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 This research introduces an innovative approach to address the limitations of 

the commonly used social force model-based robot navigation method on 

flat terrain when applied to sloped terrain. The incline of the terrain becomes 

a crucial factor in calculating the robot’s steering output when navigating 

from the initial position to the target position while avoiding obstacles. 

Therefore, we propose a social forced model-based robot navigation system 

that can adapt to inclined terrain using inertial measurement unit sensor 

assistance. The system can detect the surface incline in real time and 

dynamically adjust friction and gravitational forces, ensuring the robot’s 

speed and heading direction are maintained. Simulation results conducted 

using CoppeliaSim show a significant improvement in speed adjustment 

efficiency. With this new navigation system, the robot can reach its 

destination in 59.935089 seconds, compared to the conventional social 

forced model which takes 63.506442 seconds, the robot is also able to 

reduce slip to reduce wasted movement. This method shows the potential of 

implementing a faster and more efficient navigation system in the context of 

inclined terrain. 
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1. INTRODUCTION 

Terrain-based adaptive control has the primary goal of assisting robots in undergoing stable and safe 

movement, especially when operating on different types of terrain that may differ in characteristics. 

Achieving this goal requires the robot’s ability to accurately identify surface slopes and adapt its actions and 

responses according to the terrain conditions encountered [1]–[3]. One of the key aspects of this adaptability 

is the ability to regulate the forces acting on the robot so that changes in speed or direction of movement do 

not occur suddenly. 

In this research framework, the main focus is on developing an adaptive social force model (SFM)-

based navigation model, especially in the context of inclined terrain. Previously, social force navigation 

models have been successfully used in various applications, such as pedestrian avoidance [4]–[10], 

healthcare robots [11] drones [12], [13], evacuation robots [14]–[17], and navigation of soccer robots [18], 

[19] some also modify the SFM [20]–[22]. However, in most cases, the use of these models is limited to flat 

surfaces and does not consider changes that may occur to the robot during travel or navigation.  

Therefore, this research aims to develop a SFM system that can adapt to various terrain conditions 

that may be faced by the robot. This system will be equipped with the ability to detect changes in surface 

slope in real time and the ability to adjust the forces acting on the robot according to the context of the terrain 

being traveled. As a result, the acceleration, speed, and heading of the robot can be dynamically adjusted 

https://creativecommons.org/licenses/by-sa/4.0/
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according to the slope of the terrain, allowing the robot to maintain movement stability and respond more 

effectively to terrain conditions. The forces generated by social force mode will be integrated with other 

forces that affect the robot’s movement, including friction forces that may occur on the robot. Through the 

integration of these forces, the system will ensure that the speed and heading obtained by the robot remain 

stable and consistent in the face of diverse terrain conditions. Thus, the robot will have the ability to operate 

efficiently and safely in a variety of inclined terrains [23]–[25]. 

 

 

2. METHOD 

2.1.  Social force model 

SFM, introduced by Helbing and Molnar [26], [27], is a system used to predict the possible 

behavioral-based movements of agents or individuals based on the attractive and repulsive forces acting on 

them. It considers both physical and social factors that influence agent movements. In the SFM, three types 

of forces influence agent movements, namely an attractive force toward the goal, a repulsive force against a 

static obstacle (i.e., walls, buildings, roads), and a repulsive force against a dynamic obstacle (i.e., human). 

Figure 1 depicts the relation between all force components in the SFM framework. 

 

 

 
 

Figure 1. The relation between all force components in SFM framework 

 

 

The primary objective of the SFM is to determine the navigation force, denoted as 𝐹𝑛𝑎𝑣, essential for 

guiding a mobile robot through its environment. This is achieved through the intricate calculation of a 

resultant force derived from three fundamental components. The first component involves an attractive force 

directed towards the predefined goal, denoted as 𝐹𝑔. Simultaneously, the second component introduces a 

repulsive force aimed at mitigating potential collisions with static obstacles, represented by 𝐹𝑠. Lastly, the 

third component incorporates a repulsive force designed to counteract the influence of dynamic obstacles, 

expressed as 𝐹𝑑. The formulation of these components is fundamental to achieving a nuanced and balanced 

navigation force, enabling the mobile robot to navigate effectively by harmonizing attraction towards the 

goal and repulsion from obstacles, both static and dynamic, within its operational environment. 

 

𝐹𝑛𝑎𝑣 = 𝐹𝑔 + 𝐹𝑠 + 𝐹𝑑. (1) 

 

𝐹𝑔 = 𝑚 . 𝑎 (2) 

 

The repulsive force against a static obstacle, denoted as 𝐹𝑠, is composed of two main components: 

the social repulsion force denoted as 𝑓𝑠𝑜𝑐
𝑠  and the physical repulsion force denoted as 𝑓𝑝ℎ𝑦

𝑠 . The social repulsion 

force arises from the interactions between the robot and its surroundings, including people or stationary 

objects. This force captures the social aspect of the robot’s environment, reflecting its ability to navigate and 

interact safely with individuals and objects. On the other hand, the physical repulsion force stems from the 

tangible interactions between the robot and static objects, such as walls or stationary obstacles. This force is 

crucial for preventing collisions and ensuring the robot’s physical integrity. By summing up these two forces, 

the overall repulsion force against static obstacles is determined. This comprehensive approach allows the 
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robot to navigate its environment effectively, taking into account both social considerations and physical 

barriers, ultimately contributing to a more robust and adaptive robotic system. 

 

𝑓𝑠𝑜𝑐
𝑠 = 𝑘𝑠𝑒𝑥𝑝 ( 

𝑟𝑅− 𝑑𝑅
𝑠

𝛹𝑠 ) + 𝑒𝑅
𝑠, (3) 

 

𝑓𝑝ℎ𝑦
𝑠 =  𝑘𝑠(𝑟𝑅 −  𝑑𝑅

𝑠 ) 𝑒𝑅 
𝑠 , (4) 

 

𝐹𝑠 =  𝑓𝑠𝑜𝑐
𝑠 +  𝑓𝑝ℎ𝑦

𝑠 , (5) 

 

In the context of the provided formulation, 𝑓𝑠𝑜𝑐
𝑠  stands for the robot’s social repulsion force against 

static obstacles, while 𝑓𝑝ℎ𝑦
𝑠  represents the robot’s physical repulsion force exerted on static obstacles. The 

parameter 𝑟𝑅 corresponds to the radius of the robot’s interaction area, and 𝑑𝑅
𝑠  denotes the distance from the 

robot to the nearest static obstacle. The coefficient 𝑘𝑠 serves as a gain factor that determines the magnitude of 

feedback received subsequently. Furthermore, 𝛹𝑠 denotes the effective distance value influencing the 

repulsion force to navigate around dynamic obstacles, and 𝑒𝑅 
𝑠  is a vector indicating the direction from which 

static obstacles approach. The repulsive force against a dynamic obstacle 𝐹𝑑 arises when there are moving 

obstacles around the robot. It is also formed through the sum of the social repulsion force and the physical 

repulsion force. To anticipate the movement of dynamic obstacles, in the SFM framework, a proxemic area 

radius is given that indicates the possible movements that can occur next.  

 

𝐹𝑑 =  𝑓𝑠𝑜𝑐
𝑑 + 𝑓𝑝ℎ𝑦

𝑑 , (6) 

 

𝑓𝑠𝑜𝑐
𝑑 = 𝑘𝑑𝑒𝑥𝑝 ( 

𝑟𝑟
𝑑− 𝑑𝑅

𝑑

𝛹𝑑 ) 𝑒𝑅
𝑑, (7) 

 
𝑓𝑝ℎ𝑦

𝑑 =  𝑘𝑑(𝑟𝑟
𝑑 −  𝑑𝑅

𝑑) 𝑒𝑅 
𝑑 , (8) 

 
𝑟𝑟

𝑑 =  𝑟𝑅 +   𝑑𝑅
𝑑, (9) 

 
In the outlined framework, 𝑓𝑠𝑜𝑐

𝑑  represents the robot’s social repulsion force against dynamic 

obstacles, while 𝑓𝑝ℎ𝑦
𝑑  characterizes the robot’s physical repulsion force applied to dynamic obstacles. The 

parameter 𝑟𝑅 signifies the value of the radius defining the robot’s detection area, 𝑑𝑅
𝑑 indicates the distance 

from the robot to the nearest dynamic obstacle. The coefficient 𝑘𝑑 functions as a gain factor determining the 

degree of subsequent feedback. Additionally, 𝑒𝑅
𝑑 represents a vector indicating the direction from which 

dynamic obstacles approach, and 𝛹𝑑 signifies the value determining the effective distance of the repulsive 

force to navigate around dynamic obstacles. The parameter 𝑟𝑟
𝑑 is derived from the sum of the radius of the 

robot’s proxemics area and the radius of the dynamic obstacle area. 

 

2.2.  Inclined force 

In this paper, we proposed to consider the inclined terrain factor as shown in Figure 2. Since the 

robot sometimes needs to navigate in a traverse position on an inclined terrain, a slippery condition may 

occur and make the robot shift to the side due to gravitation force. The first step in this calculation is to find 

the value of the normal force (N) acting on the robot, which can be expressed in the following equation 

related to the forces affecting the robot when traveling on an inclined road, to make the SFM better adapted 

in its navigation.  

 

 

 
 

Figure 2. Robot on inclined terrain 
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Σ𝐹𝑦 = 0 (10) 

 
𝑁 − 𝑊. 𝑐𝑜𝑠 𝜃 = 0 (11) 
 
𝑁 = 𝑊. 𝑐𝑜𝑠 𝜃 (12) 
 
In the context of the given formulation, Σ𝐹𝑥 represents the sum of forces acting on the robot along 

the x-axis. This includes the weight force, determined by the product of the robot’s mass and gravity, and is 

pivotal in understanding the dynamics of the robot’s motion. The angle 𝜃 introduced in the formulation 

signifies the slope of the terrain, measured by the robot’s sensor during implementation. This angle enhances 

the analysis by accounting for the inclination of the surface on which the robot operates. Calculating the 

resultant force on the x-axis involves determining both the friction force and the parallel force. The friction 

force arises from the interaction between the robot’s wheels or contact points and the surface, opposing 

motion. The parallel force is a component of the weight force parallel to the terrain’s incline.  

 

Σ𝐹𝑥 = 𝐹𝑝 − 𝐹𝑓 (13) 

 

The parallel force 𝐹𝑝 is obtained by multiplying the robot’s weight force by 𝑠𝑖𝑛 𝜃, indicating that 

the greater the inclination of the plane, the greater the parallel force generated. Meanwhile, the friction force 

𝐹𝑓 is calculated by multiplying the friction coefficient 𝜇 by the normal force 𝑁, which has been calculated 

previously. This coefficient of friction depends on the material of the plane being traversed and the material 

of the robot wheel. In this study, the coefficient of friction is considered constant. In this paper, we ignored 

the dynamic obstacle since it can be simplified and equated with an approach to static obstacles. The resultant 

of the robot’s force on the x-axis when going through the inclined plane can be added to the SFM so the 

robot can minimize the force that occurs on the inclined plane.  

 

𝐹𝑝 =  𝑊. 𝑠𝑖𝑛 𝜃 (14) 

 
𝐹𝑓 =  𝜇 . 𝑁 (15) 

 
𝐹𝑓   =  𝜇. (𝑊. 𝑐𝑜𝑠 𝜃) (16) 

 
𝐹𝑛𝑎𝑣 = 𝐹𝑔 + 𝐹𝑠 +  𝐹𝑝 − 𝐹𝑓 (17) 

 

2.3.  Fuzzy inference system 

The 𝑘 and Ψ values as shown in (3) and (4) are gain values that are made adaptive based on the 

fuzzy inference system [18], [19], in previous research, the robot detection area can be divided [7], [8]. Table 

1 shows the fuzzy rule for static obstacles which deals with the division of the proxemics area (robot 

detection area). The 𝑘 gain function is used to measure the extent to which the robot responds or reacts to the 

influence of obstacles in this model. A higher value of gain k will result in a stronger response to the 

obstacle, while a lower value of gain 𝑘 will result in a weaker response. In this paper, we also ignored the Ψ 

value, since it does not have a significant impact and can be determined manually. 

 

 

Table 1. Fuzzy rule for static obstacle 
R Obstacle Distance 

Intimate Personal Social Public 

Obstacle Angle Front 50 25 25 25 

Side-Front 25 25 12.5 12.5 
Side 12.5 6.25 6.25 6.25 

 

 

Figure 3 explains the division of the radius of the proxemic area [28], [29], delineating specific 

zones based on interpersonal distances. These zones include intimate space (less than 45 cm), personal space 

(45 to 120 cm), and social space (121 to 360 cm), while areas beyond these boundaries are classified as 

public spaces. In the context of the SFM, the model primarily focuses on detecting and responding to forces 

within the intimate, personal, and social spaces. Notably, public space, although not directly detected by the 

SFM, is still factored into the decision-making process through the application of fuzzy logic. Fuzzy logic 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

 Robot navigation on inclined terrain using social force model (Muhammad Fariz Daffa) 

135 

plays a crucial role in determining the adaptive gain value, enabling the robotic system to dynamically adjust 

its behavior, considering the broader context of public spaces. This integration ensures a more nuanced and 

adaptive response, accounting for the subtleties of social dynamics across different proxemic zones. 

 

 

 
 

Figure 3. Proxemic area 

 

 

Based on the partitioning of the proxemic area and the angle of approach by the robot [18], [19], a 

membership function can be thoughtfully designed, as illustrated in Figure 4. Using this information, the 

robot gains the ability to discern and react suitably to distinct proxemic zones, thereby optimizing its 

behavior in alignment with human preferences and interaction constraints. This nuanced approach empowers 

the robot to operate with heightened adaptability and responsiveness. By incorporating a tailored membership 

function, the robot not only interprets its surroundings more effectively but also tailors its responses to 

various proxemic zones, thereby enhancing its overall capacity to navigate and interact in a manner that is 

attuned to human expectations and preferences. 

 

 

  
 

Figure 4. Membership function 

 

 

3. RESULTS AND DISCUSSION  

The SFM simulation was conducted using the CoppeliaSim application using a differential drive 

mobile robot (DDMR) 4 wheel. This implementation used various programming languages, including C++, 

Lua, and Python, and connected them through the Robotic Operating System (ROS) communication system, 

for full specification all hardware and software are in Table 2. The simulation environment used was set up 

as shown in Table 2. We have developed Lua scripts in CoppeliaSim to control motors within the simulation, 

enabling both linear and angular speed adjustments as depicted in Figure 5. The SFM algorithm, implemented 

in C++, includes the calculation of forces on the inclined plane. The implementation of this algorithm is 

distributed through the ROS communication system. Visualization of the simulation results is displayed using 

OpenCV with the Python programming language, providing a clear visual representation of the robot’s 

movement and its interaction with obstacles in the simulated environment. In the context of the robot, its 

weight is set in the range of about 25 kg and I specified an inclined plane with a slope of approximately 

15 degrees. All these settings are designed to achieve accurate and representative simulation results. 



                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 13, No. 2, June 2024: 131-139 

136 

Table 2. Simulation specifications 
Hardware Description 

Mini PC IntelNuc 
Processor Intel(R) Core(TM) i5-10210U CPU @ 1.60 GHz 

RAM 8192 MB DDR4 

HDD 128 GB 
Operating System and other Software Visual Studio Code 

 

 

 
 

Figure 5. Defined Simulated environment in the CoppeliaSim 

 

 

The robot will be made to move from the start position to the end position. On this journey, several 

obstacles will be placed to test the robot’s navigation capabilities based on the SFM. Two types of SFM 

models will be tested. First, the SFM without taking into account the force on the inclined plane is marked 

with a yellow line, and second, the SFM that takes into account the force on the pre-made inclined plane with 

a blue line, then the red dots are a representation of the distance reading from the lidar as can be seen in 

Figure 6, while the corresponding travel times are depicted in Figure 7. The robot successfully navigates and 

reaches the destination point by avoiding several obstacles using SFM. 

 

 

 
 

Figure 6. Visualization of robot movement 

 

 

  
(a) (b) 

 

Figure 7. Time taken for the robot to reach the goal (a) without and (b) with force on an inclined plane 

 

 

The test results reveal a significant difference in the time taken by the robot to reach the finish line. 

When using the SFM model without considering the forces on the inclined plane, the required time duration 
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is 63.506442 seconds according to Figure 7(a). However, when the robot takes into account the forces on the 

inclined plane, it can be observed that the robot reaches the goal faster, approximately in 59.935089 seconds 

according to Figure 7(b). The comparison of values before and after incorporating inclined force calculations 

is visually presented in Figure 8. A detailed breakdown of these findings is provided in Table 3. Notably, 

accounting for forces on the inclined plane enables the robot to reach its destination more swiftly by 

identifying a more efficient route. In practical terms, this optimization reduces slipping and minimizes 

wasteful movements, contributing to the overall enhanced performance of the robot. 

 

 

Table 3. Result of the time taken and travel distance 
Method SFM Without Force on an Inclined Plane SFM With Force on an Inclined Plane 

Time 63.506442 59.935089 

Distance 16.643172424591 16.095605425016 

 

 

 
 

Figure 8. Changes in SFM forces against an inclined plane 

 

 

In the graphical illustration in Figure 9, the force values in the SFM without considering the 

inclination of the plane are represented by blue lines, while those that take into account the inclination of the 

plane are shown in yellow. The force due to the inclination of the plane is represented in red, while the 

change in pitch on the inclined plane is depicted in blue. It is important to note that when the robot passes 

through an inclined section that is a descent (being in a downhill position), the system will calculate the force 

arising from the inclination. As a result, the navigation force in the SFM will decrease, and therefore, the 

speed of the robot on the inclined plane will also decrease in line with the change in navigation force. By 

implementing this system, the speed of the robot when using the SFM becomes more adaptive when traveling 

on an inclined plane. This results in robot navigation that is more stable and responsive to changing terrain 

conditions, allowing the robot to move efficiently and safely even on surfaces with varying slopes. 

 

 

4. CONCLUSION  

In this work, we successfully overcome the main obstacle of the Social Force Model on inclined 

terrain by developing an adaptive system that allows the robot to move efficiently and safely on inclined 

terrain. The force adaptive control we implemented involves real-time detection of changes in surface slope, 

enabling dynamic adjustment to frictional and parallel forces. Simulation results show a significant 

improvement in the stability of the robot’s movement, reducing the risk of sudden changes in speed and 

ensuring smoother navigation on inclined terrain. In this context, our research not only enriches the 
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understanding of SFM applications in complex environments but also provides a foundation for the 

development of future navigation technologies. The ability of robots to dynamically adapt their movements 

to the terrain will be key in the development of robots that can operate reliably in various environmental 

conditions. As such, this research not only has an important impact on academia but also opens up new 

opportunities in the use of robotics technology in various practical applications, including the exploration of 

difficult environments and hard-to-reach places. We are confident that the findings and approaches we 

developed in this research will pave the way for further research and development of innovative and reliable 

robot navigation solutions. 
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