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 Research investigations in the realm of micro-robotics often center around 

strategies addressing the multi-robot task allocation (MRTA) problem. Our 

contribution delves into the collaborative dynamics of micro-robots deployed 

in targeted hostile environments. Employing advanced algorithms, these robots 

play a crucial role in enhancing and streamlining operations within sensitive 

areas. We adopt a tailored GREEDY approach, strategically adjusting weight 

parameters in a multi-objective function that serves as a cost metric. The 

objective function, designed for optimization purposes, aggregates the cost 

functions of all agents involved. Our evaluation meticulously examines the 

MRTA efficiency for each micro-robot, considering dependencies on factors 

such as radio connectivity, available energy, and the absolute and relative 

availability of agents. The central focus is on validating the positive trend 

associated with an increasing number of agents constituting the cluster. Our 

methodology introduces a trio of micro-robots, unveiling a flexible strategy 

aimed at detecting individuals at risk in demanding environments. Each micro-

robot within the cluster is equipped with logic that ensures compatibility and 

cooperation, enabling them to effectively execute assigned missions. The 

implementation of MRTA-based collaboration algorithms serves as an 

adaptive strategy, optimizing agents' mobility based on specific criteria related 

to the characteristics of the target site. 
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1. INTRODUCTION 

Robotic technology has the potential to replace human workers in high-risk scenarios, reducing the 

potential for human and financial loss. Recent research has led to progress in developing autonomous 

techniques and devices capable of operating without direct human intervention, including working online and 

collaborating with humans in hazardous environments. A major focus of our research is the study of the 

optimal number of robots per task of a cluster (multi-robot teamwork) under specifications and particular 

potentials. The primary objective is to refine control methods for multi-robot in hostile areas. The importance 

of this research is underlined by its significant professional benefits and potential applications. Micro-robots 

are expected to play a key role in improving task distribution and execution, as well as facilitating the 

transmission of relevant information and collected data [1]–[4]. The challenging transmission process makes 

use of affordable means and logic strategies, such as radio communication, within the cluster. 

https://creativecommons.org/licenses/by-sa/4.0/
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To facilitate simulation, we have chosen to utilize the open-source robotics operating system (ROS) 

solution along with its associated tools and modules [5], [6]. ROS will streamline the process of translating 

both conceptual and physical models into reality. An illustrative instance within this field has been developed 

by [7]. 

Multi-robot task allocation (MRTA) problems are intricate case studies. In operational research 

(OR) and for NP-class problems characterized by numerous constraints and a single objective function, 

special approaches are used, such as differential methods and AI-based algorithms. Our decision-making 

process adheres to specific criteria to adopt a proactive and constructive approach: i) form and structure 

(dimensions, degrees of freedom), ii) data transmission (means, persistence), iii) economy and energy 

autonomy (energy security), iv) equipment carried out as payload (sensors), and v) embedded logic. 

The collected data is vital for the cluster. Each agent undergoes an evolution process through a 

collaborative treatment approach. Our goal is to ensure efficient completion of the task in the shortest time, 

while maintaining the importance of the collected data and utilizing dedicated resources. 

The main objective addressed by Rekleitis et al. [8] is the optimization of the generated map by 

minimizing errors at the estimation level, contingent on the robot's capabilities and the attached payload. 

Task coordination for optimal multi-robot evolution through a task-based multi-robot task allocation (MRTA) 

optimal assignment problem (OAP) is emphasized by Gerkey and Matarić [9]. Additionally, Lee et al. [10] 

focus on developing a metric for estimating fault levels within a swarm of robots, while Zhang et al. [11] 

introduce a model based on data correlation, specifically the correlated random walk model, to efficiently 

approximate task searching time for distributions of multi-robot systems in large arenas. 

Recent literature, including [12] and [13], explores bio-inspired techniques for collaboration and 

sharing state information between pursuing agents and fast evaders. Collaboration necessitates meeting 

specific criteria, such as sharing each agent's state information and utilizing onboard resources to complete 

tasks. The context of a hostile site adds complexity, demanding strategies with mathematical intricacy [14], 

[15], influenced by ecosystem characteristics (multi-robot setups, tasks, region of interest, and resources). In 

the case of a hostile site with intricate morphology, the challenge intensifies, relying on capabilities like 

finding a direct path. The objective is to derive optimal solutions [16] for the routes to be followed, 

minimizing time to reach the rescue target [17]. 

In the context of industrial sites, the focus shifts dramatically, with an emphasis on completing 

surveillance in the most relevant manner for incident localization [18]. Other research concentrates on the 

capabilities that micro-robots must possess to acquire cognitive abilities, enabling them to navigate and 

evolve on the study site using reinforced learning methods [19]. Regarding morphology, concrete examples 

like MIT's Cheetah 3 [20] or ANYBOTICS' ANYmal from ETH Zurich [21] meet the requirements of 

degrees of freedom in challenging sites with heightened aggressiveness. 

 
 

2. METHOD  

Various tools, including proprietary OnShape assembly and open-source Phobos add-on in blender, 

are utilized for preparatory tasks before simulating under ROS. XACRO, simulation description format 

(SDF), or unified robotics description format (URDF) scripts are essential for developing 3D robot models 

with joints for Gazebo/RVIZ simulation. The JETBOT prototype by NVIDIA serves as the modeled micro-

robot with updated URDF (SDF) to fit study needs. Elements at this stage are crucial for setting up a 

compatible simulation scene in line with our approach:  

− The actual space is defined by a specific location (the dimensions of an apartment with spatial 

limitations) in 3D [5], [10], [18]. 

− The proposed cluster of multi-robot is a formation of three similar agents [22]. 

− Possibility of the heterogeneous case [23]–[25]. 

−  Target, an injured human (3D model of a human, target behavior complexity). 

The standard packaging used in this research are as follows. i) Economy and energy autonomy for a 

given payload (implementation of ROS battery plug-in as shown in Figure 1 within the URDF joints with its 

compatible compiled library). ii) Ensure stability in communication links using the ROS radio connectivity 

plug-in with the cluster. iii) Enhance collaborative capabilities for improved performance by implementing 

necessary plug-ins, rules, and algorithms, as illustrated in Algorithm 1. iv) Algorithm enhancements-based 

AI (AI Logic code integrated). v) Minimum agent's size and volume (for swarm extension purposes). 

The scene requirements in this research are: i) The cluster incorporates three micro-robots (agents) 

denoted as 𝜇𝑅𝑖|𝑖𝜖[1,𝑅], each equipped with motorized wheels for locomotion (differential, driver). ii) Every 

agent unit is furnished with transmission capabilities for data transmission and maintaining communication 

links. iii) The autonomy of every agent is supported by an onboard battery, providing sufficient power for its 

activities within the cluster. iv) Every agent possesses an integrated AI algorithmic foundation, empowering 

https://cad.onshape.com/
https://github.com/dfki-ric/phobos
https://jetbot.org/master/
https://github.com/nilseuropa/gazebo_ros_battery
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it to make decisions for both collaborative and individual purposes. v) Every agent unit within the cluster is 

outfitted with essential equipment, including a Camera, LiDAR (light detection and ranging), a motor driver, 

actuators, and sensors as shown in Figure 2. vi) The micro-robot group operates in two modes: Supervised 

mode and collaboration mode. 

 

 

 
 

Figure 1. Nominal current discharge characteristic (0.65A) 

 

 

Algorithm 1. MRTA, Greedy oriented search algorithm 

Begin 

Initializations:  

Let Sk ← ∅ 

Let K0 ← k’                 {∀ k’ ∈ [1;R] , R: number of robots} 
Let Tk ← ∅ 

Let 𝑃𝑖
𝑘 = {

(𝑃𝑖
𝑘)∗ 𝑔𝑒𝑡 𝑎𝑙𝑙 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑎𝑠𝑘𝑠 𝑖𝑓 𝑡ℎ𝑒𝑦 𝑒𝑥𝑖𝑠𝑡

∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for (k ∈ [1; R[) do  
Sk= area(k) 

if (k ≠ K0) then 

Let 𝑆𝐾0 ← (𝑆𝐾0 - 𝑆𝐾0 ∩ Sk) 

end if 

end for 

T ← task(K0)|𝑆𝐾0
 

i ← 1 

while (𝑖 ≤ |𝑇|) do 

𝑡𝑖
𝐾0← Eval(𝑓𝑖

𝐾0|𝑆𝐾0)         {ith objective function} 

if (𝑇𝑖
𝐾0(𝑡𝑖

𝐾0) ⊂  𝑃𝑖
𝐾0) then 

𝑡𝑖
𝐾0 ← 𝑁𝑜𝑛𝑒 

end if 

i ← i+1 

end while 

𝑇𝐾0 ← 𝑇𝑗
𝐾0|

𝑆𝐾0 ,𝐵𝑒𝑠𝑡(𝑡𝑗
𝐾0)
          {for j ∈ [1;m], m is set of specific 

if (𝑇𝐾0 ≠ ∅) then                                                                      
tasks} 

𝑃𝑖
𝐾0 ← 𝑃𝑖

𝐾0 + 𝑇𝐾0  

else  

T ← ∅ 
for (k ∈ [1; R[) do 

if (k ≠ K0)do  

T ← T + task(k)|𝑆𝑘,𝑘 ≠ 𝐾0   

i ← 1 

while (𝑖 ≤ |𝑇|) do 

𝑡𝑖
𝑘← Eval(𝑓𝑖

𝐾0|𝑆𝑘,𝑘 ≠ 𝐾0
) 

if (𝑇𝑖
𝑘(𝑡𝑖

𝑘) ⊂  𝑃𝑖
𝑘) then 

𝑡𝑖
𝑘 ← 𝑁𝑜𝑛𝑒 

end if 

i ← i+1 

end while 

𝑇𝑘 ← 𝑇𝑗
𝑘|𝑆𝑘,𝐵𝑒𝑠𝑡(𝑡𝑗

𝑘),𝑘 ≠ 𝐾0
           {for j ∈ [1;m] and m  

end if                          is set of specific tasks} 

end for 

𝑇𝐾0 ← Best(Tk)|k∈{1,2,…,R} 

𝑃𝑖
𝑘 ← 𝑃𝑖

𝑘 + 𝑇𝐾0|k∈{1,2,…,R} 

end if 

End. 
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Figure 2. AL Mustaksheef3D, wheeled robot developed 

 

 

We aim to effectively locate and aid victims in challenging situations through Collaborative MRTA. 

Our approach involves the implementation of 3D digitization utilizing LiDAR or a depth camera, ensuring 

optimal outcomes for Search and simultaneous localization and mapping (SLAM) purposes. The ROS 

environment serves to manage the context, and, in addition to interoperability, ROS can engage with various 

platforms dedicated to simulating MRTA problems [26]–[30]. The ROS.MSG embedded module facilitates 

message exchange among micro-robots, with inertial measurement unit (IMU) data conversion to ODOM 

(odometry) enabling the validation and voting of agent moves in areas that are still unoccupied as shown in 

Figure 3. 

 

 

 
 

Figure 3. ROS basics and concepts 

 

 

2.1.  Distributed MRTA use case and problem statement 

Achieving coordinated teamwork among robots with real-time task distribution necessitates a 

decentralized framework [31] that covers resilient robot awareness, low-level motion control, and high-level 

task scheduling [32], [33]. Effective location management in multi-robot networks is critical for 

collaboration, where decision-making and communication play pivotal roles in mission distribution, 

presenting substantial challenges in data exchange among robots and the operating station [34]. In 

approaches that are self-organized and decentralized, individual robot nodes independently make decisions 

with limited regard for other agents [35]. Decisions in these approaches are frequently influenced by natural 

or real-world phenomena, as highlighted in [3], including bees swarm, market strategy, swarm intelligence, 

and ant colony. These inspirations give rise to complex collective behavior arising from local interactions 

among numerous agents with straightforward behaviors. In such methodologies, sensors play a pivotal role 

by actively collecting local knowledge for sharing within the cluster, as emphasized by Stolzle et al. [7] and 

Ball et al. [36]. The collaborative use of sensors facilitates the accumulation of necessary knowledge 

pertaining to an overarching goal in these procedures as shown in Figure 4. 

Robots need to be able to understand the tasks they have to perform by collecting data through 

sensors and using specific code to make decisions. Broadband, range, power, and data rates are critical to 

system performance. Point-to-point communication is the most basic form, and the choice of transmission 

medium is a function of the type of information being exchanged. Robot evolution on hostile sites can, in 

some manner, be assumed to be a progression of the vehicle forming a path on a surface contoured by a set of 

N points in a space defined in a plane delimited by a closed polygon, where 𝑃 = 𝑃1, 𝑃2, … , 𝑃𝑁 define a poly-

point or a set of N points as shown in Figure 5. 

 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

Distributed and autonomous multi-robot for task allocation and collaboration … (Tamali Abderrahmane) 

209 

 
 

Figure 4. Cluster architecture 

 

 

 
 

Figure 5. N-gon of a scanned area 

 

 

Normally each point is located on the plan (Г) by its Cartesian coordinates 𝑥𝑖 and 𝑦𝑖 . A one-line 

equation can be written in the form of (1). 

 

𝑦 = 𝑎. 𝑥 + 𝑏 (1) 

 

 and  are two parameters related to the jth line (slope and y-intercept) in the Polyline defined by P 

components. By using each couple of points coordinates, the related  and  parameters are obtained 

according to (using Cramer's rule). 

 

𝑎 =
𝑦1 − 𝑦2

𝑥1 − 𝑥2

 (2) 

 

𝑏 =
𝑥1𝑦2 − 𝑥2𝑦1

𝑥1 − 𝑥2

 (3) 

 

So, (1) can be like follows for a line equivalent (L1) between two points 𝑃1(𝑥1, 𝑦1 ) and 𝑃2(𝑥2, 𝑦2). y is given 

by (4). 
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𝑦 = {

𝑦1 − 𝑦2

𝑥1 − 𝑥2

⋅ 𝑥 +
𝑥1𝑦2 − 𝑥2𝑦1

𝑥1 − 𝑥2

|
𝑦1≤𝑦<𝑦2,∀𝑦1−𝑦2<0
𝑦2≤𝑦<𝑦1,∀𝑦1−𝑦2>0

𝑥1≤𝑥<𝑥2,∀𝑥1−𝑥2<0
𝑥2≤𝑥<𝑥1,∀𝑥1−𝑥2>0

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

Now, we need to construct a Polygon equation using a combination of multiple-line equations. We have  

points, which implies that the number of line equations is 𝑁(𝐿1, 𝐿2, … . , 𝐿𝑁). The n-gon's (polygon) formula 

is given by (5). 

 

𝑌 = 𝑌1 + 𝑌2 +⋅⋅⋅⋅⋅⋅ +𝑌𝑁 = ∑ 𝑌𝑖

𝑁−1

𝑖=1

+ 𝑌𝑁 (5) 

 

Witch is 𝑌1, 𝑌2, … . , 𝑌𝑁 or simply 𝑌𝐼 , 𝑌𝑁 where 𝑖 ∈ ℕ  natural strictly positive number and, the set 𝑌𝐼  with 𝑖 ∈ ℕ 

represent each  line’s equation: 

 

𝑌𝑖 = 𝑦 = {

𝑦𝑖 − 𝑦𝑖+1

𝑥𝑖 − 𝑥𝑖+1

⋅ 𝑥 +
𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖

𝑥𝑖 − 𝑥𝑖+1

|
𝑦𝑖≤𝑦<𝑦𝑖+1,∀𝑦𝑖−𝑦𝑖+1<0
𝑦𝑖+1≤𝑦<𝑦𝑖,∀𝑦𝑖−𝑦𝑖+1>0

𝑥𝑖≤𝑥<𝑥𝑖+1,∀𝑥𝑖−𝑥𝑖+1<0
𝑥𝑖+1≤𝑥<𝑥𝑖,∀𝑥𝑖−𝑥𝑖+1>0

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

 

Equation valid for 1 ≥ 𝑖 ≥ 𝑁 − 1, and the last line (𝐿𝑁): 

 

𝑌𝑁 = 𝑦 = {

𝑦1 − 𝑦𝑁

𝑥1 − 𝑥𝑁

⋅ 𝑥 +
𝑥1𝑦𝑁 − 𝑥𝑁𝑦1

𝑥1 − 𝑥𝑁

|
𝑦1≤𝑦<𝑦𝑁,∀𝑦1−𝑦𝑁<0
𝑦𝑁≤𝑦<𝑦1,∀𝑦1−𝑦𝑁>0

𝑥1≤𝑥<𝑥𝑁,∀𝑥1−𝑥𝑁<0
𝑥𝑁≤𝑥<𝑥1,∀𝑥1−𝑥𝑁>0

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

For 𝑥, 𝑦, 𝛼 ∈  ℝ and 𝑓(𝑥) = 𝑦 = 𝛼, The area inside the irregular polygon can be defined as the result of: 

 

AreaY = ∫ α|f(x)=α=Y={x′;x′′;...;xn;xn+1}

where xn,xn+1∈γ(x)

dα
ℝ

 (8) 

 

Consider expressions like 𝑛 = 2𝑚 + 1|𝑚∈𝑁, where xn<xn+1, and γ(x) representing the variation domain of 

the variable x. Consequently, the explored area by the kth robot can be denoted as Area(k), where k=1,2, …, 

R, and R is the total number of cluster agents. We introduce the relation gk(α,x), which satisfies the condition 

f(x)=α=Y={x';x'';x''';.;.;xn;xn+1}. This relation, denoted as gk, aids in determining whether the robot k is 

situated within the designated Area(k) or not. T0 assess whether a robot is outside or inside an area, we can 

analyze four zone-shaped situations illustrating the most probable cases, as depicted in Figures 6(a), 6(b), 

6(c), and 6(d). 

In the first scenario as shown in Figure 6(a), robot1 is situated in zone Z, while the other robots 

(robot2 and robot3) are not. Formulating this situation involves expressions such as 

g1(α1,x)=g2(α2,x)=Z{x',x''} and g3(α,x)= ø . Therefore, by comparing 𝑥𝑅𝑘
 with x' and x'', we can draw the 

following conclusions: 

− If gk(α,x)=ø ⇒ the robotk is outside zone Z. 

− If x'≤𝑥𝑅𝑘
≤x'' and gk(α,x)≠ø ⇒ the robotk is within zone Z. 

− If 𝑥𝑅𝑘
<x' or x''<𝑥𝑅𝑘

 and gk(α,x)≠ø ⇒ the robotk is outside zone Z. 

In the second scenario as shown in Figure 6(b), we have g1(α1,x)=g2(α2,x)=g3(α3,x)=Z{x',x'',x''',x''''}. 

robot2 is within the area where 𝑥′ ≤  𝑥𝑅2
≤ 𝑥′′, while the others are not. Specifically, 𝑥′′ <  𝑥𝑅2

< 𝑥′′′ and 

𝑥𝑅2
< 𝑥′, leading to the following determinations: 

− If 𝑥𝑛 ≤ 𝑥𝑅𝑘
≤ 𝑥𝑛+1|

𝑛=2𝑚+1,∀𝑚∈𝑁
 and gk(α,x)≠ø ⇒ the robotk is within the area. 

− If 𝑥𝑛 < 𝑥𝑅𝑘
< 𝑥𝑛+1|

𝑛=2𝑚+2,∀𝑚∈𝑁
 and gk(α,x)≠ø ⇒the robotk is outside the area. 

The third situation as shown in Figure 6(c) encompasses two singular cases, where 

g1(α1,x)={x',x'',x'''} and g2(α2,x)={x'}. The robot's presence in the area can only be determined in these cases 

where |gk|=3 for robot1 and |gk|=1 for robot2 : 

− If 𝑥′ ≤ 𝑥𝑅𝑘
≤ 𝑥′′′ and gk(α,x)≠ø where |gk|=3 ⇒ the robotk is in the area. 
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− If 𝑥′ = 𝑥𝑅𝑘
 and gk(α,x)≠ø where |gk|=1 ⇒ the robotk is in the area. 

In the last case as shown in Figure 6(d), it is impossible to ascertain whether the robot is in the zone 

or not using the relation gk, where gk(α,x)≠ø, and |gk|=n|n=2m+5,∀m ∈ℕ. 

 

 

  

(a) (b) 

  

  
(c) (d) 

 

Figure 6. Potential scenarios for the robot's posture (a) simple case with 3 robots, (b) complex case with 

3 robots, (c) singular case, and (d) insoluble case 

 

 

2.2.  Simulation cases and success factors 

Before initiating our simulations, we define our context and our environment. To simulate 

collaboration and explore to locate a victim, a workstation is employed. This workstation features an HP 

ProBook x360 435 G7 with an AMD Ryzen 7 PRO 4750U processor, AMD Radeon RX Vega 7 graphics, 32 

GB DDR4 Kingston RAM, and a 1TB Samsung SSD Drive. The simulation utilizes ROS [37] on Linux 

Ubuntu 20.04, enhancing node communication and facilitating message passing between robots and 

computers. Additionally, JetBot, powered by NVIDIA Jetson Nano and accessible at NVIDIA, supports 

sensors and implements RNN for object detection and collision avoidance. Furthermore, JetBot is capable of 

connecting through various radio links. 

 

2.2.1. Optimization based algorithm 

The next flowchart illustrates the overall process as shown in Figure 7. The cluster collects data 

related to the ROI's context, investigates frontiers around each micro-robot, generates map fragments, and 

shares them within the cluster. If tasks are completed, processes can be disposed of, otherwise, the 

preparation step is repeated. In a practical scenario, each micro-robot needs to meet the optimal condition 

defined by the cost function fcost
R in (9). 

− Radio connectivity to the sink or to all cluster Fcon/AP which guarantees data exchange and/or maintain a 

link (AP for access point). 

− Economic and energy autonomy Fauton quantifies the battery lifespan for a particular task. 

− Absolute availability Disp/all, Denotes the 'OK state' of the unit within the cluster, signifying its 

capability to proficiently carry out the task. 

https://github.com/NVIDIA-AI-IOT/jetbot
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− The relative availability, denoted as Disp/Res, signifies the accessibility of the payload, which is a 

specific resource crucial for a particular task. 

 

𝑓𝑐𝑜𝑠𝑡
𝜇𝑅

= 𝑘1 ∗ 𝐹𝑐𝑜𝑛 𝐴𝑃⁄ + 𝑘2 ∗ 𝐹𝑎𝑢𝑡𝑜𝑛 + 𝑘3 ∗ 𝐷𝑖𝑠𝑝𝐴𝑙𝑙 + 𝑘4 ∗ 𝐷𝑖𝑠𝑝 𝑅𝑒𝑠⁄  

where k1+k2+k3+k4=1 
(9) 

 

 

 
 

Figure 7. Flowchart of our approach 

 

 

The weights ki for i∈[1,4] symbolize the contributions of each specific part to the agent's functional 

cost, as defined earlier. Our goal is to discover the optimal outcome (10) for the function fcost for every agent 

in the cluster, representing the best solution. Subsequently, 

 

𝐹𝑐𝑜𝑠𝑡
𝑜𝑝𝑡

= 𝑀𝑎𝑥|𝑗∈[1,𝑅[ {𝑓𝑐𝑜𝑠𝑡

𝜇𝑅𝑗
, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠} (10) 

 

The cluster's optimal estimate is indicated by its capability to declare an 'OK' status for availability, 

surpassing the minimum required condition for executing assigned tasks. We introduce Fcon/AP as the reduced 

effective availability of at least one link with a predefined access point. If Fcon
ref represents the reference 

threshold for a Wi-Fi connection to an access point and Fcon(t) signifies the current connectivity level of an 

agent to the access point, then Fcon/AP is defined as the ratio of the instant connectivity Fcon(t) to the reference 

threshold Fcon
ref  This is expressed as (11): 

 

Fcon/AP =  100 ∗ (Fcon(t)/Fcon
ref ) (11) 

 

Therefore, Fauton signifies the battery autonomy, indicating the remaining energy in Ah needed by the battery 

to provide adequate power for the agent to successfully accomplish the assigned task as a singular unit within 

the cluster. Here, we represent τ as the estimated time required for the assigned task, I as the actual 

discharged current of the battery in Ampere (A), and C as the battery capacity, acting as a current source for a 

specified duration in Ampere-hour (Ah). Hence, the expressions are as (12). 

 

𝐹𝑎𝑢𝑡𝑜𝑛 = 𝐶/𝜏 ∗ (1/𝐼 − 10/𝑃𝑐ℎ𝑎𝑟𝑔𝑒) (12) 
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In estimating Disp/all and Disp/Res, the availability of a cluster member is assessed based on its effective 

suitability for any given task. Relative availability for a resource indicates the agent's capacity to have the 

specified resource (payload) ready at the designated time when a task is assigned. On the other hand, absolute 

availability encompasses the sum of all relative availabilities (of Nres resources), signifying that all of the 

agent's resources are ready for use. The relative availability is set to 1 when there is positive feedback upon 

querying the resource and 0 otherwise. Therefore: 

 

𝐷𝑅𝑒𝑙/𝑅𝑒𝑠 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 

Absolute availability is given by (14). 

 

𝐷𝑖𝑠𝑝𝐴𝑙𝑙 = ⋂(𝐷𝑅𝑒𝑙/𝑅𝑒𝑠
𝑖)

𝑁𝑟𝑒𝑠

𝑖=1

 (14) 

 

The agent's ability to fully intervene in a task depends on the logic AND connection of all relevant 

availability functions. The weighting coefficients ki are selected using various methods to optimize the 

objective function's final result. We adopt a bio-inspired approach to determine these coefficients. 

 

2.3.  Collaboration by greedy algorithm for distributed MRTA 

We introduce a greedy algorithm in Algorithm 1 [3] designed for the MRTA problem with 

broadcast messaging. This algorithm is configured to allocate agents based on the optimal assignment to a 

task that maximizes the performance-to-cost ratio (Vi
k/di

k). Here, Vi
k represents the performance of the kth 

agent for the accomplishment of the ith task, and di
k denotes the Euclidean distance between the agent and the 

target/assigned location (8) and (9). 

 

di
k = √(xi − xk)2 + (yi − yk)2 + (zi − zk)2 (15) 

 

𝑇𝑖
𝑘 = 𝑚𝑎𝑥

𝑖∈𝑇
(𝑉𝑖

𝑘 𝑑𝑖
𝑘⁄ ) = 𝑚𝑎𝑥

𝑖∈𝑇
(𝑉𝑖

𝑘𝜂𝑖
𝑘) with 𝜂𝑖

𝑘 = 1 𝑑𝑖
𝑘⁄  (16) 

 

Here, task i is the chosen task for the kth agent from the entire set of potential tasks, and T represents the set 

of viable tasks within the kth agent's scope out of the total M available tasks. The algorithm, identified as 

Algorithm 1, operates as follows: Initially, we define surface variables explored by each robotk, where 𝑆𝑘|𝑘∈𝑅 

denotes the set of boundary points of the presently scanned surface. Additionally, fi
k|k represents an objective 

function (cost function) for each robotk, with taski being the sub-mission stored in Ti
k Furthermore, Ti

k is the 

collection of tasks that have not been assigned yet and are included in T, representing the total available tasks 

(Ti
 ∈ T). Concurrently, Tk for k ∈ R is the selected task for the robot, and Pi

k denotes the locations that have 

already been assembled. Here, k indicates the robot that needs to update its bid at the current stage. 

At the start, no tasks are assigned, so Tk=ø for all robots k∈ ℝ. In each step, one task is allocated to 

a single robot independently as shown in Figure 8, following decentralization. Thus, we need |T| steps, 

the number of tasks for the robot, to complete its state. At each iteration i, after removing conflicting parts 

with areas explored by other robots, all robots 𝑘 ∈ 𝑅 submit an offer (tk
i, Tk

i). Each robot k selects task Tk 

from the list of non-located tasks Ti
k to maximize its objective function fi

k. Upon gathering all the bids, we 

discover a superior optimal gain for the collective objective: the multiplicative success of group F (17). 

Through bidding, we efficiently choose the optimal task pair-robot combination for the greatest overall 

benefit [38], [39]. 

 

𝐹 = 𝐵𝑒𝑠𝑡{𝑇𝑘}
𝑘∈𝑅

∏[𝑓𝑘

𝑘∈𝑅

(𝑇𝑘)] (17) 

 

When a robot is surrounded by other robots, it can be misled about its capabilities, hindering its 

development and exploration. This situation can impede the robot's ability to effectively navigate and 

fulfill its tasks. To address this issue and maintain high performance even when surrounded (Tk=ø), our 

objective is to enhance the robot's cost function by utilizing the neighboring robots' available spaces until 

it can operate independently. By incorporating information from surrounding robots, the robot can make 

more informed decisions and adapt its behavior, accordingly, ultimately improving its overall performance 

and autonomy. 
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Figure 8. JetBot during domain exploration 

 

 

3. RESULTS AND DISCUSSION  

The simulation scenario is illustrated in Figure 9. It is characterized by various constraints that 

evaluate the efficiency and reliability of our approach in navigating a cluster of micro-robots, both with and 

without collaboration. The simulation scene consists of rooms (isolated spaces) containing furniture 

(obstacles). Micro-robots work together to rescue multiple victims as shown in Figure 10, to minimize time 

and enhance reliability. The simulation illustrates three severity levels involving 1-3 micro-robots as shown 

in Figure 11. 

 

 

  
  

Figure 9. Model area of the simulation Figure 10. Scene with target location 

 

 

 
 

Figure 11. Space segmentation 
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We make the following assumptions for the simulation: 

− The scene's domain and dimensions remain constant throughout the investigation. 

− The target position within the scene does not significantly affect the simulation's duration. 

− The agents (micro-robots) are assumed to be homogeneous, possessing identical characteristics. 

− Connectivity, Payload, and Autonomy conditions are satisfactory for all units within the cluster. 

The simulation's outcomes are presented in the subsequent Figures 11 to 15 and Tables 1 to 8. The 

plan involves finding the time to reach each victim, pinpointing the longest time to reach two victims, and 

averaging the maximum values. We focus on the maximum and minimum average durations. The regions in 

Figure 15 show designated areas in RGB colors within the All Area. These areas come from segmenting the 

total ROI using the greedy algorithm. The process is repeated three times. The first iteration involves a single 

robot over ten attempts, and the results are in Table 1. Where time distribution by number of attempts is 

given (with trend function) in the next chart as shown in Figure 16. 

 

 

  
  

Figure 12. The used robot  model Figure 13. GAZEBO Scene Simulator 

 

 

 

  
  

Figure 14. Robots while performing a mission Figure 15. Agents ROI updates 

 

 

Table 1. Simulation time to find the two victims  

(in seconds) 
Attempts Target 1 Target 2 To mission's end 

1st 55 102 102 
2nd 70 30 70 

3rd 20 150 150 

4th 93 35 93 
5th 64 86 86 

6th 46 90 90 
7th 77 112 112 

8th 95 150 150 

9th 9 76 76 
10th 110 123 123 

Mean 63.9 95.4 105.2 
 

 
 

Figure 16. Duration taken by a single robot to reach  

the target on the initial attempt 
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The process involves ten simulations, each done three times. Results are assessed across five 

different scenarios (cases I to V). In each test, we note the time to meet all goals until finding two targets 

(victims), with and without considering cooperation. 

− Scenario I: single robot (refer to Table 2). 

− Scenario II: two robots without collaboration (refer to Table 3). 

− Scenario III: two robots with collaboration (refer to Table 4). 

− Scenario IV: three robots without collaboration (refer to Table 5). 

− Scenario V: three robots with collaboration (refer to Table 6). 

 

 

Table 2. Simulation time of one robot to find the two 

victims (in seconds) 
 target1 target2 duration 

Exp.1 80.2 37.5 90.7 

Exp.2 67.5 99.5 120.6 

Exp.3 63.9 95.4 105.2 
 

Table 3. Two robots without collaboration algorithm 

average time (sec) 
 target1 target2 duration 

Exp.1 72 38.2 85.3 

Exp.2 72 61.6 95.2 

Exp.3 62.4 40.3 66.9 
 

 

 

Table 4. Two robots with collaboration algorithm 

average time (sec) 
 target1 target2 duration 

Exp.1 27.2 21.7 34.2 

Exp.2 33.8 30.4 47.5 

Exp.3 60.1 38.9 41.7 
 

Table 5. Three robots without collaboration 

algorithm average time (sec) 
 target1 target2 duration 

Exp.1 72.6 32.2 76.5 

Exp.2 57.8 39.3 69.1 

Exp.3 71.2 29 73.9 
 

 

 

Table 6. Three robots with collaboration algorithm average time (sec) 
 target1 target2 duration 

Exp.1 22.7 7.9 22.7 

Exp.2 18.3 21.5 24 
Exp.3 18.4 14.1 20.7 

 

 

Aggregate outcomes are compiled as the min and max values for potential consolidation as shown in 

Tables 7 and 8. Table 7 presents the average time durations across various experimental conditions, offering 

insights into the comparative efficiency of different strategies. In contrast, Table 8 delineates the minimum 

and maximum simulation times required to locate two victims, providing a comprehensive view of 

performance variability under different scenarios. 

 

 

Table 7. Time duration average by experiment 
 Exp.1 Exp.2 Exp.3 

One Robot 90.7 120.6 105.2 

2NoCollab 85.3 95.2 66.9 

2WCollab 34.2 47.5 41.7 
3NoCollab 76.5 69.1 73.9 

3WCollab 22.7 24 20.7 

 

 

Table 8. Simulation time to find the two victims (in seconds) 
 One 2NoCol 2WCol 3NoCol 3WCol 

Min 90.7 66 34.2 69.1 20.7 

Max 120.6 95.2 62.1 76.5 24 

 

 

Collaboration increasingly impacts the duration of time as shown in Figures 17 and 18. These 

figures vividly illustrate the significant influence of collaboration on time duration, underscoring its growing 

importance in various contexts. Additionally, as the number of agents increases, the duration decreases, 

particularly when a cooperative strategy is enabled, highlighting the efficiency gains achieved through 

collaborative efforts, especially in scenarios involving larger groups. 
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Figure 17. Progression of time duration through 

experimentation 

 
 

Figure 18. Max and min time duration by experiment 

until the victim is found 

 

 

The ROI was evaluated in two ways: by pinpointing the targets and by 3D scanning the area for 

potential reconnaissance. This was done using an enhanced version of a horizontal LiDAR (RPLiDAR 

A1M8) as part of the new features on our AL Moustaksheef3D platform, a robotic payload for 3D SLAM 

currently in development. The enhanced LiDAR as shown in Figures 19 and 20 was tested on a wheeled 

machine and a Drone. The collected data as shown in Figure 21 is provided in point cloud (PCL) of “.pcd” 

format. This model integrates two LiDARs, with the first used for geolocation and the second for 3D vision. 

Scene reproduction yields relative data for estimating facts in the study area. Point-cloud data is used for 

scene reconstruction. Software like CloudCompare, MeshLab, Blender, and Gimp enable background 

processing on point cloud data. The micro-cobot agents integrate APIs into their embedded logic, employing 

robust algorithms for identifying specific targets in hostile environments. Using an MRTA approach with the 

enhanced Greedy algorithm, our strategy optimizes target identification through cluster agent cooperation, 

significantly reducing task time. This collaborative approach requires substantial processor capabilities, with 

basic calculations centralized for collaboration and decentralized for independent agent decision-making 

post-task assignment. 

 

 

   
   

Figure 19. 

JetBot/AlMustaksheef3D 

Figure 20. The 3D model 

of the new LiDAR 

Figure 21. ROI SLAM Segmentation, on 

RVIZ and Gazebo 

 

 

4. CONCLUSION  

The project aims to design collaborative robots with physical capability and intelligence to work 

effectively in challenging environments. These cobots will help reduce the workload of human response or 

rescue teams by identifying targets. They will also help in areas where the density of robots and technicians 

poses a risk to human safety. 

Our research focuses on micro-robots collaborating with humans, leading to the concept of  

micro-cobots. This aims to reduce payload and minimize bottlenecks in tasks. Increasing micro-robot 

agents enhances investigation speed and target search. The results prove our initial consideration and 

confirm the predefined hypotheses. The results obtained from the simulation explain that the cooperation 

significantly improves the cluster's progress in the search mission. Collaboration prevents erratic  

micro-robot behavior, reduces duration, and prevents system collapse. Fewer agents lead to more 

dispersion and chaos. A moderate number of investigators (1<NR≤3) is preferable. Swarm techniques with 

collaboration are used to manage the situation. 

 

 

https://www.slamtec.com/en/lidar/a1
https://www.slamtec.com/en/lidar/a1
https://www.danielgm.net/cc/
https://www.meshlab.net/
https://www.blender.org/
https://www.gimp.org/
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