Kinematic modelling of three link robot manipulator and joint torque optimization using genetic algorithm in MATLAB

Neeta Sahay ${ }^{1}$, Subrata Chattopadhyay ${ }^{2}$
${ }^{1}$ Department of Electrical and Electronics Engineering, Institute of Engineering and Management, Kolkata, India
${ }^{2}$ Department of Electrical Engineering, National Institute of Technical Teachers' Training and Research, Kolkata, India

Article Info

Article history:

Received Jul 3, 2023
Revised Mar 20, 2024
Accepted Apr 21, 2024

Keywords:

Genetic algorithm
MATLAB
Newton-Euler
Optimization
Three-link manipulator

Abstract

This research article presents the non-linear dynamic of a three-link robotic manipulator formulated by the Newton-Euler method. The planar manipulator is composed of three links and three revolute joints rotating about the z-axis. The three nonlinear non-homogeneous dynamic equations have been solved graphically with the help of MATLAB by phase variable method. The work represents the graphical solution of the transient response of angular position, and angular velocity of each link member for a predetermined interval of time. With the help of simulated value from MATLAB, torque characteristics have been determined for different torque ratios and optimum torque has been derived using a genetic algorithm to move the manipulator in a proper direction.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Neeta Sahay
Department of Electrical and Electronics Engineering, Institute of Engineering and Management Kolkata, West Bengal, India
Email: neetashy82@gmail.com

1. INTRODUCTION

Robot manipulators can be assumed to be a chain of link mechanisms with highly nonlinear dynamics. The forward and inverse kinematics are presented using the D-H convention and the deduced mathematical model has been inferred by Newton-Euler approach. To obtain the optimal performance of the robot manipulator, a precise dynamic model of the robot manipulator is required. Garg et al. [1] determined an optimal path using a genetic algorithm and optimization was achieved using simulated annealing (SA). Exhaustive simulation was conducted for different types of manipulators namely MELFA RV-1A having six degrees of freedom and three planar revolute joints to find the distance between the end effector and the object using an artificial neural network [2]. The payload of the mobile robotic arm is determined by a nonlinear control law using optimal feedback [3] designed for a given trajectory task. This law is given by the solution by the iterative method of a sequence of nonlinear Hamilton-Jacobi-Bellman equations. Aghanouri et al. [4] developed a manipulator actuated by DC motors. The optimum path is derived by optimizing system parameters to minimize performance indices including energy [5]. Talezadeh et al. [6] presented the nonlinear dynamics of two-link manipulators for dynamic modeling of the system by the Lagrange equation of motion where optimum control was adopted to analyse the motion of the manipulator. Some literature has presented the whole-body dynamics of nonlinear equations of the hybrid cable-driven robots (HCDRs) where new methods were developed to solve redundancy. Compared to the existing methods, torque optimization for actuated and un-actuated joints can solve resolution problems as well as active satisfactory disturbance [7].

Baressi et al. [8] describe the kinematic modeling using the Denavit Hartenberg (DH) convention and the dynamic modeling robotic arm has been presented by Lagrange-Euler (LE) and Newton-Euler
algorithms. Different algorithms such as artificial intelligence, genetic algorithm, simulated annealing, and differential evolution have been adopted and compared to provide the best results for minimization of torque. Televnoy et al. [9] provides Lagrange equations of motion of a nonlinear matrix equation. The experiment has been performed to find out the solution of a moving object between two points. The angular displacement, speed, and acceleration for six links of the manipulator have been presented. Agustian et al. [10] present the vision-based robotic manipulator where inverse kinematics using pseudo-inverse Jacobian (PIJ) and DH forward kinematics have been adopted and controlled by a proportional derivative controller. The sorting task depending on color was made to evaluate the error to implement the manipulator on a real system. The reviews was given [11] on dynamic analysis and intelligent control techniques for flexible robot manipulators. A comparative study of dynamic analysis and control strategies was presented for flexible manipulators. Korayem et al. [12] have determined the non-linear dynamics and control of flexible mobile manipulators focusing on the determination of maximum payload. Wu et al. [13] present the minimum actuator torque range by torque optimization of a 3-DOF parallel manipulator. Two approaches, Lagrangian and primal-dual neural network, were presented together to make real-time optimization of joint torque for kinematically redundant manipulators [14], [15]. Gao et al. [16] proposed joint torque optimization of flexible manipulators with redundant space and vibration suppression where the Lagrange method has been adopted to represent the dynamics of the robot arm. Naghshineh and Keshmiri [17] investigated an over actuated system for dynamic cost function by applying real time optimization on a cooperative robot. Wolniakowski et al. [18] presented a method required for joint torque minimization of a serial manipulator to determine the optimal task placement. Woolfrey et al. [19] described a control strategy for minimizing joint torque using null space control of a redundant manipulator where the dynamic torque has been reduced by applying an external force to the gripper element. Agbaraji et al. [20] presented the design of the manipulator by calculating and analyzing the joint torques by evaluating performance in terms of speed and displacement of the arm based on the predetermined values of the torques. Singh et al. [21] find the position vectors of the six-arm robot by forward kinematics and joint angles by inverse kinematics in MATLAB with the help of a robotic toolbox. Brandstotter et al. [22] and Petrenko et al. [23] presented a generalized closed-form solution of the dynamic models of parallel robots using some simple Jacobian matrices where the dynamics of the legs were expressed in the joint coordinates and that of the platform in the form of cartesian variables. Sun et al. [24] proposed the methodology for deriving the closed-form inverse kinematic solutions of the 6-DOF robot on the position level where the analytical inverse solution of all the joints was given out and compared with that of the forward kinematic solution. The mathematical formulation and simulation of the two-link planar robot manipulator with forward kinematics and dynamics were presented with the help of the D-H convention and Newton-Euler method where the results in terms of joint angles and angular velocities have been presented graphically [25].

In this paper, the Newton-Euler formulation has been adopted to present the dynamics of the threelink manipulator. The solution relating torque and angular displacement is obtained analytically by expressing the three second-order non-linear non-homogeneous differential equations into six first-order differential equations by phase variable method. The angular positions and speed of each link have been presented graphically for constant torques of fixed duration using MATLAB. Then optimization is done using a genetic algorithm to obtain minimum torque that can be applied to each link-joint actuator to obtain optimum results.

2. THREE LINK ROBOT MANIPULATOR

The length of the three links of the robotic manipulator is given by l_{1}, l_{2} and l_{3}. Three joints are named J_{1}, J_{2}, J_{3}, respectively, as in Figure 1. $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ are the mass of the first link, second link and third link, respectively. Link parameters are considered to be $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. All the three joints are revolute joints rotating about the z -axis, and all the links are rigid links. The angular rotations of each link-joint combination are denoted as $\theta_{1}, \theta_{2}, \theta_{3}$.

The initial conditions are assumed to be

$$
\omega_{0}=0, \dot{\omega}_{0}=0, v_{0}=0
$$

where ω_{0}, initial angular speed, $\dot{\omega}_{0}$, initial angular acceleration, v_{0}, initial linear velocity and \dot{v}_{0}, initial linear acceleration. Therefore,

$$
\left.\begin{array}{l}
\dot{v}_{0}=\left[\begin{array}{ll}
0 & 9.81 \\
q_{i}
\end{array}\right]^{T} \\
q_{i}=\left[\begin{array}{ll}
\theta_{1}, \theta_{2}, \theta_{3}
\end{array}\right] ; \\
\dot{q}_{i}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{\theta}_{3}\right.
\end{array}\right]\left\{\begin{array}{l}
\ddot{q}_{i}=\left[\ddot{\theta}_{1}, \ddot{\theta}_{2}, \ddot{\theta}_{3}\right] ; \\
\text { Link variable: } F_{i}, f_{i}, n_{i}, \tau_{i}
\end{array}\right.
$$

where F_{i} is the total external force exerted at the center of $\mathrm{i}^{\text {th }}$ link, f_{i} is the force exerted on $\mathrm{i}^{\text {th }}$ link by $\mathrm{i}-1^{\text {st }}$ link, n_{i} is the moment acting on $\mathrm{i}^{\text {th }}$ link by $\mathrm{i}-\mathrm{l}^{\text {st }}$ link, τ_{i} is the torque on $\mathrm{i}^{\text {th }}$ joint.

Figure 1. Coordinate assignment of the robot manipulator

3. NEWTON-EULER FORMULATION FOR COMPUTATION OF JOINT TORQUE

Computational work has been carried out using Newton - Euler methodology for transformations of three link coordinates to formulate the speeds of three-link manipulator. Initial speed of each link is assumed to be zero. For the kinematic model, computation of each joint and link variables is required for computation of each joint torque to move the manipulator in a desired direction. Forward kinematics and backward kinematics of motion has been applied in the Newton - Euler approach as presented in (1) to (3). $\tau_{1}, \tau_{2}, \tau_{3}$ are the joint torque applied to the joint actuator for link $\mathrm{i}=1,2,3$, respectively.

$$
\begin{align*}
& \tau_{3}=\frac{1}{2} m_{3} l_{1} l_{3}\left[\cos \left(\theta_{2}+\theta_{3}\right) \ddot{\theta}_{1}+\sin \left(\theta_{2}+\theta_{3}\right) \dot{\theta}_{1}^{2}\right]+\frac{1}{2} m_{3} l_{2} l_{3}\left[\sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+\right. \\
& \left.\cos \theta_{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)\right]+\frac{1}{3} m_{3} l_{3}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)+\frac{1}{2} m_{3} l_{3} g \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \tag{1}\\
& \tau_{2}=\frac{1}{2} m_{3} l_{1} l_{3}\left[\cos \left(\theta_{2}+\theta_{3}\right) \ddot{\theta}_{1}+\sin \left(\theta_{2}+\theta_{3}\right) \dot{\theta}_{1}^{2}\right]+\frac{1}{2} m_{3} l_{2} l_{3}\left[\sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+\right. \\
& \left.\cos \theta_{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)\right]+\frac{1}{3} m_{3} l_{3}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)+\frac{1}{2} m_{3} l_{3} g \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)+\left(m_{3}+\right. \\
& \left.\frac{1}{2} m_{2}\right) l_{1} l_{2}\left[\cos \theta_{2} \ddot{\theta}_{1}+\sin \theta_{2} \dot{\theta}_{1}^{2}\right]+\left(m_{3}+\frac{1}{3} m_{2}\right) l_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+\frac{1}{2} m_{3} l_{2} l_{3}\left[\operatorname { c o s } \theta _ { 3 } \left(\ddot{\theta}_{1}+\right.\right. \\
& \left.\left.\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)-\sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2}\right]+\left(m_{3}+\frac{1}{2} m_{2}\right) l_{2} g \cos \left(\theta_{1}+\theta_{2}\right) \tag{2}\\
& \tau_{1}=\frac{1}{2} m_{3} l_{1} l_{3}\left[\cos \left(\theta_{2}+\theta_{3}\right) \ddot{\theta}_{1}+\sin \left(\theta_{2}+\theta_{3}\right) \dot{\theta}_{1}^{2}\right]+\frac{1}{2} m_{3} l_{2} l_{3}\left[\sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+\right. \\
& \left.\cos \theta_{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)\right]+\frac{1}{3} m_{3} l_{3}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)+\frac{1}{2} m_{3} l_{3} g \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)+\left(m_{3}+\right. \\
& \left.\frac{1}{2} m_{2}\right) l_{1} l_{2}\left[\cos \theta_{2} \ddot{\theta}_{1}+\sin \theta_{2} \dot{\theta}_{1}^{2}\right]+\left(m_{3}+\frac{1}{3} m_{2}\right) l_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+\frac{1}{2} m_{3} l_{2} l_{3}\left[\operatorname { c o s } \theta _ { 3 } \left(\ddot{\theta}_{1}+\right.\right. \\
& \left.\left.\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)-\sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2}\right]+\left(m_{3}+\frac{1}{2} m_{2}\right) l_{2} g \cos \left(\theta_{1}+\theta_{2}\right)+\left(m_{3}+m_{2}+\right. \\
& \left.\frac{1}{3} m_{1}\right) l_{1}^{2} \ddot{\theta}_{1}+\left(m_{3}+\frac{1}{2} m_{2}\right) l_{1} l_{2}\left[\cos \theta_{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)-\sin \theta_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}\right]- \\
& \frac{1}{2} m_{3} l_{1} l_{3}\left[\sin \left(\theta_{2}+\theta_{3}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2}-\cos \left(\theta_{2}+\theta_{3}\right)\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)\right]+\left(m_{3}+\right. \\
& \left.m_{2}+\frac{1}{2} m_{1}\right) l_{1} g \cos \theta_{1} \tag{3}
\end{align*}
$$

4. COMPUTED JOINT TORQUE CHARACTERISTICS OF EACH LINK-JOINT PAIR

The dynamic equations of motion of each link-joint coupling are highly non-linear in nature as shown in (1) to (3). To solve the above equations of motion relating τ_{i} and θ_{i} (for $\mathrm{i}^{\text {th }}$ link), phase variable model has been adopted. The three non-linear non-homogeneous $2^{\text {nd }}$ order differential equations are converted into six first-order differential equations by phase variable method. Assuming $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$ and z_{6} are six phase variables where:

$$
\begin{align*}
& z_{1}=\dot{\theta_{1}} \tag{4}\\
& z_{2}=\dot{\theta_{2}} \tag{5}
\end{align*}
$$

$$
\begin{align*}
z_{3} & =\dot{\theta_{3}} \tag{6}\\
z_{4} & =\theta_{1} \tag{7}\\
z_{5} & =\theta_{2} \tag{8}\\
z_{6} & =\theta_{3} \tag{9}
\end{align*}
$$

Therefore:

$$
\begin{align*}
& \dot{z}_{1}=\ddot{\theta}_{1} \tag{10}\\
& \dot{z}_{2}=\ddot{\theta}_{2} \tag{11}\\
& \dot{z}_{3}=\ddot{\theta}_{3} \tag{12}\\
& \dot{z}_{4}=\dot{\theta}_{1}=z_{1} \tag{13}\\
& \dot{z}_{5}=\dot{\theta}_{2}=z_{2} \tag{14}\\
& \dot{z}_{6}=\dot{\theta}_{3}=z_{3} \tag{15}
\end{align*}
$$

Non-dimensionalizing (1), (2) and (3), we have

$$
\begin{align*}
& \tau=\frac{1}{2} \cos \left(\theta_{2}+\theta_{3}\right) \ddot{\theta}_{1}+\frac{1}{2} \sin \left(\theta_{2}+\theta_{3}\right) \dot{\theta}_{1}^{2}+\frac{1}{2} \sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+\frac{1}{2} \cos \theta_{3}\left(\ddot{\theta}_{1}+\right. \\
& \left.\ddot{\theta}_{2}\right)+\frac{1}{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)+\frac{1}{2} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \tag{16}\\
& \tau_{2}=\frac{1}{2} \cos \left(\theta_{2}+\theta_{3}\right) \ddot{\theta}_{1}+\frac{1}{2} \sin \left(\theta_{2}+\theta_{3}\right) \dot{\theta}_{1}^{2}+\frac{1}{2} \sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+\frac{1}{2} \cos \theta_{3}\left(\ddot{\theta}_{1}+\right. \\
& \left.\ddot{\theta}_{2}\right)+\frac{1}{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)+\frac{1}{2} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)+\frac{3}{2} \cos \theta_{2} \ddot{\theta}_{1}+\frac{3}{2} \sin \theta_{2} \dot{\theta}_{1}^{2}+\frac{4}{3}\left(\ddot{\theta}_{1}+\right. \\
& \left.\ddot{\theta}_{2}\right)+\frac{1}{2} \cos \theta_{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)-\frac{1}{2} \sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2}+\frac{3}{2} \cos \left(\theta_{1}+\theta_{2}\right) \tag{17}\\
& \tau_{1}=\frac{1}{2} \cos \left(\theta_{2}+\theta_{3}\right) \ddot{\theta}_{1}+\frac{1}{2} \sin \left(\theta_{2}+\theta_{3}\right) \dot{\theta}_{1}^{2}+\frac{1}{2} \sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+\frac{1}{2} \cos \theta_{3}\left(\ddot{\theta}_{1}+\right. \\
& \left.\ddot{\theta}_{2}\right)+\frac{1}{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)+\frac{1}{2} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)+\frac{3}{2} \cos \theta_{2} \ddot{\theta}_{1}+\frac{3}{2} \sin \theta_{2} \dot{\theta}_{1}^{2}+\frac{4}{3}\left(\ddot{\theta}_{1}+\right. \\
& \left.\ddot{\theta}_{2}\right)+\frac{1}{2} \cos \theta_{3}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)-\frac{1}{2} \sin \theta_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2}+\frac{3}{2} \cos \left(\theta_{1}+\theta_{2}\right)+\frac{7}{3} \ddot{\theta}_{1}+ \\
& \frac{3}{2} \cos \theta_{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)-\frac{3}{2} \sin \theta_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}-\frac{1}{2} \sin \left(\theta_{2}+\theta_{3}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2}+ \\
& \frac{1}{2} \cos \left(\theta_{2}+\theta_{3}\right)\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}+\ddot{\theta}_{3}\right)+\frac{5}{2} \cos \theta_{1} \tag{18}
\end{align*}
$$

Using (16) to (18), $\ddot{\theta}_{1}, \ddot{\theta}_{2}$ and $\ddot{\theta}_{3}$ can be expressed as a function of $\theta_{1}, \theta_{2}, \theta_{3}$ and their derivatives. Therefore, six first order equations can be formed from (10) to (15) and can be solved using MATLAB which gives the relationship of angular displacement and applied torque for various torque ratios as shown in Figures 2 to 8.

Figure 2. Angular position versus applied torque ($\tau 1: \tau 2: \tau 3: 1: 1: 1$ (in Nm); time: 0.5 sec)

Figure 3. Angular position versus applied torque ($\tau 1: \tau 2: \tau 3: 2.25: 1.5: 1$ (in Nm); time: 0.5 sec)

Figure 4. Angular position versus applied torque ($\tau 1: \tau 2: \tau 3: 4: 2: 1$ (in Nm); time: 0.5 sec)

Figure 5. Angular position versus applied torque ($\tau 1: \tau 2: \tau 3: 6.25: 2.5: 1$ (in Nm); time: 0.5 sec)

Figure 6. Angular position versus applied torque ($\tau 1: \tau 2: \tau 3: 9: 3: 1$ (in Nm); time: 0.5 sec)

Figure 7. Angular position versus applied torque ($\tau 1: \tau 2: \tau 3: 16: 4: 1$ (in Nm); time: 0.5 sec)

Figure 8. Angular position versus applied torque ($\tau 1: \tau 2: \tau 3: 25: 5: 1$ (in Nm); time: 0.5 sec)

5. TORQUE OPTIMIZATION USING GENETIC ALGORITHM IN MATLAB

To optimize τ_{3}, joint torque in the third joint actuator has been plotted against τ_{2} and θ_{2} as shown in Figure 9. Genetic algorithm has been applied to minimize the objective function given in (19). Optimized value of $\boldsymbol{\theta}_{\mathbf{3}}$ has been evaluated by plotting $\boldsymbol{\theta}_{\mathbf{3}}$ with respect to evaluated $\boldsymbol{\theta}_{\mathbf{1}}$ and $\boldsymbol{\theta}_{\mathbf{2}}$ as shown in Figure 10. The optimized results of all the required parameters are given in Table 1.

Figure 9. Surface generation of T3 for torque optimization

Figure 10. Surface generation of θ_{3} with respect to θ_{1} and θ_{2}

Table 1. Optimized torque and corresponding angular displacement

$\tau_{1}($ in Nm$)$	$\tau_{2}($ in Nm$)$	$\tau_{3}($ in Nm$)$	$\theta_{1}(\mathrm{rad})$	$\theta_{2}(\mathrm{rad})$	$\theta_{3}(\mathrm{rad})$
31.25	12.5	1.3658	1.1376	-0.1861	1.3202

$$
\begin{equation*}
\tau_{3}=a+b \sin \left(m \pi x_{1} x_{2}\right)+c e^{-\left(w x_{2}\right)^{2}} \tag{19}
\end{equation*}
$$

where a, b, c, m, and w are constant coefficients of the objective function (19) and evaluated in MATLAB as

$$
\begin{aligned}
& a=2.683 \\
& b=0.9224 \\
& c=-0.4006 \\
& m=0.2138 \\
& w=-0.6463
\end{aligned}
$$

x_{1} and x_{2} are the torque required and resulting angular displacement of the link2, respectively. Boundary condition has been placed as $1 \leq x_{1} \leq 12.5$ and $-3 \leq x_{2} \leq 0$.

From Table 1, it is evident that the results show a successful optimization using genetic algorithm on the problem of torque optimization. For practical implementation, assumptions can be made that $\mathbf{0} \leq \boldsymbol{\theta}_{\mathbf{1}} \leq \frac{\pi}{2}$, $\mathbf{0} \leq \boldsymbol{\theta}_{2} \leq \frac{\pi}{2}$ and $\mathbf{0} \leq \boldsymbol{\theta}_{3} \leq \frac{\pi}{2}$ and the condition $\left|\theta_{2}\right| \leq 2 \theta_{1}$ must be followed if θ_{1} is positive and θ_{2} found to be negative. Therefore, the result shown is to satisfy the above-mentioned condition and the joint torques as well as corresponding angular displacement may be evaluated as given in Table 1.

6. CONCLUSION

The manipulator dynamics, as stated in (2) to (4), represent the non-linearity of the robot arm system. Here the open chain of links and its corresponding behavior of the manipulator has been studied which shows the angular position vs. applied torque characteristics. The optimum value of torque with respect to the desired movement of the manipulator arm has been evaluated using a genetic algorithm with boundary conditions in MATLAB which also satisfies the relative angular position constraints. Also, the system may be assumed to be a series of three inverted pendulums exhibiting the nature of a chaotic system which is certainly nonlinear in nature. Therefore, stability of the system may be achieved with the help of a sliding mode controller as well as by behavior-based control where it is to split a complex dynamic into several simple equations which are quietly related to the problem stated in this research paper.

ACKNOWLEDGEMENTS

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

REFERENCES

[1] D. P. Garg and M. Kumar, "Optimization techniques applied to multiple manipulators for path planning and torque minimization," Engineering Applications of Artificial Intelligence, vol. 15, no. 3-4, pp. 241-252, Jun. 2002, doi: 10.1016/S0952-1976(02)00067-2.
[2] S. Parsa, C. M. Saaj, H. R. Daniali, and R. Ghaderi, On-orbit servicing: Novel algorithms for motion control o robot manipulators. 2008.
[3] H. Korayem and M. Irani, "Maximum dynamic load determination of mobile manipulators via nonlinear optimal feedback," Scientia Iranica, vol. 17, no. 2 B. pp. 121-135, Mar. 2010
[4] M. Aghanouri, A. Habibollahi, A. Esmaeili, H. Faghihian, and M. Koloushani, "Optimization of robotic manipulators parameters modeled with integrated equations of actuators and links," in Electrodynamic and Mechatronic Systems - Proceedings of 2011, 3rd International Students Conference on Electrodynamics and Mechatronics, SCE III, Oct. 2011, pp. 31-36. doi: 10.1109/SCE.2011.6092120.
[5] V. Gupta, H. Chaudhary, and S. K. Saha, "Dynamics and actuating torque optimization of planar robots," Journal of Mechanical Science and Technology, vol. 29, no. 7, pp. 2699-2704, Jul. 2015, doi: 10.1007/s12206-015-0517-z.
[6] M. Taheri, "Nonlinear dynamic modeling and optimal motion analysis of two-link manipulators," IAES International Journal of Robotics and Automation (IJRA), vol. 5, no. 1, p. 61, Mar. 2016, doi: 10.11591/ijra.v5i1.pp61-66.
[7] R. Qi, A. Khajepour, and W. W. Melek, "Redundancy resolution and disturbance rejection via torque optimization in hybrid cable-driven robots," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 7, pp. 4069-4079, Jul. 2022, doi: 10.1109/TSMC.2021.3091653.
[8] S. Baressi Šegota, N. Anđelić, I. Lorencin, M. Saga, and Z. Car, "Path planning optimization of six-degree-of-freedom robotic manipulators using evolutionary algorithms," International Journal of Advanced Robotic Systems, vol. 17, no. 2, p. 172988142090807, Mar. 2020, doi: 10.1177/1729881420908076.
[9] A. Televnoy, S. E. Ivanov, T. Zudilova, and L. N. Ivanova, "Transformation method for a nonlinear manipulator model," Procedia Computer Science, vol. 193, pp. 295-305, 2021, doi: 10.1016/j.procs.2021.10.030.
[10] I. Agustian, N. Daratha, R. Faurina, A. Suandi, and S. Sulistyaningsih, "Robot manipulator control with inverse kinematics PDpseudoinverse jacobian and forward kinematics denavit hartenberg," Jurnal Elektronika dan Telekomunikasi, vol. 21, no. 1, p. 8, Aug. 2021, doi: 10.14203/jet.v21.8-18.
[11] H. N. Rahimi and M. Nazemizadeh, "Dynamic analysis and intelligent control techniques for flexible manipulators: a review," Advanced Robotics, vol. 28, no. 2, pp. 63-76, Jan. 2014, doi: 10.1080/01691864.2013.839079.
[12] M. H. Korayem, H. N. Rahimi, A. Nikoobin, and M. Nazemizadeh, "Maximum allowable dynamic payload for flexible mobile robotic manipulators," Latin American Applied Research, vol. 43, no. 1, pp. 29-35, Jan. 2013.
[13] J. Wu, J. Qiu, and H. Ye, "Torque optimization method of a 3-DOF redundant parallel manipulator based on actuator torque range," Journal of Mechanisms and Robotics, vol. 15, no. 2, Jun. 2023, doi: 10.1115/1.4054618.
[14] W. S. Tang and J. Wang, "Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, no. 1, pp. 120-128, 2000, doi: 10.1109/3477.826952.
[15] Y. Zhang and J. Wang, "A dual neural network for constrained joint torque optimization of kinematically redundant manipulators," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 32, no. 5, pp. 654-662, Oct. 2002, doi: 10.1109/TSMCB.2002.1033184.
[16] X. Gao, M.-T. Du, L. Zhai, Y. Zhang, H.-X. Sun, and X.-P. Diao, "Research on joint torque optimization method of redundant space manipulators with vibration suppression," ITM Web of Conferences, vol. 12, p. 1004, 2017, doi: 10.1051/itmconf/20171201004.
[17] M. Naghshineh and M. Keshmiri, "Control and real time optimization of overactuated cooperative manipulators," IEEE Conference Number, no. August, pp. 953-960, 2003.
[18] A. Wolniakowski, C. Valsamos, K. Miatliuk, V. Moulianitis, and N. Aspragathos, "Optimization of dynamic task location within a manipulator's workspace for the utilization of the minimum required joint torques," Electronics (Switzerland), vol. 10, no. 3, pp. 1-18, Jan. 2021, doi: 10.3390/electronics 10030288.
[19] J. Woolfrey, W. Lu, and D. Liu, "A control method for joint torque minimization of redundant manipulators handling large external forces," Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 96, no. 1, pp. 3-16, Jan. 2019, doi: 10.1007/s10846-018-0964-8.
[20] E. C. Agbaraji, I. Obiora-Dimson, and H. C. Inyiama, "Joint torque and motion computational analysis for robotic manipulator arm design," Journal of Engineering and Applied Sciences, vol. 12, pp. 1-9, Jan. 2018.
[21] H. Singh, N. Dhillon, and I. Ansari, "Forward and inverse kinematics solution for six DOF with the help of robotics tool box in matlab," International Journal of Application or Innovation in Engineering \& Management, vol. 4, no. 3, pp. 17-22, 2015.
[22] M. Brandstotter, A. Angerer, and M. Hofbaur, "An analytical solution of the inverse kinematics problem of industrial serial manipulators with an ortho-parallel basis and spherical wrist," in Proceedings of the Austrian Robotics Workshop 2014, 2014, pp. 1-11.
[23] V. I. Petrenko, F. B. Tebueva, M. M. Gyrchinsky, V. O. Antonov, and J. A. Shutova, "The method of forming a geometric solution of the inverse kinematics problem for chains with kinematic pairs of rotational type only," IOP Conference Series: Materials Science and Engineering, vol. 450, pp. 1-6, Nov. 2018, doi: 10.1088/1757-899X/450/4/042016.
[24] J.-D. Sun, G.-Z. Cao, W.-B. Li, Y.-X. Liang, and S.-D. Huang, "Analytical inverse kinematic solution using the D-H method for a 6-DOF robot," in 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jun. 2017, pp. 714-716. doi: 10.1109/URAI.2017.7992807.
[25] P. Badoniya and J. George, "Two link planar robot manipulator mechanism analysis with MATLAB," International Journal for Research in Applied Science and Engineering Technology (IJRASET), vol. 6, no. 7, pp. 778-788, 2018.

BIOGRAPHIES OF AUTHORS

Neeta Sahay (iD SC received her B.Tech. degree in Electronics and Instrumentation Engineering from the University of Kalyani also received M.Tech. degree in Mechatronics Engineering from NITTTR, Kolkata [MHRD]. She has more than 15 years of teaching experience. She started her professional career as an asst. professor in HIT, Haldia (Under MAKAUT, WB) and then joined AOT, Adisaptagram as an asst. professor. Presently she is an assistant professor at the Institute of Engineering \& Management, Kolkata, West Bengal, India, and pursuing a Ph.D. from NITTTR, Kolkata in the research area of Mechatronics and Robotics. She can be contacted at neetashy82@gmail.com.

Subrata Chattopadhyay (D) SC was born in India in 1965. He received his Ph.D. (Tech) in Instrumentation Engineering from the University of Calcutta, India in 2006, preceded by M.Tech. [Instrumentation], B. Tech. [Electrical] and B. Sc (Hons) in Physics, in 1993, 1991, and 1987, respectively. He served as a deputy manager [Projects and Maintenance] in Electrical and Instrumentation Engineering of Chemical and Manufacturing Industries in India and then joined as an assistant professor in the Electrical Engineering Department of the National Institute of Technical Teachers' Training and Research, Kolkata, under the Ministry of Education, Government of India in 2003. At present he is working as a professor in Electrical Engineering and is in charge of NITTTR Kolkata Extension Centre, Bhubaneswar, India. He introduced, as head of the Electrical Engineering Department, a new Post Graduate Programme [M. Tech. in Mechatronics Engineering], the first of its kind in Eastern India at NITTTR Kolkata, with the required development of the Department to accommodate the same. He is highly involved in teaching and research and his present investigation is on the innovation of noble techniques of measurement and control, based on sensor and transducer development, process automation, PLC and distributed control systems, mechatronics, robotics, bio-medical instrumentation, etc. He has guided two research scholars and at present, three scholars are working under him for the Ph. D. degree. He has around 100 papers in international journals and conference proceedings. He can be contacted at subrata0507@gmail.com.

