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 Methane emissions from leak sources can have a negative climate impact, in 

addition to contributing to the risk of explosions in urban environments. 

These risks can be minimized by developing systems that provide for an 

accurate and timely detection and localization of a gas leakage point. This 

research used a swarm of robots to detect and locate a leakage point. The 

localization algorithm derives from further optimization of the gradient 

climbing algorithm using fireflies acting as opportunistic agents. Firefly 

agents are characterized by their bioluminescent communication which 

guides them to dynamically adjust their positions and intensities based on 

the quality of the gradient information available to them. The proposed 

research focuses on enhancing gas leak detection through the development 

of a hybrid gradient climbing algorithm. This algorithm integrates gradient 

climbing techniques with swarm intelligence, utilizing the strengths of both 

approaches. This simulation resulted in the hybrid algorithm leading to a 

reduced convergence time and path lengths when compared to the swarm 

without opportunistic agents. The suggested approach can be important 

especially in gas distribution systems or in areas where human intervention 

is considered to be unsafe.   
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1. INTRODUCTION 

Gas leak incidents occurring either at homes, gas distribution systems, or in an industrial environment 

constitute a severe environmental health hazard. It was revealed that natural gas leakages otherwise known as 

fugitive emissions at individual leak points in the gas distribution systems in Metro Boston, Massachusetts, 

can range from between 4.0 − 2.3 × 104𝑔 𝐶𝐻4 𝑑𝑎𝑦−1 with fifteen percent of surveyed leaks characterized 

as potentially explosive [1], [2]. While these methane emissions due to gas leakages can have a negative 

climate impact, they also constitute a risk to explosions in urban environments [2], [3]. In Nigeria, there were 

around 2,346 reported cases of domestic fire accidents between 2010 and 2014, a majority of these accidents 

have been attributed to the widespread leakages from liquefied natural gas (LPG) cylinders [4], [5]. 

The early detection and localization of a gas leak can have profound implications on human safety, 

industrial operations, and environmental preservation [6]. The main objectives of any gas monitoring system 
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are the detection and localization of a gas leak. Previous monitoring systems have relied mostly on sensor-

based technologies that are placed at fixed pre-determined locations and sometimes incorporate 

communication devices for remote data transmission over the Internet of things (IoT) [7], [8]. Recently, 

mobile robot-based monitoring systems have been suggested especially for outdoor monitoring of gas 

pipelines [9], [10]. While these systems are generally less expensive than most of the fixed-sensor based 

systems, they may suffer from longer detection and localization times. Consequently, multi-robot systems 

have been developed in configurations such as the alpha-follower, that aim to improve the detection and 

localization times [11]–[13]. These approaches are, however, hampered by their accuracy and reliability since 

these parameters depend disproportionately on the swarm leaders/explorers.  

The accuracy can improve if each robot in a swarm contributes guidance information allowing the 

swarm to collectively detect and locate gas leaks more effectively. A popular technique known as gradient 

climbing utilizes shared information within the swarm that relates to the measured gas concentration gradient 

in the air as a function of the distance away from the source [14]. Gradient climbing is implemented such that 

each robot measures a local gradient, which represents the direction of the steepest increase in the intensity of 

a particular signal, such as light, odor plume, or temperature [15]. Robots then use this information to adjust 

their own movements, moving in the direction of the steepest gradient until they reach the target location or 

object. The main problem with the gradient climbing algorithm is that it often gets stuck in a local optimum, 

making it difficult to find the global optimum [16]. Additionally, it may converge towards a point in the 

search space that is neither a local nor global optimum [17].  

In this study, the firefly algorithm has been selected to further optimize the gradient climbing 

algorithm. The attributes of some of the robots in the swarm are modified by the firefly algorithm thereby 

characterizing them as opportunistic agents [18]. Opportunistic agents can take advantage of random events 

and changes in the environment to improve their performance and thus enhance the optimization process 

[19]. By integrating fireflies as opportunistic agents, the swarm can dynamically adapt its composition and 

optimize gradient climbing to improve detection accuracy and response time. Swarm coordination 

techniques, such as consensus algorithms or distributed control strategies, are implemented to ensure 

synchronized and efficient behavior of the swarm [11]. In the simulations, the dispersion of gas has been 

modeled using the Gaussian plume model [20] since it offers advantages such as its analytical tractability and 

computational efficiency. Also, path planning algorithms are integrated into the swarm robot system to 

optimize the trajectories during gradient climbing [21]. The potential field method is used to guide the 

movement of swarm robots towards the gas leakage point and it is defined by combining the attractive and 

repulsive forces [22]. Whereas the attractive forces pull the swarm toward the gas leakage point, the repulsive 

forces prevent them from colliding with one another and with obstacles in the environment. 

 

 

2. METHOD 

The first objective of this study is to model gas leak concentration in a constrained environment. The 

mathematical formulation used to model this is the Gaussian Plume [19]. It is used to estimate the 

concentration of gas at different locations within the environment in the vicinity of the gas emitting source. 

The model assumptions include i) the gas dispersion occurs in three-dimensional space; ii) the gas release is 

continuous and from a single-point source; and iii) the gas is well-mixed and behaves as a passive scalar and 

the influence of obstacles and topography on the dispersion is neglected. 

The Gaussian Plume model estimates the concentration of gas at a specific location (x, y, z) in the 

environment using (1) [23], 
 

𝐶(𝑥,𝑦,𝑧) =
𝑄

2𝜋𝑢𝜎𝑦𝑖𝜎𝑍𝑖
𝑒𝑥𝑝 −

(𝑦1−𝑦0)2

2𝜎𝑦
2 [exp −

(𝑍𝑖−ℎ0)2

(2𝜎𝑧𝑖)2 + exp −
(𝑧𝑖+ℎ𝑜)2

(2𝜎𝑧𝑖)2 ]   (1) 

 

where 𝐶(𝑥,𝑦,𝑧) represents the 3-D gas concentration at position with coordinates x, y, and z; Q is the emission 

rate of the gas (amount of gas released per unit time) (kgs-1); u is the wind speed at the location of interest 

(ms-1); (𝑦0, 𝑧0) denotes the coordinates of the gas release point; 𝜎𝑦 𝑎𝑛𝑑 𝜎𝑧 represent the standard deviations 

of the gas plume in the y and z directions, respectively. The concentration gradient is estimated from the 

partial derivative of the Gaussian Plume model and is given in (2) to (4) [24].  
 

𝜕𝑐

𝜕𝑥
= 0 (2) 

 

𝜕𝑐

𝜕𝑦
= (

𝑄

(𝜋𝑢𝜎𝑦𝜎𝑧)
) ∗ (y − 𝑦0) ×  exp (− (

(𝑦−𝑦0)2

2𝜎𝑦
2 − (

(𝑧−𝑧0)2

2𝜎𝑧
2 ))) /𝜎𝑦

2 (3) 
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𝜕𝑐

𝜕𝑧
= (

𝑄

(𝜋𝑢𝜎𝑦𝜎𝑧)
) × (z − 𝑧0) ×  exp (− (

(𝑧−𝑧0)2

2𝜎𝑦
2 − (

(𝑧−𝑧0)2

2𝜎𝑧
2 ))) /𝜎𝑧

2 (4) 

 

The gradient of gas concentration is represented by the vector (5). 

 

∇C = [∂C/∂x, ∂C/∂y, ∂C/∂z] (5) 

 

To ensure that the gradient of gas concentration is positive-definite, constraints or normalization techniques 

are applied to the gradient vector ∇C. This is achieved by scaling the concentration values to between 0 and 1 

and ensuring that the gradient remains positive or zero. This normalization process ensures that the swarm 

robots follow the direction of increasing gas concentration toward the leak point, avoiding any non-physical 

or contradictory movements. The swarm updates its position with the agent's position closest to the gas 

source. This is illustrated in Figure 1. However, the movement of the swarm towards the gas leak point is 

modelled by attractive and repulsive forces given in (6) and (7), respectively. 

 

 

 
 

Figure 1. Flowchart for the simulation of swarm robot's gas leak detection with regular and opportunistic 

agents 
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𝐹𝑎𝑡𝑡 = 𝐾𝑎 ×
𝛻

𝑟
 (6)  

 

𝐹𝑅𝑒𝑝 = ∑ 𝑘𝑟 ×
𝑝𝑟− 𝑝𝑂

𝐷2
𝑁
𝑖=1  (7) 

 

Here, 𝐹𝑎𝑡𝑡 and 𝐹𝑅𝑒𝑝 are the attractive and repulsive forces respectively; 𝐾𝑎 and 𝑘𝑟 are constant scalar 

controlling the strength of attraction and repulsion.; 𝛻 is the normalized vector pointing from the robot's 

position to the gas leakage point and 𝑟 is the Euclidean distance between the robot's position and the gas 

leakage point; N is the total number of robots or obstacles; 𝑝 𝑟 is the position vector of the robot; 𝑝𝑂 is the 

position vector of the obstacle. By summing the attractive and repulsive forces, the net force acting on each 

robot is determined. This force is then used to update the robot's velocities and guide its movement towards 

the gas leakage point. 

 

2.1.  Gradient climbing with opportunistic agents 

Each regular swarm robot is modelled as a point mass with position, pi, and velocity, vi,  

where “i’ represents the robot index. The dynamics of the regular swarm robots can be described by (8)  

and (9) [25]. 

 

𝑝𝑖(𝑡 + ∆t) = 𝑝𝑖(𝑡) + 𝑣1(𝑡) × ∆𝑡 (8) 

 

𝑣𝑖(𝑡 + ∆𝑡) = 𝑣𝑖(𝑡) +
𝐹𝑖(𝑡)

𝑚
× ∆𝑡  (9) 

 

Here, ∆𝑡 represents the time step, 𝐹𝑖  is the net force acting on the 𝑖𝑡ℎ regular swarm robot, and 𝑚 is the mass 

of each robot. Similar to the regular swarm robots, each opportunistic agent is also modelled as a point  

mass with position 𝑝𝑜𝑝 and velocity 𝑣𝑜𝑝. The dynamics of the opportunistic agents can be represented by  

(10) and (11). 

 

𝑝𝑜𝑝(𝑡 + ∆t) = 𝑝𝑜𝑝(𝑡) + 𝑣𝑜𝑝(𝑡) × ∆𝑡 (10) 

 

𝑣𝑜𝑝(𝑡 + ∆𝑡) = 𝑣𝑜𝑝(𝑡) +
𝐹𝑜𝑝(𝑡)

𝑚𝑜𝑝
× ∆𝑡 (11) 

 

Here, 𝐹𝑜𝑝 is the total force acting on the opportunistic agent, and 𝑚𝑜𝑝 represents its mass. 

Let 𝐹𝑎𝑡𝑡,𝑜𝑝 denote the attractive force on opportunistic agents towards the gas leakage point and 

𝐹𝑟𝑒𝑝,𝑜𝑝 represent the repulsive force from both regular and opportunistic agents within the repulsive radius. 

The attractive force for the opportunistic agents is given by (12), 

 

𝐹𝑎𝑡𝑡,𝑜𝑝 = 𝐾𝑎𝑡𝑡,𝑜𝑝 × (𝑝 − 𝑝𝑜𝑝) (12) 

 

where 𝐾𝑎𝑡𝑡,𝑜𝑝 is a proportionality constant, 𝑝 is the gas leakage point, and 𝑝𝑜𝑝 is position of opportunistic 

agent. 

The repulsive forces are computed based on the inverse squire law, where 𝐾𝑟𝑒𝑝,𝑜𝑝 is a proportional 

constant and 𝑟𝑟𝑒𝑝 is the repulsion radius as given in (13), 

 

𝐹𝑟𝑒𝑝,𝑜𝑝 =  −𝑘𝑟𝑒𝑝,𝑜𝑝 ∑ (
𝑃𝑜𝑝−𝑃𝑎𝑔𝑖

‖𝑃𝑜𝑝−𝑃𝑎𝑔𝑖‖
2)𝑛

𝑖=1 × 𝑓𝑎𝑟𝑒𝑝(‖𝑃𝑜𝑝 − 𝑃𝑎𝑔𝑖‖) , 𝑟𝑟𝑒𝑝  

𝑓𝑎𝑟𝑒𝑝(𝑑, 𝑟𝑟𝑒𝑝  ) = {
1, 𝑖𝑓 𝑑 < 𝑟𝑟𝑒𝑝

0, 𝑥 ≥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (13) 

 

where 𝑃𝑎𝑔 is the position of regular agent and 𝑓𝑎𝑟𝑒𝑝 is the repulsive factor. 

The net force acting on each regular swarm robot (𝐹𝑖) is computed by considering attractive  

and repulsive forces; the attractive force (𝐹𝑎𝑡𝑡,𝑖) directs the regular swarm robots towards the gas leak, while 

the repulsive force (𝐹𝑟𝑒𝑝,𝑖) helps them avoid collisions with obstacles and other robots. This net force is given 

by (14). 

 

𝐹𝑖 = 𝐹𝑎𝑡𝑡,𝑖 + 𝐹𝑟𝑒𝑝,𝑖  (14) 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

 A hybrid gradient climbing algorithm for a swarm robot-based gas … (Adeola Erastus Adegunsoye) 

259 

2.2.  The proposed hybrid system 

This proposal leverages the strengths of both the swarm and firefly agents to improve gas leak 

localization and concentration estimation. The attractiveness, 𝛽(𝑟), of fireflies is proportional to their light 

intensities 𝐼(𝑟) seen by adjacent fireflies [26], and is given in (15). 

 

𝐼(𝑟)  ∝  𝛽(𝑟) (15) 

 

This is given by (16) to (19), 

 

𝐼(𝑟) = 𝑘 𝛽(𝑟) (16) 

 

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟2
 (17) 

 

𝐼(𝑟) =  𝑖0𝑒−𝛾𝑟2
 (18) 

 

𝑖0 = 𝑘𝛽0 (19) 

 

where 𝑖0 is the original light intensity, 𝑘 is the constant of proportionality, 𝛽0 is the attractiveness at 𝑟 = 0, 𝛾 

is the coefficient of light absorption, and 𝑟 represents the Euclidean distance. The distance between any two 

fireflies 𝑠𝑖 and 𝑠𝑗 is expressed as the Euclidean distance between them expressed as (20). 

 

𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 (20) 

 

The movement of a firefly 𝑖 towards another more attractive (brighter) firefly 𝑗 is determined by (17), 

 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟2
𝑖𝑗(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 −

1

2
) (21) 

 

where the second term is due to the attraction, while the third term is randomization with α being the 

randomization parameter, and 𝑟 𝑎𝑛𝑑 i is a vector of random numbers drawn from a Gaussian distribution. 

These firefly agents act as opportunistic members within the swarm to further enhance the system's 

performance.  

 

2.3.  Computation of convergence  

Lastly, in order to evaluate the performance of the developed model, the convergent rate is 

considered. The convergence, 𝑐𝑡, for ‘n’ swarms at every iteration t, is obtained by summing the distance of 

all agents to the gas leak point. The convergent point is thus determined by numerically differentiating the 

curve where time corresponding to the zero value indicates the convergence time. 

 

2.3.1. Swarm path length 

The cumulative distance traveled by individual robots or agents within the swarm while executing 

the leakage detection can be estimated. It is a measure of the total distance covered by the agents until 

convergence has been met. The path length is a fundamental metric that provides insights into the overall 

swarm convergence performance and the effectiveness of swarm communication. The distance traveled by 

each agent is calculated by multiplying the number of steps taken to converge with the step length [27]. The 

algorithm is implemented and simulated in MATLAB with an Intel(R) Core(TM) i5-10210U CPU @ 

1.60GHz 2.11 GHz processor and 8GB RAM computer. This is implemented in a flowchart in Figure 1. 

 

 

3. RESULTS AND DISCUSSION 

The simulations consist of three routine iterations: i) simulations of 25 regular swarms (Case 1); 

ii) simulations of 15 regular swarms and 10 swarms with opportunistic behavior (Case 2); and iii) simulations 

of 15 regular swarms and 10 fireflies (Case 3) to determine convergence time and the calculated path lengths 

of the three scenarios. Also, the combination of fireflies and regular agents was varied to ascertain the best 

combinational ratio between the swarms. Figure 2 shows the normalized plots of the simulations of 3 

scenarios. It can be observed that the combination of regular agents and fireflies gives a better convergence 

than the other two. This suggests that the addition of opportunistic agents, having more effective search 

strategies, aids in reaching the desired state faster. 
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Figure 3 shows a comparison of different combinations of swarms- regular agents and fireflies. 

From the result, the combination of 15 regular agents and 10 fireflies gives the best result among the selected 

configurations for converging toward the gas leakage point. This result suggests that for a given swarm size 

consisting of a combination of regular and opportunistic agents, the optimum combining ratio is required to 

be determined in order to achieve an improved convergence. Figure 4 compares the path lengths of the three 

different swarms. The swarm of regular agents alone has a total path length of 935.98 m; the combination of 

regular and opportunistic agents is 892.74 m, while the path length for a combination of regular agents and 

fireflies is 846.83 m. Although the firefly agents (16-25) have longer individual path lengths, their 

contribution to determining the optimum route to the leakage point results in a reduction in the overall swarm 

path length. Longer swarm path lengths typically indicate that agents are taking longer routes to reach their 

destinations and this inefficiency could be due to suboptimal navigation strategies. 

 

 

 
 

Figure 2. Comparison of three convergence plots: regular agents, regular and opportunistic agents 

and regular agents and fireflies 

 

 

 
 

Figure 3. Convergence plots for different combination of regular agents and fireflies 
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In summary, the addition of opportunistic agents can significantly improve the performance of 

swarms utilizing the gradient climbing algorithm in localization tasks. Firefly agents, known for their 

attraction-repulsion behavior inspired by firefly behavior in nature, seem to be particularly effective in 

improving the optimization process. Further experiments may provide additional insights into the optimal 

composition and behavior of the agent swarm for specific optimization tasks. 

 

 

 
 

Figure 4. Path length to convergent of all the swarm 

 

 

4. CONCLUSION 

This study has proposed a hybrid algorithm consisting of gradient climbing and the firefly 

algorithms for swarm-based gas leak localization tasks. This has been implemented in a swarm of 25 agents 

by selecting the optimum combining ratio of regular agents (gradient climbing-based), opportunistic agents, 

and firefly agents. The results indicate that the swarm performance depends on the composition of the swarm 

and is significantly improved in terms of the time to convergence and the total path lengths when the 

opportunistic agents are included. The convergence time and the path lengths are 25 s and 936 m, 5.2 s and 

892 m, and 8.2 s and 846 m for regular agents alone (Case 1), regular plus opportunistic agents (Case 2), and 

regular plus firefly agents (Case 3), respectively. Despite a slightly longer convergence time of Case 3 when 

compared to Case 2, the firefly-enhanced swarm exhibits greater resilience, attaining convergence with 

reduced path lengths. These results highlight the importance of the hybrid algorithm in swarm-based gas leak 

localization. This approach substantially improved the convergence time compared to using regular agents 

alone, demonstrating the benefits of a mixed-composition strategy for this task. 
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