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 Driving a vehicle to a desired position and orientation is one of the most 

important problems that should be solved in most navigation systems. This 

paper describes a new complete design and hardware implementation of a 

two-level controller that will enable a differential drive mobile robot to reach 

any desired posture starting from any initial position. The first or low-level 

controller consists of a set of two proportional–integral–derivative (PID) 

controllers, running on an embedded system on board of the robot. These 

controllers provide the required voltages to the motors to make the left and 

right wheels of the robot rotate with the angular speeds computed by the 

second or high-level controller, running on a stationary PC system. This 

second controller is based on the Lyapunov stability theorem to derive two 

control laws for the kinematic model, used to transform the linear and 

angular speeds of the unicycle model in terms of left and right rotational 

speeds, required by the motors. As will be shown later, this architecture 

provides a very flexible way not only to tune the main controller parameters 

but also to get access and record all the system states. 
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1. INTRODUCTION 

Regardless of their mechanical structures, the main common problem for any mobile robot is motion 

control. Among all the existing configurations, differential drive mobile robots (DDMR) are widely used in 

indoor applications. This paper aims to present and implement a nonlinear, multivariable controller that will 

generate appropriate linear and angular speeds required by a mobile robot to move from a known initial 

position to a new target or desired posture. Solving this problem for a couple of consecutive points can 

therefore be considered as a very interesting alternative for the problem of trajectory tracking. Many of the 

recent research topics have tackled this problem using different control strategies, among these [1]–[3] have 

used the Lyapunov theory to derive the control laws allowing the robot to follow a predefined trajectory. 

Several other researchers [4]–[10] have proposed different approaches to solve the same problem. The 

reasons behind this interest are the possible real-world applications in various fields such as agriculture, 

shipping, cleaning, security, and many others. The main controller adopted in this study is based on the same 

state space model used in [11]–[16], from which we have defined an appropriate Lyapunov function and 

most importantly a new steering control law leading to a more straightforward proof for the asymptotic 

system stability, which was not clearly defined in the literature. In [17]–[19], two switching control laws are 

https://creativecommons.org/licenses/by-sa/4.0/
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proposed for the linear and angular velocities based on the relative initial and final postures. In [20], a 

Lyapunov-based controller derived from a function using the cartesian coordinates error is proposed. 

Widyotriatmo et al. [21] have suggested two separate Lyapunov function control schemes depending on the 

robot's closeness to the target position. Two different approaches namely time-varying oscillatory stabilizer 

and vector field orientation have been proposed in [22]. In [23], the feedback linearization technique has been 

utilized to derive a proportional-derivative (PD) controller for the position and orientation tracking problem. 

A linear controller adding an intermediate point to control the robot orientation has been used in [24]. A 

linearized kinematic model for the unicycle robot has been described and used to obtain a set of three 

proportional–integral–derivative (PID) controllers to solve the problem of path planning [25]. A finite time 

control technique has been adopted to stabilize the position of a mobile robot on a target posture using a 

bilinear structure for which two linear switching controllers are selected for each of the two subsystems [26]. 

The problem of posture stabilization using a passivity-based robust switching control has been described in 

[27]. In [28], a controller based on the transverse functions concept is presented, allowing the robot to track 

an omnidirectional moving target. Artificial intelligent-based approaches using reinforcement learning 

methods have been proposed to simulate the controlled robot movements to make it reach a predefined target 

position [29], [30]. An important feature of the present work is the modularity of the hardware 

implementation used to control the robotic platform specifically designed for this purpose. Unlike many of 

the results found in the literature, which are mainly based on simulation, the results shown in the related 

section are solely obtained from the experimental setup described in section 4. 

The structure of this paper is organized as follows. Section 2 provides the detailed derivation of the 

DDMR kinematic model and its representation in terms of a state space model using polar coordinates. This 

model will then be used to design the high-level Lyapunov based controller, whose inputs are the desired 

robot posture data, and the outputs are the linear and angular velocities of the equivalent unicycle model. The 

experimental hardware platform used in this project is presented in Section 3, this also includes an overview 

of the low-level PID controllers used to generate the rotational reference speeds for each of the left and right 

direct current (DC) motors coupled with the wheels of the DDMR. All of the above topics will be put 

together in Section 4, this will include some real-life tests to evaluate the performance of the proposed 

approach. An overall conclusion will be drawn in Section 5.  

 

 

2. SYSTEM MODELING AND CONTROL 

2.1.  Kinematic model of the DDMR 

Figure 1 shows an example of a robot moving between two consecutive postures P1=(x1, y1, 𝜃1) and  

P2 = (x2, y2, 𝜃2). Considering that these changes took place in a very short time ∆𝑡 we can assimilate the portion 

of the robot trajectory as an arc of a circle centered on the instantaneous center of rotation (ICR) with radius RC. 

The distance traveled by the left and right wheels are 𝑆𝐿 = 𝑅𝐿𝛼 and 𝑆𝑅 = 𝑅𝑅𝛼 respectively, at the same time 

the robot (center) covered the distance 𝑆𝐶 = 𝑅𝐶𝛼. If we divide the terms of these equations by ∆𝑡 we obtain the 

linear velocities; 𝑣𝐿 = 𝑅𝐿�̇�, 𝑣𝑅 = 𝑅𝑅�̇�, and 𝑣 = 𝑅𝐶�̇�. Note that 𝑅𝑅 = 𝑅𝐿 + 𝐿, L being the distance between the 

robot wheels, we will then have; 𝑣𝑅 − 𝑣𝐿 = ((𝑅𝐿 + 𝐿) − 𝑅𝐿)�̇� = 𝐿�̇�. Notice that 𝛼 = 𝜃2 − 𝜃1 = ∆𝜃, this will 

imply that �̇� = �̇�. Considering 𝜔𝐿 and 𝜔𝑅 as the left and right wheels angular speeds we have 𝑣𝐿 = 𝑟𝑤𝐿  and 

𝑣𝑅 = 𝑟𝑤𝑅, with r=D/2 being the radius of the robot wheels. Finally, we have 𝑟𝜔𝑅 − 𝑟𝑤𝐿 = 𝑟(𝜔𝑅 − 𝜔𝐿) =

𝐿�̇�, �̇� is the angular velocity of the robot around the ICR, it will be denoted by Ω, this gives us (1). 

 

 

 
 

Figure 1. DDMR elementary displacements in a fixed frame (x, y) 
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Ω =
𝑟

𝐿
(𝜔𝑅 − ωL) (1) 

 

From Figure 1, we have 𝑅𝐶 =  𝑅𝐿 + 𝐿/2 and 𝑅𝐶 =  𝑅𝑅 − 𝐿/2, therefore 2𝑅𝐶 = 𝑅𝐿 + 𝑅𝑅 or 𝑅𝐶 = (𝑅𝐿 +
𝑅𝑅)/2 multiplying these terms by �̇� will give 𝑅𝐶�̇� = (𝑅𝐿�̇� + 𝑅𝑅�̇�)/2 which can be rewritten as: 𝑣 = (𝑣𝐿 +
𝑣𝑅)/2 or 𝑣 = (𝑟𝜔𝐿 + 𝑟𝜔𝑅)/2, finally: 

 

𝑣 =
𝑟

2
(𝜔𝑅 + 𝜔𝐿) (2) 

 

Equations (1) and (2) define the relationship between the DDMR driven by 𝜔𝐿 and 𝜔𝑅 and the 

unicycle model whose inputs are the linear and angular velocities 𝑣 and the Ω respectively. The projections 

of the linear velocity v along the x and y axis are 𝑣𝑥 = �̇� = 𝑣 cos 𝜃 and 𝑣𝑦 = �̇� = 𝑣 sin 𝜃. Gathering these 

equations gives the kinematic model of the DDMR. 

 

{

�̇� = 𝑣 cos 𝜃
�̇� = 𝑣 sin 𝜃

�̇� = Ω

 (3) 

 

2.2.  State space model  

Most of the known control approaches require a form of mathematical model for a system to be 

controlled, among these, state space representation is very often the preferred option. Figure 2 illustrates the 

situation where the robot is required to move between two postures P1 and P2(x, y, θ2). To achieve this goal 

the robot needs to compute both the linear and angular speeds at each sample time. The translational part of 

the movement is obtained from the projection of the robot linear speed v, on the direction of the line joining 

the starting and final positions, this is designated by vρ. The orientation changes have to be made taking into 

account the fact that the total steering angle is a combination of two different angles; α is the part that makes 

the robot orient itself towards the final position and β the angle that directs it to the desired orientation θ2. 

The overall robot behavior can be modeled by (4). 

 

 

 
 

Figure 2. DDMR posture transition 

 

 

{

𝜌 = √𝑥2 + 𝑦2

𝛼 = tan−1 𝑦

𝑥
− 𝜃1

𝛽 = −𝛼 + ∆𝜃

 (4) 

 

When the robot is moving towards its final goal the rate of change of the distance ρ is decreasing. 

This can be written as; �̇� = 𝑣𝜌 = −𝑣 cos 𝛼. Figure 2 shows that 𝛽1is the portion of 𝛽 that makes the robot 

align with the final orientation, therefore its rate of change �̇�1 = �̇� which implies that 𝜌�̇� = 𝑣𝛽 = −𝑣 sin 𝛼. 

Using the third part of (4) we get 𝛼 = −𝛽 + (𝜃2 − 𝜃1), because 𝜃2 does not change and �̇�1 = �̇� we have  

�̇� = −�̇� − �̇� = −�̇� − Ω. Finally, the system can be represented by the state space model (5). 
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{

�̇� = −𝑣 cos 𝛼 

�̇� = −
𝑣

𝜌
sin 𝛼

�̇� =
𝑣

𝜌
sin 𝛼 − Ω

 (5) 

 

2.3.  Control design  

From Figure 2, we can easily observe that the present control problem consists in finding a proper 

control law 𝑢 = 𝑓(𝑣, Ω) that will drive the state variables (𝜌, 𝛽, 𝛼) to (0, 0, 0). Let us use the quadratic form 

as a Lyapunov function (6). 

 

𝑉 =
1

2
(𝜌2 + 𝛼2 + 𝛽2) (6) 

 

Therefore 

 

�̇� = 𝜌�̇� + 𝛼�̇� + 𝛽�̇� = 𝜌(−𝑣 cos 𝛼) + 𝛼 (
𝑣

𝜌
sin 𝛼 − Ω) + 𝛽(−

𝑣

𝜌
sin 𝛼) or  

�̇� = −𝑣𝜌 cos 𝛼 − 𝛼Ω + 𝛼
𝑣

𝜌
sin 𝛼 − 𝛽

𝑣

𝜌
sin 𝛼 (7) 

 

As already mentioned, 𝑣 and Ω are the system control inputs. Let us use the law in (8) for the linear speed 𝑣, 

with 𝑘𝜌 a positive constant. 

 

𝑣 = 𝑘𝜌𝜌 cos 𝛼 (8) 

  

This will give  

 

�̇� = −𝑘𝜌𝜌2 cos 𝛼2 − 𝛼Ω + 𝛼
𝑘𝜌𝜌 cos 𝛼

𝜌
sin 𝛼 − 𝛽

𝑘𝜌𝜌 cos 𝛼

𝜌
sin 𝛼  

�̇� = −𝑘𝜌𝜌2 cos 𝛼2 − 𝛼Ω + 𝑘𝜌𝛼 cos 𝛼 sin 𝛼 − 𝑘𝜌𝛽 cos 𝛼 sin 𝛼 (9) 

 

If we choose another positive constant 𝑘𝛼 and the angular Ω speed as (10). 

 

Ω = 𝑘𝛼𝛼 + 𝑘𝜌(𝛼 − 𝛽) cos 𝛼
sin 𝛼

𝛼
 (10) 

 

We will have 

 

�̇� = −𝑘𝜌𝜌2 cos 𝛼2 − 𝑘𝛼𝛼2 (11) 

 

Using the above control signals, the state space model (5) becomes (12). 

 

{

�̇� = −𝑘𝜌ρ cos 𝛼2 

�̇� = −𝑘𝜌 cos 𝛼 sin 𝛼

�̇� = −𝑘𝜌(𝛼 − 𝛽) cos 𝛼
sin 𝛼

𝛼
+ 𝑘𝛼𝛼 + 𝑘𝜌 cos 𝛼 sin 𝛼

 (12) 

  

Using the Lyapunov theory if we can prove that �̇� is negative definite then the system described in 

(12) is asymptotically stable around the state (𝜌, 𝛼, 𝛽) = (0, 0, 0). From (11) we have �̇�(0, 0, 𝛽) = 0, which 

would mean that �̇� is negative semi-definite, we can also observe that when 𝛼 = 0, 
sin 𝛼

𝛼
= 1 and the third part 

of (12) becomes �̇� = 𝑘𝜌𝛽, but 𝛼 = 0 means that the system has reached its final state which infers that 𝛼 

remains constant and then �̇� = 0 consequently 𝛽 = 0. Finally, we can conclude that �̇� = 0 only if (𝜌, 𝛼, 𝛽) =
(0, 0, 0) which proves that the control laws (8) and (10) drive the system to an asymptotically stable state. 

 

 

3. MOTOR SPEED CONTROL 

To enable the robot, execute the required movements, the control laws previously defined must be 

transformed in terms of 𝜔𝐿 and 𝜔𝑅, the robot left and right wheels angular velocities. These can be derived 

from (1) and (2) to get the following inverse unicycle model. 
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𝜔𝐿 =
𝑣

𝑟
−

𝐿Ω

2𝑟
 (13) 

 

𝜔𝑅 =
𝑣

𝑟
+

𝐿Ω

2𝑟
 (14) 

 

In order to ensure that 𝜔𝐿 and 𝜔𝑅 have actually the values defined in (13) and (14), these must be 

properly controlled using two separate closed loop subsystems as illustrated in Figure 3. Note that 𝜔𝐿𝑀 and 

𝜔𝑅𝑀 are the measured speeds obtained from the derivatives of the angular positions, generated by the 

embedded quadrature encoders modules of the Microchip DSPic33fj64mc802 microcontroller.  

 

 

 
 

Figure 3. Embedded motor speed controller’s block diagram 

 

 

From the block diagram of Figure 3, we can distinguish 3 different colored zones. The inner yellow 

box shows that the two PID speed controllers have been implemented in a firmware flashed in the 

microcontroller program memory, the light-red rectangle represents the microcontroller with some of its 

embedded modules and the green area is the self-made electronic board, on which the microcontroller and all 

the required elements have been mounted. The aforementioned program receives the reference values of 𝜔𝐿 

and 𝜔𝑅 through the serial universal asynchronous receiver-transmitter (UART) unit and delivers the PID 

control signals to the PWM modules, whose outputs are connected to the inputs of the L298N double H-

bridge. Prior to implementing these controllers, their 𝑘𝑃, 𝑘𝐼 and 𝑘𝐷 parameters have been obtained using the 

following procedure: A mathematical model of one of the geared DC motors coupled with its wheels has 

been derived using the MATLAB system identification toolbox. Using the MATLAB/Simulink pidtuner 

toolbox, this model was then used to tune the PID parameters in a separate simulation program.  

 

 

4. SIMULATION AND EXPERIMENTAL RESULTS 

4.1.  High-level controller implementation 

Before showing the results obtained during the experiments we carried out, we have summarized the 

whole process of the proposed control scheme in a graphical format as shown in Figure 4. This bloc diagram 

clarifies the sequential operations involved after the introduction of the desired posture by the program user. 

As already mentioned, this program runs on top of the MATLAB/Simulink environment and is linked to the 

mobile robot through a serial communication hardware protocol, this is known as hardware in the loop (HIL) 

system. It should be noted that this is a real-time process and to make it work requires suitable sampling 

frequency and proper data formatting and parsing on both sides i.e., on the embedded control board and the 

computer side. 
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Figure 4. Bloc diagram of the high-level controller (M indices for measured signals) 

 

 

4.2.  Robotic platform 

The constructed robotic platform used in this work is shown in Figure 5, most of the mechanical 

structure is made of plastic parts joined together with M8 and M6 nuts and bolts. From a purely theoretical 

point of view, such a physical system would require a dynamic model-based controller. This was not exactly 

the case in this study, where the kinematic model was the starting point of the designed controller. 

Nevertheless, the fact that the two PID speed controllers’ parameters were tuned based on the dynamic model 

of the Maxon DC motor ref: 110147, coupled with an 84:1 reduction gearhead, including the robot wheels, 

the influence of the rest of the robot's physical parameters will not significantly change the robot overall 

behavior. Additionally, knowing that this robot will not be subject to very high accelerations, the kinematic 

model described above can be considered as good enough for developing a working controller. 

  

 

 
 

Figure 5. Picture of the self-made mobile robot 

 

 

4.3.  Results and discussions  

The numerical values of the constants used in the experiments are listed in Table 1. The 𝑘𝜌 and 𝑘𝛼 

parameters were obtained after a few iterations of trial-and-error testing using the proposed controller, 

applied to the complete system represented in Figures 3 and 4. For practical reasons, these parameters were 

tuned with the robot wheels rotating freely, without any contact with the ground. 

 

 

Table 1. PID and Lyapunov controllers’ parameters 
𝑘𝑃 𝑘𝐼 𝑘𝐷 𝑘𝜌 𝑘𝛼 

0.0127 0.1573 0 0.8 1.8 
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Tuning these parameters with the robot moving on the ground would have been very difficult and 

very time-consuming. The selection of these final values was based on the observations of the system 

response in terms of both the error amplitudes and the time it takes to reach the desired posture. Several test 

runs have been executed as shown in Figure 6. As can be noticed these pictures were obtained by 

superimposing two photos; the first one being a sequence of several snapshots selected from recorded videos, 

taken during the robot movements. The second ones represent the robot trajectories and their successive 

positions, simulated using a MATLAB script that uses the robot postures actual data (x, y, θ), recorded during 

the program executions. Figure 7 shows a sample of these plots, for the case f in Figure 6. From the top half 

of this figure, we can observe that the system states (𝜌, 𝛼, 𝛽) (dashed lines) all converge to (0, 0, 0) as the 

robot tracks the desired posture. This confirms the asymptotic stability of the state space system (12). From 

the bottom part of this figure, we can see that the measured left and right motors rotational speeds 𝜔𝐿𝑀 and 

𝜔𝑅𝑀 are very close to 𝜔𝐿 and 𝜔𝑅 requested by the high-level Lyapunov controller. This proves that the two 

embedded PID controllers are performing very well. From the sample runs in Figure 6 we can also notice that 

when the robot is close to its final posture the linear speed v is always positive, this comes from its definition 

in (8), where the sign of cos 𝛼 is positive because, when this happens, α is close to zero. This may suggest 

that, for situations where the final goal is behind the starting position, as in the f, g, and h cases in Figure 6, a 

better alternative would be to modify the control law (8) to make the robot move following a shorter trajectory. 

 

 

 
a-Desired posture = (1.25, 0.75, 0) 

 

 
b-Desired posture = (1.25, 0.75, -𝜋/2) 

 
c-Desired posture = (1.25, 0.75, 𝜋) 

 

 
d-Desired posture = (1.25, -0.5, 𝜋) 

 
e-Desired posture = (1.25, -0.5, 𝜋/2) 

 

 
f-Desired posture = (-1.25, 0.5, 3𝜋/2) 

 
g-Desired posture = (-1.25, -0.5, 3𝜋/4) 

 
h-Desired posture = (-1.25, 0, 0) 

 

Figure 6. Sample tests of the robot movements to reach desired postures in the 4 quadrants 
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Figure 7. Time plots for the case where the desired posture is (x, y, θ) = (-1.25, 0.5, 3𝜋/2) 

 

 

5. CONCLUSION 

In this paper, a complete non-linear Lyapunov based controller was presented and applied to drive a 

unicycle-like robot to a desired posture. This was achieved on an experimental platform including the self-built 

mobile robot and a stationary personal computer (PC) system, on which this controller is implemented. The 

main reason for this architecture was not only to provide more flexibility for the controller’s gains tuning, but 

also the possibility to implement and test any other suitable controller on the same PC. From the sample tests 

shown in Figures 6 and 7 and many others, the proposed controller has proven to give very good results in 

terms of the precision attained for both the final position and orientation. Further investigation to find a way to 

optimize the 𝑘𝜌 and 𝑘𝛼 gains of this controller, would probably result in a faster output response, especially for 

the final orientation, which takes much more time to stabilize than the set point position.  
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