈�1

�̈�2

�̈�3

�̈�9

⌉ =
𝑑𝑓(�̅�)

𝑑𝑡
=

𝜕𝑓(�̅�)

𝜕�̅�
�̇̅� = 𝐽(�̅�)𝑓(�̅�) + 𝐽(�̅�)𝑔(�̅�)𝑢 (22) 

 

where 𝐽(�̅�) denotes the Jacobian matrix 
𝜕�̂�(�̅�)

𝜕�̅�
. If and only if 𝑥2 ≠ arctan (

𝐼𝑧𝑧𝑙

2𝐼𝑥𝑥𝑑
) cos(𝑥1), it can be proved that 

the matrix 𝐽(�̅�)𝑔(�̅�) is invertible. This condition is satisfied in most practical scenarios. Consider 𝑥𝑖𝑑 , �̇�𝑖𝑑 , �̈�𝑖𝑑 

the desired values for 𝑥𝑖 , �̇�𝑖 , �̈�𝑖 and let us define the ith error as 𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖𝑑 . If the control inputs are selected 

as (23), 

 

𝑢∗ = −(𝐽(�̅�)ℎ(�̅�))−1(𝐽(�̅�)ℎ) + (𝐽(�̅�)ℎ(�̅�))−1

(

 
 

⌈

�̈�1𝑑

�̈�2𝑑

�̈�3𝑑

�̈�9𝑑

⌉ −

 
 
 
 
 
𝑘𝑖1

1𝑒1

𝑘𝑖2
1𝑒2

𝑘𝑖3
1𝑒3

𝑘𝑖9
1𝑒9 

 
 
 
 

−

 
 
 
 
 
𝑘𝑖1

2�̇�1

𝑘𝑖2
2�̇�2

𝑘𝑖3
2�̇�3

𝑘𝑖9
2�̇�9 

 
 
 
 

)

 
 

 (23) 

 

with 𝑘𝑖𝑖
𝑗
 is the positive parameters, then the error dynamic is expressed as (23), 

 

⌈

�̈�1

�̈�2

�̈�3

�̈�9

⌉ +

 
 
 
 
 
𝑘𝑖1

1𝑒1

𝑘𝑖2
1𝑒2

𝑘𝑖3
1𝑒3

𝑘𝑖9
1𝑒9 

 
 
 
 

+

 
 
 
 
 
𝑘𝑖1

2�̇�1

𝑘𝑖2
2�̇�2

𝑘𝑖3
2�̇�3

𝑘𝑖9
2�̇�9 

 
 
 
 

= ⌈

0
0
0
0

⌉ (24) 

 

which yields the exponential stability of second-order dynamics. 

 

2.3. Outer control loop 

Since the roll and pitch angles determine the direction, an outer control loop will be computed whose 

job it is to calculate the desired values for the roll and pitch angles to track a desired position in the horizontal 

plane. The subsystems whose dynamics are represented by the state variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 𝑥9, 𝑥12 are 

represented by the constants 𝑘𝑖 and 𝑘𝑜. To avoid losing the system’s stability, it is required to choose 𝑘𝑜 ≪ 𝑘𝑖 
that causes the inner control loop to act much faster than the outer control loop. By presuming that 𝑥1and 𝑥2 are 

small angles, 𝑥1𝑑  and 𝑥2𝑑 are selected close to zero as (22), 

 

⌈
𝑥1𝑑

𝑥2𝑑
⌉ = −

𝑚

𝑢1

[
sin (𝑥3) −cos (𝑥3)
cos (𝑥3) sin (𝑥3)

] ⌈
−

𝑎2

𝑚
𝑥10 + 𝑘𝑜1

1𝑒10 + 𝑘𝑜1
2𝑒7 − �̇�10𝑑

−
𝑎2

𝑚
𝑥10 + 𝑘𝑜2

1𝑒10 + 𝑘𝑜2
2𝑒7 − �̇�10𝑑

⌉ (25) 

 

where 𝑘𝑜𝑖
𝑗
 is positive constants. Then, the error dynamic for the horizontal displacements in a closed loop is (26). 

 

⌈
−

𝑎2

𝑚
𝑥10 + 𝑘𝑜1

1𝑒10 + 𝑘𝑜1
2𝑒7 − �̇�10𝑑

−
𝑎2

𝑚
𝑥10 + 𝑘𝑜2

1𝑒10 + 𝑘𝑜2
2𝑒7 − �̇�10𝑑

⌉ = ⌈
0
0
⌉ (26) 

 

Practically, when occurring fault for rotors, the roll, pitch, yaw, and altitude are stabilized by the inner control 

law, while the near hover condition is exploited by the pouter control law to slowly change the pitch and roll 

angles in order to reach the system to the desired position. 
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3. RESULTS AND DISCUSSION 

This section evaluates the performance of the proposed controller in the presence of disturbances by 

simulation with initial states x0=[0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0] in MATLAB software. Three cases were 

considered to evaluate the controllers. In the first case, the quadrotor does the task without motor failure and 

disturbance. In the second case, one rotor of the quadrotor is turned off from the beginning. In the third case, 

in addition to one rotor of the quadrotor being turned off from the beginning, there are external disturbances. 

The physical parameters of the quadrotor are set as (27).  

 

𝑚 = .5 𝑘𝑔, 𝑙 = .25 𝑚, 𝑔 =  9.81 𝑚𝑠−2 
𝑎1 = 𝑎2 =  1𝑒 − 2 

𝐼𝑥𝑥 = 5𝑒 − 3 𝑘𝑔𝑚2 
𝐼𝑦𝑦 = 5𝑒 − 3 𝑘𝑔𝑚2 
𝐼𝑧𝑧 = 1𝑒 − 2 𝑘𝑔𝑚2 

(27) 

 

3.1. Test 1 (test without rotor failure and disturbance) 

In this test, it has been assumed that none of the system rotors failed and there is no disturbance in the 

system. As shown in Figures 2 and 3, the system has reached the desired values, that is to say, has been 

stabilized. The angular velocity of the rotors is indicated in Figure 4, as clear rotors work without failure. 

 

 

  

 

 

   

  

 

   

  

 

 

Figure 2. Position and Euler angles 

real values 

desired values 
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Figure 3. Linear and angular velocity 
 

 

 

 

 

 
 

Figure 4. Angular velocity of the rotors 

real values 

desired values 
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3.2. Test 2 (second rotor failure without disturbance) 

In this test, the second rotor was assumed to be faulty while there is no disturbance in the system, as 

depicted in Figure 5. As shown in Figures 6 and 7, the system has reached the desired values and has been 

stabilized; moreover. It has a proper performance in comparison with the case in which the system is working 

without failure. 

 

 

 
 

Figure 5. Angular velocity of the rotors 

 

 

 

  
 

Figure 6. Position and Euler angles 

 

desired values real values 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

Fault tolerance of a quadrotor via feedback linearization approach (Ali Jebelli) 

235 

  

 

 

   

  

 

   

  

 

 

Figure 7. Linear and angular velocity 

 

 

3.2. Test 3 (second rotor failure with disturbance) 

In this test, the second rotor was assumed to be faulty but unlike the above section, disturbance in 

the system was considered in the form of (28) and (29). 

 

𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧 = 0.02 cos(𝜋𝑡) (28) 

 

𝑑𝜑 = 𝑑𝜃 = 𝑑𝜓 = 0.02 sin(𝜋𝑡) (29) 

 

As shown in Figures 8 and 9, the system has reached the desired values despite the disturbance. Moreover, 

it has been stabilized and has a proper performance in comparison with the previous case. The rotor's 

angular velocity is shown in Figure 10, based on the assumption, the second rotor has failed from the 

beginning. 

As shown in all simulations, the z value reaches its desired value in less than 5 seconds while the x 

and y values reach theirs in 15 seconds. The rationale for this difference is because of the faster inner control 

is in z. Moreover, the linear and angular system velocities converged and stabilized toward zero. 

 

real values 

desired values 
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Figure 8. Position and Euler angles 

 

 

 
 

  
 

Figure 9. Linear and angular velocity 

desired values real values 

desired values real values 
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Figure 10. Angular velocity of the rotors 

 

 

4. CONCLUSION 

Efficient flight control of unmanned aerial vehicles is critical to maintain their stability. Since rotor 

failure is one of the major problems in such systems, this paper addressed this issue by considering first a 

nonlinear model for the quadcopter and then a state space model for the system. This was achieved through the 

feedback linearization method, in which the gyroscopic effects because of  the rotation of the propeller were 

not taken into account. Next, using the state space model and the feedback linearization method, a fault-tolerant 

controller was designed based on the dual control loop structure.  

To check the control system’s performance, simulations with three different scenarios were 

implemented, and the results demonstrated the reliability of the proposed approach since, despite a rotor failure 

and disturbance of the fault-tolerant controller, the state variables converge to their reference values and the 

quadcopter is capable of completing its mission with only three rotors and without affecting its position. 
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