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 This study addresses timing issues inherent in traditional proportional-

integral-derivative (PID) controllers for drone angle control and introduces 

an innovative solution, the adaptive PID flight controller, aimed at optimizing 

PID gains for improved performance in terms of speed, accuracy, and 

stability. To enhance the controller's robustness against noise and accurately 

estimate the system's state, a Kalman filter is incorporated. This filtering 

mechanism is designed to reject noise and provide precise state estimation, 

thereby contributing to the overall effectiveness of the adaptive PID flight 

controller in managing altitude dynamics for unmanned aerial vehicles 

(UAVs). The comparative methodology evaluates three configurations: a 

single PID controller for all three angles, two PID controllers dedicated to 

pitch/roll and yaw angles separately, and three PID sub-controllers for each 

angle (pitch, roll, and yaw). The study seeks to identify the most effective 

PID configuration in terms of stability, responsiveness, and accuracy while 

highlighting the added benefits of noise rejection and state estimation 

through the Kalman filter. This integrated approach showcases innovation 

and effectiveness, introducing a comprehensive solution not explored in 

previous research. 
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1. INTRODUCTION 

Quadcopters, essential for high-risk tasks, utilize proportional-integral-derivative (PID) controllers 

for precise angle control [1]–[4]. This study proposes integrating a Kalman filter [5] before PID controllers to 

address noise and state estimation challenges drawing inspiration from prior research [6]–[8], it examines a 

6-DOF quadcopter model, dynamic response, and PID control algorithm. Three PID controllers are dedicated 

to specific angles, offering a comparative analysis against single or dual controllers. Evaluation includes 

stability, accuracy, and disturbance avoidance, utilizing simulations and comparative techniques like genetic 

algorithms (GA) [9], crow search algorithm (CSA) [10], particle swarm optimization (PSO) [11], Ziegler-

Nichols (ZN) [12], harmony search algorithm [13], and water cycle algorithm [14]. The integration of 

Kalman filter improves the control system performance and allows a more effective utilization in applications 

requiring precise angle control. 

The paper proceeds as follows: Section 2 delves into the mathematical model based on Newton-

Euler. Section 3 gives an overview of the Kalman filter characters and applications. Section 4 investigates the 

three applied control methods that respectively integrate the Kalman filter. Section 5 draws on the simulation 

https://creativecommons.org/licenses/by-sa/4.0/
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and optimization of the PID gains in the drone. The main findings and discussion are presented in Section 6. 

The study mainly finds out that precise tuning of the PID controller parameters is highly important to achieve 

optimal performance in terms of stability, responsiveness, and control accuracy. Indeed, the inclusion of three 

adaptive PID controllers, complemented by a Kalman filter, results in superior speed, accuracy, and stability 

compared to previous approaches, offering valuable insights for optimizing drones across various applications 

that demand precise angle control. 

 

 

2. THE MATHEMATICAL MODEL BASED ON NEWTON-EULER THEORY 

This section provides a general overview of the quadcopter used in this paper, the mathematical 

model of the UAV, and the control structure that will accordingly be presented in Figure 1 [15]. The motors 

are numbered clockwise, with motor 1 at the front of the device relative to the reference frame 𝐹𝑏 [16]. 

Unlike motors 2 and 4, motors 1 and 3 rotate clockwise [17]. 
 

 

 
 

Figure 1. Direction of the rotation of rotors [17] 
 

 

The equations of forces applied to the quadcopter and the moments acting on the quadrotor using the 

Newton-Euler formulation and the dynamic system model are shown in (1) [18], 
 

{
 
 

 
 
𝜁̇   = 𝑣                                              

𝑚𝜁̈ = 𝐹𝑓 + 𝐹𝑡 + 𝐹𝑔                           

𝑅 = 𝑅𝑆(𝛺)̇                                    

𝐽𝛺 = −𝛺𝛬𝐽𝛺 +𝑀𝑓 −𝑀𝑎
̇ − 𝑀𝑔ℎ

    (1) 

 

where 

𝜁 :  The vector representing the position of the quadrotor 

m :  The total mass of the quadrotor 

Ω :  The angular velocity expressed in the fixed reference frame 

R :  The rotation matrix 

Λ :  The vector product 

 

2.1.  Equations of the translational motion for drone control 

After presenting the force equations in the previous sections, we can now complete the Quad-rotor 

model by applying Newton's second law of linear motion, as formulated in (2). 
 

𝑚𝜁̈ = 𝐹𝑡 + 𝐹𝑓 + 𝐹𝑔   (2) 

 

As we replace each force with its corresponding formula, we obtain (3). 
 

m[
𝑥̈
𝑦̈
𝑧̈

] = [

cos𝜙cos𝜓sin𝜃 + sin𝜙sin𝜓
cos𝜙sin𝜓sin𝜃 − sin𝜙cos𝜓

cos𝜙cos𝜃
] ∑ 𝐹𝑖 −

4
1 [

𝐾𝑓𝑡𝑥𝑥̇

𝐾𝑓𝑡𝑦𝑦̇

𝐾𝑓𝑡𝑧𝑧̇
] + [

0
0

−mg
]  (3) 
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We obtain the differential equations as (4) that define the translational coefficients. 

 

{
 
 

 
 𝑥̈ =

1

𝑚
 (cos𝜙cos𝜓sin𝜃 + sin𝜙sin𝜓)(∑ 𝐹𝑖) −

𝐾𝑓𝑡𝑥

𝑚

4
1 𝑥̇

𝑦̈ =
1

𝑚
 (cos𝜙sin𝜓cos𝜃 + sin𝜙cos𝜓)(∑ 𝐹𝑖) −

𝐾𝑓𝑡𝑦

𝑚

4
1 𝑦̇

𝑧̈ =
1

𝑚
 (cos𝜙cos𝜃)(∑ 𝐹𝑖) −

𝐾𝑓𝑡𝑧

𝑚

4
1 𝑧̇ − g                         

   (4) 

 

2.2.  Equations of the rotational motion for drone control 

Applying the same principle of Newton to the case of rotation, we get the (5) 

 

𝐽𝛺̇ = −𝛺𝛬𝐽𝛺 + 𝑀𝑓 − 𝑀𝑎 −𝑀𝑔ℎ   (5) 

 

When we replace each moment with its corresponding expression (6). 

 

[
𝐼𝑥
0
0

0
𝐼𝑦
0

0
0
𝐼𝑧

] [

𝜙̈

𝜃̈
𝜓̈

] = − [

𝜙̇

𝜃̇
𝜓̇

] 𝛬 ([
𝐼𝑥
0
0

0
𝐼𝑦
0

0
0
𝐼𝑧

] [

𝜙̇

𝜃̇
𝜓̇

]) − [
𝐽𝑟𝛺̅𝑟𝜃̇

−𝐽𝑟𝛺̅𝑟𝜃̇
0

] − [

𝐾𝑓𝑎𝑥𝜙̇
2

𝐾𝑓𝑎𝑦𝜃̇
2

𝐾𝑓𝑎𝑧𝜓̇
2

] + [

𝑙𝑏(𝑤4
2 − 𝑤2

2)

𝑙𝑏(𝑤3
2 − 𝑤1

2)

𝑙𝑑(𝑤1
2 − 𝑤2

2 + 𝑤3
2 − 𝑤4

2)

] (6) 

 

We then obtain the differential equations defining the rotational motion as in (7). 

 

{

𝐼𝑥𝜙̈ = −𝜃̇𝜓̇(𝐼𝑧 − 𝐼𝑦) − 𝐽𝑟𝛺̅𝑟𝜃̇ − 𝐾𝑓𝑎𝑥𝜙̇
2 + 𝑙𝑏(𝑤4

2 − 𝑤2
2) 

𝐼𝑦𝜃̈ = 𝜙̇𝜓̇(𝐼𝑧 − 𝐼𝑥) − 𝐽𝑟𝛺̅𝑟𝜃̇ − 𝐾𝑓𝑎𝑥𝜃̇
2 + 𝑙𝑏(𝑤3

2 − 𝑤1
2)      

𝐼𝑧𝜓̈ = 𝜙̇𝜃̇(𝐼𝑦 − 𝐼𝑥) − 𝐾𝑓𝑎𝑧𝜓̇
2 + 𝑙𝑑(𝑤1

2 − 𝑤2
2 + 𝑤3

2 − 𝑤4
2)

   (7) 

 

with 

 

{
 
 
 
 
 

 
 
 
 
 𝜙̈ =  −𝜃̇𝜓̇

𝐼𝑧−𝐼𝑦

𝐼𝑥
− 

𝐽𝑟

𝐼𝑥
𝛺̅𝑟𝜃̇ −

𝐾𝑓𝑎𝑥

𝐼𝑥
𝜙̇2 +

𝑙𝑏

𝐼𝑥
(𝑤4

2 − 𝑤2
2) 

𝜃̈ =  𝜙̇𝜓̇
𝐼𝑧−𝐼𝑥

𝐼𝑦
− 

𝐽𝑟

𝐼𝑦
𝛺̅𝑟𝜃̇ −

𝐾𝑓𝑎𝑦
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𝜃̇2 +

𝑙𝑏

𝐼𝑦
(𝑤3

2 −𝑤1
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𝜓̈ = 𝜙̇𝜃̇
𝐼𝑦−𝐼𝑥

𝐼𝑧
−

𝐾𝑓𝑎𝑧

𝐼𝑧
𝜓̇2 +

𝑙𝑑

𝐼𝑧
(𝑤1

2 − 𝑤2
2 + 𝑤3

2 −𝑤4
2)   

𝑥̈ =
1

m
 (cos𝜙cos𝜓sin𝜃 + sin𝜙sin𝜓)(∑ 𝐹𝑖) −

𝐾𝑓𝑡𝑥

m

4
1 𝑥̇

𝑦̈ =
1

m
 (cos𝜙sin𝜓cos𝜃 + sin𝜙cos𝜓)(∑ 𝐹𝑖) −

𝐾𝑓𝑡𝑦

m

4
1 𝑦̇

𝑧̈ =
1

m
 (cos𝜙cos𝜃)(∑ 𝐹𝑖) −

𝐾𝑓𝑡𝑧

m

4
1 𝑧̇ − g                          

   (8) 

 

 

3. KALMAN FILTER 

The Kalman filter, named after Rudolf E. Kálmán, is a powerful tool in estimation and signal 

processing and is widely used in navigation, robotics, and finance [5]. It optimizes predictions by estimating 

a system's hidden state amidst noise and uncertainties, enhancing accuracy through current measurements 

and error correction. Particularly effective in linear equations and real-time estimation, it filters out noisy 

information and improves state estimates. In challenging scenarios like adjusting PID controller parameters, 

the Kalman filter removes noise and extracts true signals for feedback. Its versatility extends to offering 

unbiased estimation for multi-input, non-stationary, and time-varying systems. Its recursive algorithm is 

well-suited for computer implementation, utilizing state equations and initial values for accurate estimation 

of real signal values. 

 

{
𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑀𝑤(𝑡),    𝑇ℎ𝑒𝑠𝑡𝑎𝑡𝑒𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛             

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑣(𝑡),        𝑇ℎ𝑒𝑚𝑒𝑠𝑢𝑟𝑚𝑒𝑛𝑡𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
         (9) 

 

In the formulation of the Kalman filter, the state equation represents the system's state vector, 

denoted as 𝑥(𝑡), where A is the system transition matrix, 𝑢(𝑡) is the input vector, 𝐵 is the control distribution 

matrix, and w(t) is the random Gaussian noise vector (representing system noise) characterized by a zero 
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mean and a known covariance structure, with 𝑀 being the transition matrix for the system noise. In the 

measurement equation, 𝑦(𝑡) signifies the measurement vector, 𝐶 is the measurement matrix, and 

𝑣(𝑡) represents the measurement noise vector, which also follows a Gaussian distribution with a zero mean 

and known covariance structure. It is essential to note that there is no correlation between the system noise 

𝑤(𝑡) and the measurement noise 𝑣(𝑡). The core objective of the Kalman filter is to estimate the true signal 

from a disturbed signal exhibiting a Gaussian distribution, aiming to minimize the discrepancy between the 

two signals. 

 

 

4. OPTIMAL PID GAINS IDENTIFICATION 

This section discusses the application of PID controller gains to UAVs, starting with single PID 

controller optimization, followed by two and three PID controllers. Existing controllers prioritize trajectory 

tracking performance and stability, but this can lead to higher energy consumption and reduced battery 

lifespan. Future controllers must consider these hidden costs along with factors like safety, reliability, and 

maintenance. The objective here extends beyond conventional PID control to minimize control error, 

reducing battery consumption and increasing autonomy. Strategies to minimize trajectory error are presented, 

involving manual PID gain refinement for each drone angle through an iterative process. Initial gain 

adjustments are made by a factor of 1 and further refined by 0.1 based on performance analysis from flight 

tests. This iterative and manual refinement process optimizes the control performance of the drone's altitude 

dynamics by precisely adjusting gains for each angle. This method involves iteratively refining PID gains for 

each angle of the drone, gradually enhancing stability and accuracy, and improving response to altitude 

command variations [19]. 

In this section, we discuss the PID controller, focusing on simplified models. The main objective is 

to design an adaptive PID controller for the flight of a Quad-rotor drone. The controller utilizes a control 

input, denoted as 𝑢, to regulate the position and angle of the drone according to a reference input [20]. The 

PID control law consists of three basic feedback control actions: proportional, integral, and derivative. The 

related gains are denoted as 𝐾𝑝, 𝐾𝑝, and 𝐾𝑑. The mathematical representation of the PID controller is in (10). 

 

𝑢(𝑡) = Kp𝑒(𝑡) + Ki ∫ 𝑒(𝑡)𝑑𝑡 + Kd
d

𝑑𝑡
𝑒(𝑡)   (10) 

 

with 𝐾𝑝  the proportional gain, 𝐾𝑖  the integral gain, and 𝐾𝑑 the derivative gain, 𝑒(𝑡) can be formulated as a 

function of the error: 

 

𝑒(𝑡) = 𝑠𝑝 − 𝑝𝑣(𝑡)   (11) 

 

where 𝑠𝑝 is the setpoint or desired position and 𝑝𝑣(𝑡)  is the process variable at the instantaneous moment 

according to 𝑠𝑝 [21]–[23]. 

 

4.1.  A single PID controller optimization 

Figure 2 depicts the PID controller block as a key component in the drone control loop, receiving a 

setpoint value and generating an output command based on error. To enhance robustness and accuracy, a 

Kalman filter is introduced before the PID controller, filtering noise from sensor measurements and improving 

state estimation. This refined state estimation allows for a more precise error assessment by the PID controller, 

enabling more effective utilization of its terms. With this augmented control loop, the PID controller can 

anticipate and correct future errors, facilitating precise setpoint attainment. The addition of the Kalman filter 

improves the control system's resilience to disturbances, ensuring reliable and accurate drone operation [24]. 

 

 

 
 

Figure 2. Control system for a single PID 
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The integration of a Kalman filter within the single PID controller approach for regulating all three 

angles of the drone serves as a crucial preprocessing step. By filtering disturbances to gyroscopes and 

accelerometers, it enhances estimation of the drone's state variables, addressing challenges associated with 

sensor measurements. This effectively mitigates noise and uncertainties, improving the control system's 

robustness and precision. With reduced noise influence on sensor measurements, the Kalman filter enables 

more accurate error computation by the PID controller. This refined error calculation leads to more reliable 

and stable output commands for coordinated orientation control. Thus, integrating the Kalman filter aligns 

with the goal of simplifying the control system while enhancing accuracy and responsiveness. 

 

4.2.  A two PID controllers’ architecture 

Figure 3 depicts the drone's control system with two PID blocks, PID 1 for roll and pitch, and PID 2 

for yaw. PID controllers compare setpoint values to current measurements and generate output commands for 

motor adjustment, ensuring stable flight and precise maneuverability across all axes. The independent PID 

controller for yaw provides autonomous control over directional changes. To optimize controller performance, 

PID gains are adjusted based on drone dynamics and external conditions. Besides, a Kalman filter preprocesses 

data to enhance resilience against noise and uncertainties, improving overall system performance. 

 

 

 
 

Figure 3. Control system with two PID controllers 

 

 

4.3.  A three PID controllers’ architecture 

Figure 4 illustrates a control system with three dedicated PID controllers, each regulating a specific 

angle of the drone. PID 1 controls roll, PID 2 controls pitch, and PID 3 controls yaw. Each controller 

compares desired angles to current measurements, calculates errors, and generates output commands to adjust 

motors accordingly. To enhance system robustness, a Kalman filter is integrated before the PID controllers, 

refining sensor measurements from gyroscopes and accelerometers and reducing noise and uncertainties. 

This refined state estimation improves error calculation accuracy by PID controllers, resulting in more 

precise output commands and adherence to setpoints. Thus, the Kalman filter integration enhances the control 

system's responsiveness and overall performance. 

 

 

 
 

Figure 3. Control system with three PID controllers 

 

 

5. SIMULATION MODEL 

This section presents simulation and experimental results evaluating the performance of the 

proposed PID controller design. The subsequent part includes a simulation of our control approach applied to 

the quadcopter dynamic model. The chosen model aims to stabilize the drone by reaching an equilibrium 

state with constant or zero translation coordinates and orientation angles. To achieve this purpose, PID 
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control is employed as the primary control technique, determining control parameters for each coordinate. 

Considering the digital control of the quadcopter, we opted for designing a discrete controller using 

MATLAB, based on the system's non-linearity. The previous and current sections offer insights into the 

discretization of the system performed during PID controller design based on simplified assumptions. 

 

5.1.  Model presentation and parameters 

Figure 4 illustrates the complete architecture of the quadcopter simulation model in MATLAB. The 

model considers the quadcopter as a rigid body with a constant mass and symmetric geometry aligned with 

the principal axis of inertia, in a plus (+) configuration. The motors are depicted in two different colors to 

indicate the required synchronization that ensures the stability of the drone on the yaw axis. 
 

 

 
 

Figure 4. Quadcopter model 
 

 

Table 1 lists the different parameters applied in the simulations. The physical parameters of the 

quadcopter are used for the simulation tests as initial conditions in the quadcopter's dynamic model. Besides, 

an adaptive control is developed to regulate the quadcopter's rotational dynamics.  
 

 

Table 1. Parameters used in the quadcopter's dynamic model 
Symbol Description Value Unit 

G Acceleration due to gravity 9.81 𝑚. 𝑠−2 

mt Weight of the motor and propellers 0.084 𝑘𝑔 

mq Mass of the quadrotor 0.742 𝑘𝑔 

At The thickness of the arms 0.014 𝑚 

Rp The radius of the propeller 0.127 𝑚 

Lq Length of the quadcopter arms 0.295 𝑚 

Jx= Jy Moment of inertia around the x and y axis 0.0163 𝑘𝑔.𝑚2 

Jz Moment of inertia around the z-axis 0.0326 𝑘𝑔.𝑚2 

F1,F2,F3,F4 Motors of quadcopter - - 

 

 

Several flight simulations were conducted to evaluate the performance of our control approach. In 

the first test, a single PID controller was generated for pitch, roll, and yaw angles, with carefully selected 

gains. The evolution of (X⃗⃗ , Y⃗⃗ , Z⃗ ) according to desired trajectories was examined to assess performance. In the 

second test, the drone was simulated with two PID controllers: one for pitch and roll, and another for yaw. 

Complex trajectories, including those with non-zero derivatives, were tracked to validate performance. 

Finally, a third PID controller dedicated to the theta angle was added to test robustness. Various performance 

metrics such as tracking errors, settling time, and stability were analyzed to evaluate the effectiveness and 

reliability of our control approach. Table 2 lists the initial conditions used for the simulations, including 

initial linear and angular positions. Table 3 shows the lists of parameters used in the simulation tests. 
 

 

Table 2. The initial conditions for simulations 
Angles Scenario 1 Scenario 2 Scenario 3 

X 0 𝜋

2
 0 

Y 0 0 0 

Z 0 0 𝜋

2
 

 

Table 3. The parameters used in the simulation tests 
Parameter Value 

Simulation time 10 seconds 

Trajectory type  Third-order polynomial 

Initial conditions Positions, velocities, accelerations  

Added noise With white Gaussian noise 
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5.2.  Scenario 1 analysis 

In this flight simulation, tests were conducted to demonstrate the theoretical performance of the 

control approach. In the first test, PID controller parameters were selected and simulations were performed to 

observe the behavior of the control approach with a Kalman filter in the presence of noise from gyroscopes 

and accelerometers. This aimed to determine the role of the control function in maintaining a bounded total 

thrust force. Optimal PID controller gains are presented in Table 4.  
 

 

Table 4. Optimal parameters for scenario 1 
Angles 1 PID controller 2 PID controllers 3 PID controllers 

All 3 angles Pitch and Roll Yaw Pitch Roll Yaw 

𝑲𝒑 10.5 111.5 9 10 10 14 

𝑲𝒅 6 19.1 6 1 14.5 8 

𝑲𝒊 0.4 0.2 0.1 0.1 0.1 0.3 

 
 

Figures 6 to 8 illustrate the tracking of the desired trajectory by the quadrotor during the flight 

simulation. Despite slight initial errors on all three axes due to noise, the quadrotor accurately follows the 

trajectory. Conclusions regarding pitch, roll, and yaw angles remain consistent: perturbation is minimal with 

three controllers, increases with two controllers, and becomes more significant with one PID controller. 

These observations underscore the importance of multiple PID controllers in improving stability, reducing 

disturbances, and minimizing angle errors in different directions. These figures highlight the benefits of 

employing a distributed control system capable of effectively managing multiple angles while mitigating 

noise effects through Kalman filtering, thereby reducing errors for each angle. 
 
 

 
 

Figure 5. 1 PID controller with Kalman filter integration for Euler angle stabilization for scenario 1 
 
 

 
 

Figure 6. 2 PID controllers with Kalman filter integration for Euler angle stabilization for scenario 1 
 

 

 
 

Figure 7. 3 PID controllers with Kalman filter integration for Euler angle stabilization for scenario1 
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5.3.  Scenario 2 analysis 

Table 5 displays the optimal PID controller gains for the second scenario. Values are listed for roll, 

pitch, and yaw angles in each trial with PID 1, PID 2, and PID 3, reflecting specific results for each case. As 

we can observe in Figures 9 to 11, when we applied an initial condition on the (X⃗⃗ , Y⃗⃗ ,  Z⃗⃗ ) axes (
𝜋

2
, 0, 0), we 

found similar results to those mentioned earlier. Equally for the pitch, roll, and yaw angles, the drone 

stabilizes faster when using three PID controllers, while it takes more time with two controllers, and even 

longer with just one. This observation confirms the advantage of utilizing multiple PID controllers to achieve 

faster stabilization and improved pitch angle performance. Essentially, employing more controllers leads to 

better, steadier, and quicker stabilization. Moreover, in the presence of noise from the gyroscopes and 

accelerometers, integrating a Kalman filter can effectively mitigate errors associated with individual angles. 

 

 

Table 5. Optimal parameters for scenario 2 
angles 1 PID controller 2 PID controllers 3 PID controllers 

All 3 angles Pitch and Roll Yaw Pitch Roll Yaw 

𝑲𝒑 9 89 9 10 110 14 

𝑲𝒅 8 14.5 6 1 15 7.1 

𝑲𝒊 0.4 0.2 0.1 0.1 0.1 0.3 

 

 

 
 

Figure 9. 1 PID controllers with Kalman filter integration for Euler angle stabilization for scenario2 
 

 

 
 

Figure 10. 2 PID controllers with Kalman filter integration for Euler angle stabilization for scenario2 
 

 

 
 

Figure 11. 3 PID controllers with Kalman filter integration for Euler angle stabilization for scenario2 

 

 

5.3.  Scenario 3 analysis 

Table 6 outlines the optimal PID controller gains for the second scenario, detailing values for roll, 

pitch, and yaw angles across trials using PID 1, PID 2, and PID 3. These entries provide a specific 

breakdown of results for each case examined. 
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Table 6. Optimal parameters for scenario 3 
Angles 1 PID controller 2 PID controllers 3 PID controllers 

All 3 angles Pitch and Roll Yaw Pitch Roll Yaw 

𝑲𝒑 13 89 10 10 110 14 

𝑲𝒅 10 14.5 7 1 15 9.1 

𝑲𝒊 0.4 0.2 0.1 0.1 0.1 0.1 

 
 

Figures 12 to 14 depict the flying robot's tracking of the desired trajectory in three-dimensional 

space during flight. The observations reveal the varying performances of PID controllers for desired angles. 

A single controller somewhat reduces noise disturbances for pitch, roll, or yaw angles. The reduction in 

errors becomes more significant with two controllers, and disturbances are nearly eliminated with three 

controllers. Thus, employing multiple PID controllers effectively enhances stability and greatly diminishes 

disturbance impacts on these angles. Additionally, integrating a Kalman filter can further reduce errors 

associated with gyroscopes and accelerometers for each angle in the presence of noise. 
 

 

 
 

Figure 8. 1 PID controllers with Kalman filter integration for Euler angle stabilization for scenario3 
 

 

 
 

Figure 9. 2 PID controllers with Kalman filter integration for Euler angle stabilization for scenario3 
 

 

 
 

Figure 10. 3 PID controllers with Kalman filter integration for Euler angle stabilization for scenario3 

 

 

6. FINDINGS AND DISCUSSION  

This comparative study aimed to optimize PID gains by comparing our approach, utilizing an 

improved PID controller based on the Kalman filter for disturbance minimization, with other methods such as 

GA, CSA, PSO, and ZN tuning methods. Criteria included time stabilization and optimal PID gains. 

Simulations were compared to results proposed by Sheta and Alaa [24]. measuring and comparing 

stabilization times. Our approach achieved stabilization times between 2 and 3 seconds, shorter than others. 

Table 7 represents the performance of these approaches. 
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Table 1. The performance of the approaches in seconds (s) 
Angles 1 PID Controller 2 PID controllers 3 PID controllers ZN PSO CSA GA 

Roll 3 0.5 1.5 50 20 20 20 
Pitch 2 1.5 1.5 40 25 40 - 

Yaw 10 3 2 80 40 80 17 

 

 

Through detailed analysis, we compared techniques used in each approach, noting differences that 

influence the stabilization time. Our manual PID gain tuning resulted in shorter stabilization times, ensuring 

improved responsiveness and agility. Additionally, our approach demonstrated robust stability under various 

conditions, unlike others that showed sensitivity to disturbances, leading to longer stabilization times [25], [26]. 

 

 

7. CONCLUSION 

This study proposes enhancing drone control by employing a three PID controller for each angle, 

along with a Kalman filter as a preprocessing step. This integration improves stability, accuracy, and speed 

by filtering disturbances and refining control tuning. Comparative analysis demonstrates the effectiveness of 

the three PID controller approaches, providing better control adaptation to each angle's characteristics and 

improving trajectory tracking accuracy. Additionally, the Kalman filter significantly reduces noise 

disturbances, enabling more precise error calculation for the PID controller, particularly within the three PID 

controller framework. While proving to be effective, further research is warranted to optimize controller 

performance, potentially through refining the Kalman filter and exploring the active disturbance rejection 

controller for enhanced stability. 
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