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 In recent years, path-planning has gained significant attention as mobile 

robots are used in various applications. Several factors determine the optimal 

path for a mobile robot, including accuracy, length of path, execution time, 

and turns. Among all planners, sampling-based planners such as rapidly 

exploring random trees (RRT) and rapidly exploring random trees-star 

(RRT*) are extensively used for mobile robots. The aim of this paper is the 

review and performance of these planners in terms of step size, execution 

time, and path length. All planners are implemented on the Jackal robot in a 

static environment cluttered with obstacles. Performance comparisons have 

shown that the reduction of step size results in exploring a greater number of 

nodes in both algorithms, increasing the probability of each extension 

succeeding. However, this causes the tree to become denser in both 

algorithms due to the more explored nodes. The RRT planner requires less 

execution time when the step size and iteration count are equal to RRT* 

planners. Moreover, performance plots of both algorithms show that RRT* 

provides an optimal and smooth path than RRT. 
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1. INTRODUCTION 

The advent of mobile robots and their application to diverse fields, such as industry, services, 

medical care, and agriculture, has made robot path planning a significant challenge [1]–[3] . The goal of path 

planning for robots is to find the best path between a given start point and a desired goal point based on 

certain evaluation criteria, including path length, planning time, and so on. 

There are various planners for mobile robots, which can be divided into two main categories, 

namely, graph-based and sampling-based algorithms [4], [5]. In graph-based search methods, obstacles are 

defined as inaccessible grid points in the state space. Based on the available grid points, the algorithm 

constructs a path from the start point to the goal point if possible. The sampling-based method selects several 

number of points in the configuration space and establishes connections between them [6]. These methods 

are straightforward and efficient and ensure a solution in an infinite time. Among the sampling-based 

methods, rapidly exploring random trees (RRT) has been extensively applied in different applications [7]. It 

was introduced in 1998 as a solution to resolve the path planning problem for robots in complex 

environments with high dimensions [8]. In fact, this algorithm does not require any model of the space, and it 

performs searches at a fast rate. However, due to the random sampling of space by RRT, the generated paths 

often are not optimal or suboptimal [9]. In order to tackle this limitation, a variation of RRT named rapidly 

exploring random trees-star (RRT*) was proposed in [10]. In fact, an asymptotic optimal path is established 

by using tree rewiring and best neighbor search. Path planning in robotics has evolved over the past decades. 

https://creativecommons.org/licenses/by-sa/4.0/
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It is still active research that involves finding a collision-free path and continuous path for robotics to move 

from the initial state to the target state while satisfying multiple constraints such as velocity and acceleration 

[11], [12] . 

RRT utilize the Voronoi bias strategy based on the Voronoi diagram. It is a geometric structure that 

makes region space based on the proximity sets of points from partition space. Voronoi is a powerful 

technique that is used to guide its expansion towards unexplored areas with a higher probability of 

exploration proportional to their proximity to the robot’s current position [13]. The algorithm employs a tree 

data structure that is easier to implement than a graph-based method. RRT explores locally first, which means 

that if the starting and goal positions are nearby, it can quickly reach the goal position, making it faster than 

probabilistic roadmap (PRM) [14]. PRM utilizes a graph-based approach where it constructs a graph in 

configuration space and creates sample points in the space. Once the roadmap is constructed by connecting 

all the points, the graph search algorithm is used to create a feasible path from starting point to the goal 

points in the space without any collision of an obstacle. PRM is a global algorithm that performs well in a 

highly complex environment with multiple obstacles. It is highly computational as compared to RRT. Once 

the graph is created, it can be used repeatedly with different start and goal points without constructing a new 

graph. RRT* is also a sampling-based algorithm that constructs trees and constructs a feasible path by 

random sampling. Despite RRT, RRT* adapts two optimization procedures: choose parent and rewire [15]. 

RRT* connects to the nearest node just like RRT but then rewires it for optimization by checking nearby 

nodes which can be reached more efficiently. The rewiring radius is the user-defined parameter according to 

robot properties, and the environment beyond the nearby node is not considered for rewiring. A path that has 

the lowest cost will be added to the tree and updated the tree at each iteration. 

This paper presents a comprehensive analysis of the 2D path-planning performance of RRT and its 

enhanced version, RRT*, for Jackal unmanned ground vehicles (UGV) from ClearPath robotics. In fact, this 

study aims to address the critical importance of efficient path planning within the domain of autonomous 

navigation, providing insight into the challenges and proposing a comparative study between the traditional 

RRT and the more sophisticated RRT* algorithm with considering different parameters. The main 

contribution of this paper is implementing both these algorithms on Jackal UGV, which serves as a practical 

application of the theoretical concepts explored. This hands-on implementation not only validates the 

effectiveness of the proposed algorithms in a real-world scenario but also provides valuable insights into their 

performance under practical constraints and environmental considerations. The paper is organized into the 

following parts. In section 2, we provide a concise review of the definitions related to the general optimal 

path problem and the methodologies employed in this study. These methods are discussed concerning the 

effects of different parameters. Section 3 outlines the implementation scheme and presents the results 

obtained from the real-time experiment. Lastly, section 4 encompasses the conclusions and a thorough 

discussion of the statistical analysis. 

 

 

2. METHODOLOGY 

2.1.  Rapidly exploring random trees (RRT) 

RRT relies on building a tree structure containing the start and goal points as its roots and leaves. 

Random extension trees are created by sampling from the environment, adding the nearest leaf nodes to an 

initial root point, and moving toward that point with an incremental distance. It should be noted that adding 

the point as a leaf node in the tree is possible if the movement does not encounter any obstacles. Moving 

across the tree until the root node is reached allows you to create the path from the goal to the start point. Due 

to the fact that RRT does not require modeling of space and its fast search speed, it can be considered an 

appropriate path-planning method, especially in high-dimensional and complex environments [16], [17]. 

However, because of its randomness, it has only a single probability complete, resulting in several limitations 

[18], including instability, non-optimal path, and low convergence rate. As a general rule, RRT involves the 

following steps: 

 

𝑅𝑅𝑇𝑃𝑎𝑡ℎ(𝑞𝑖𝑛𝑖𝑡 , 𝑗, 𝛥𝑡) (1) 

1.  𝑇𝑖𝑚𝑒𝑖𝑛𝑖𝑡  (𝑞𝑖𝑛𝑖𝑡); 
2.  𝑤ℎ𝑖𝑙𝑒 𝑗 =  1 <  𝑁 
3.  𝑞𝑟𝑎𝑛𝑑 ←  𝑅𝐴𝑁𝐷𝑂𝑀();  𝑗 ←  𝑗 +  1; 
4.  𝑞𝑛𝑒𝑎𝑟 ←  𝑁𝐸𝐴𝑅𝐸𝑆𝑇 (𝑞𝑟𝑎𝑛𝑑 , 𝑇𝑖𝑚𝑒 ); 
5.  𝐾 ←  𝑁𝐸𝑊_𝑁𝑂𝐷𝐸 (𝑞𝑟𝑎𝑛𝑑 , 𝑞𝑛𝑒𝑎𝑟) 
6.  𝑞𝑛𝑒𝑎𝑟 ←  𝑁𝐸𝑊_𝐶𝑂𝑁𝐹𝐼𝐺 (𝑞𝑛𝑒𝑎𝑟 , 𝐾, 𝛥𝑡) 
7.  𝑇𝑖𝑚𝑒. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑞𝑛𝑒𝑤); 
8.  𝑇𝑖𝑚𝑒. 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒 (𝑞𝑛𝑒𝑤 , 𝑞𝑛𝑒𝑎𝑟 , 𝐾) 
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9.  𝑞𝑔𝑜𝑎𝑙 ←  𝐼𝑓 𝑞𝑔𝑜𝑎𝑙𝑟𝑒𝑎𝑐ℎ𝑒𝑑, 𝑒𝑛𝑑. 

   𝑅𝑒𝑡𝑢𝑟𝑛 𝑇 ; 
 

This algorithm takes the initial state, the goal state (region), and the environment as inputs and 

produces a feasible path as an output. As each iteration proceeds, a sample 𝑞𝑟𝑎𝑛𝑑 is generated, and the closest 

vertex 𝑞𝑛𝑒𝑤 is determined based on distance. Then 𝑞𝑟𝑎𝑛𝑑  calculates all the distance measured in the tree 

between is set. A new node 𝑞𝑛𝑒𝑤is created between 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  and 𝑞𝑟𝑎𝑛𝑑, and the Euclidean distance 

from 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡
and 𝑞𝑛𝑒𝑤 is calculated. In the absence of obstacles, a new node will be added to expand the tree. 

Otherwise, it will repeat the process of generating a brand until a feasible path is found. An illustration of the 

random tree expansion process can be found in Figure 1. 

 

 

 
 

Figure 1. Illustration of RRT algorithm 

 

 

2.2.  RRT* 

RRT*, as an enhanced version of RRT has a similar function to RRT, but it employs two 

optimization functions, namely near neighbor search and rewiring the tree [19], [20] . In fact, the near 

neighbor function determines the most appropriate parent node for the newly created node prior to insertion 

in the tree, and the rewiring operation restructures the tree so that minimal cost is required between tree 

connections. The following steps are involved in RRT* and illustrated in Figure 2. RRT* sets the 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡
, 

which is closer to 𝑞𝑟𝑎𝑛𝑑and 𝑞𝑛𝑒𝑤creates with the Euclidean distance away. Then 𝑞𝑛𝑒𝑤is generated, which is 

also known as the best parent process, as shown in Figure 2(a). The nodes in a certain radius around 𝑞𝑛𝑒𝑤that 

do not collide with an obstacle are created as 𝑞𝑛𝑒𝑎𝑟 . If path costs between 𝑞𝑛𝑒𝑤and 𝑞𝑛𝑒𝑎𝑟are minimal as 

compared to previously connected to 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡
, it disconnects the node from 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡

and sets a new node with 

a lower path cost as the parent node. This process is also known as rewiring, as shown in Figure 2(b). 

 

𝑅𝑅𝑇 𝑆𝑡𝑎𝑟𝑃𝑎𝑡ℎ(𝑞𝑖𝑛𝑡 , 𝑗, 𝛥𝑡) (2) 

1. Timeinit (qinit) 
2.  while j = 1 < N 
3.  qrand← RANDOM( ); j ← j + 1; 
4.  qnear← NEAREST (qrand, Time); 
5 . K ← NEW-NODE (qrand, qnear) 
6.  qnear← NEWW-CONFIG (qnear, K, Δt); 
7.  qgoal← If qgoalreached, then 
8.  Time.addvertex(qnew); 
9.  Time.addedge(qnew , qnear, K); 
10. G ← REWIRE (G, qnew , qnear); 
end if 
Return T; 
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(a) 

 

 
(b) 

 

Figure 2. Illustration of RRT* algorithm (a) the best parent selection process (b) rewiring process 

 

 

3. RESULTS AND DISCUSSION 

The performance of algorithms is compared based on the several properties, including step size, 

iteration number, and execution time. The algorithms are simulated using 64-bit MATLAB version 15. 

 

3.1.  Effect of step size on RRT and RRT* performance 

The performance of algorithms is compared based on several properties, including step size, 

iteration number, and execution time. The algorithms are simulated using 64-bit MATLAB version 15. To 

determine how far a tree can be extended on each step, RRT and RRT* have a parameter called step size. In 

other words, every edge in a tree cannot extend beyond the maximum value considered for the step size. In 

addition, if the two extended milestones are within this range, they can be connected. As shown in Figure 3, 

the reduction of step size results in exploring a more significant number of nodes in both algorithms, 

increasing the probability of each extension succeeding. However, this causes the tree to become denser due 

to the more explored nodes and exploration of free space becomes slower. It should be noted that with the 

same step size, RRT* is less dense compared to the RRT algorithm. This is because RRT* employs two 

parameters, namely the Euclidean distance and cost function. In every iteration, a new random node is 

generated, and within a certain radius, it chooses that node that has fewer cost values than the parent node 

and rewires it again. By considering both the Euclidean distance and the cost function, RRT* is able to create 

a less dense graph and find more optimal paths. 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

 A 2D path-planning performance comparison of RRT and RRT* for unmanned … (Shokufeh Davarzani) 

109 

3.2.  Effect of execution time on RRT and RRT* performance  

The results of one sample run with 3,000 iterations and equal step size are depicted in Figure 3. 

Results show that RRT* improves the initial path compared to RRT remarkably. However, the execution 

time is longer compared to the RRT. This is because RRT* employs additional operations than RRT, such as 

rewiring trees and best neighbor search. These two features improve the path cost to generate less jaggy and 

shorter paths. On the other hand, these features also slow down the convergence rate and increase 

computational time. 

 

 
Planner: RRT 

 
Step Size= 0.5 m 

 
Step Size= 1 m 

 
Step Size= 1.5 m 

Planner: RRT* 

 
Step Size= 0.5 m 

 
Step Size= 1 m 

 
Step Size= 1.5 m 

 

Figure 3. Performance comparison of RTT and RRT* algorithms 
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4. EXPERIMENTAL SETUP 

This experiment is conducted utilizing the Jackal UGV from ClearPath Robotics, and a Jetson TX2 

is used to control the platform. In order to acquire the 3D point cloud data, a Velodyne VLP-16 LiDAR 

sensor is used as the primary sensor, see in Figure 4. This LiDAR includes 16 lasers with a 30-degree vertical 

visual field and a 360° horizontal visual field. Both algorithms are implemented using 64-bit MATLAB 

version 15. The hardware and software architectures are described in Figure 5. This experiment involved 

creating maps from the environment, setting waypoints and goal points, and driving along the path. An 

environment with static obstacles is used for the experiment. 

 

 

 
 

Figure 4. Components of ClearPath UGV Jackal  

 

 

 
 

Figure 5. Workflow of implemented hardware and software architectures 

 

 

In the implementation phase, the initial step involves subscribing to the ROS topic odometry/filtered 

to acquire data from Odom, which furnishes orientation and position values. As the Jackal operates based on 

position input, a comparison is made with the expected experimental outcome pertaining to position. The 

RRT* generated path commences from the coordinates 1,0, considering our Jackal's movement in an open-

loop system. Consequently, it assumes the current position as 1,0. Notably, an observable disparity exists 

between the ground truth and raw data, indicating an offset in the x-direction of 1. To align the origin, we 

adjusted the X + 1. However, the graph becomes inverted after three steps. Subsequently, we corrected this 

by flipping the data, achieving partial similarity with the ground truth. Nevertheless, due to our 

approximations, the experimental data exhibits scaling up and offset errors in both the x and y axes. The 

mean absolute error (MAE) and root mean square error (RMSE) for the comparative analysis of path 

correction techniques in our model are 15.83 and 12.054, respectively, indicating a moderate level of 

deviation between the predicted and actual path data points. The comparative analysis of path correction is 

shown in Figure 6. 
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Figure 6. Comparative analysis of data transformations against ground-truth reference 

(linear velocity (1 unit) = 0.1 m, and angular velocity (1 unit) = 15°) 

 

 

5. CONCLUSION 

In conclusion, path planning for mobile robots is a critical component in ensuring the efficiency and 

accuracy of their operations. We reviewed and compared two popular sampling-based planners, RRT and 

RRT*, in terms of step size, execution time, and path length, using the Jackal robot in a static environment 

cluttered with obstacles. We found that RRT*, an advanced version of RRT, performs more efficiently and 

finds an optimal path, which plays a key role in the robot's navigation Our performance comparisons revealed 

that reducing step size results in exploring a greater number of nodes in both algorithms, increasing the 

probability of each extension succeeding, but causing the tree to become denser. Furthermore, we found that 

the RRT planner requires less execution time when the step size and iteration count are equal to RRT* 

planners. Our results also show that RRT* provides an optimal and smooth path compared to RRT. However, 

we encountered some challenges in our experiments, such as offset errors and scaling issues, which may 

affect the accuracy of the results. Overall, our study provides valuable insights into the performance of RRT 

and RRT* planners and highlights the importance of careful experimentation and evaluation in the 

development of path planning algorithms for mobile robots. 
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