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 This article presents the results of experiments on path planning and control 

of automated guided vehicles (AGV) using single, fixed ceiling mounted, 

monocular cameras and colored markers. The camera employed in the system 

serves as both a sensor and controller. Initially, the working environment is 

structured using colored markers for given applications. For every new setup, 

structuring the environment is essential. The image processing algorithm 

identifies the colored markers and their positions, which are then utilized for 

path planning and segmentation. The actuation time required to transverse 

each segment is calculated and then AGV is actuated accordingly. A 

transformation or inverse mapping matrix (M), predetermined, is employed 

for calculating world coordinates from given image coordinates. Path 

planning and AGV control are across various paths, both with and without 

static obstacles, in real-time applications. The colored marker detection and 

recognition accuracy for the given setup have been found cent percentage 

while the AGV reaches the goal point with an error margin of around 3.9% on 

straight paths, both with and without obstacles. 
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1. INTRODUCTION 

Traditionally, in automated guided vehicle (AGV) navigation, it has been common practice to utilize 

a variety of sensors, both onboard (mounted directly on the AGV) and off-board (positioned on the ceiling or 

at suitable locations), for tasks such as path detection, obstacle detection, and navigation towards a destination 

while avoiding obstacles. In AGV navigation, the general tradition has been to use different sensors; on board 

(mounted on the AGV) and off-board (fixed at the ceiling or suitable location), to detect or generate a path, 

detect obstacles, and also to reach the destination by avoiding the obstacles. Onboard sensors are typically 

favored for their ability to detect and circumvent both static and dynamic obstacles along a given path. These 

sensors enable local path planning and motion planning by providing real-time feedback directly to the AGV. 

Off-board sensors, on the other hand, are often employed to plan the overall path, taking into account 

the positions of the AGV and static obstacles within the environment. However, employing multiple sensors 

onboard the AGV can introduce synchronization challenges among their outputs, potentially leading to 

complex control systems and increased response times. Alternatively, if a single off board sensor is capable of 

performing all of these tasks, the problem becomes significantly simpler to solve, and the complexity of the 
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controller can be minimized. By centralizing these functions in a single sensor, the need for synchronization 

among multiple sensors is eliminated, streamlining the control process and enhancing overall efficiency. 

Vision-based navigation is one such innovation. Recent advancements in image processing hardware 

and software have enabled fast and feasible real-time visual applications. Consequently, visual guidance and 

obstacle avoidance have become the focus of extensive research [1]. In this context, the current study addresses 

the challenge of achieving accurate, precise, and robust position estimation in indoor environments. The 

objective of this research is to utilize a single camera as a sensor and controller to execute planned activities 

using the AGVs. Image processing is an important issue for many computer vision applications, such as the 

structure of the environment, object recognition, and pose estimation. The camera model used in computer 

vision has been modeled by perspective projection. This has been an ideal and accurate model for a wide range 

of existing cameras. However, the resulting equations from perspective projection are complicated and often 

nonlinear due to the unknown scaling factor. In vision-based navigations; generally structured or non-

structured environments are employed. 

In AGV navigation, three methods are mostly adopted which include map-based navigation, map-

building navigation, and map-less navigation.  In map-based navigation system consists of providing the AGV 

with the model of the environment. These models contain different degrees of detail, varying from a complete 

CAD model of the environment to a simple graph of interconnections or interrelationships between the elements 

in the environment. Further details about such navigation systems are found in [2]–[6]. In map-building 

navigation, AGVs can explore the environment and build their map by themselves. The navigation process starts 

once the robot has explored the environment and stored its representation. The navigation is simultaneous 

localization and mapping (SLAM). This technique is found suitable for local path and motion planning. The 

applications of this technique in real-time can be found in [7]–[11]. The researchers have used onboard sensors 

and controllers to achieve SLAM. In map-less navigation, the AGV does not need knowledge of the environment 

to run. The movements of the robot depend on the elements observed in the environment (walls, features, doors, 

and desks). Optical-flow-based and appearance-based techniques are generally used in this technique. Further 

details are given in [10], [12]. This technique is good for local path planning with an onboard vision sensor. Some 

researchers [4], [6], [8] have utilized various onboard and off-board sensors in an attempt to develop robust 

navigation systems. However, the controllers implemented in these systems were often overly complex, and the 

response from the sensors was inadequate. The applications involving semantic maps are outlined in [13], with 

classifications and scalability. In [14], how colored object is recognized by histogram matching for the various 

color models is analyzed and compared. 

An AGV navigation using fiduciary marks design and experiments are presented in [15]. In [16], [17], 

single omnidirectional camera is used, and an area of interest is extracted, and by using image processing the 

vehicle is navigated on a set path. Color and shape feature extraction using a vision model for accurate recognition 

of traffic signs located at a reasonable distance is outlined in [18]. Ranganathan et al. [19] describes a navigation 

system for a mobile robot that must execute motions in a building. A qualitative analysis of a USB camera for an 

AGV control is given in [20]. Colored marker recognition and an AGV position and path control implementation 

are explained in [21]–[24]. 

The main objective of this study is to utilize a single off board camera both as a sensor and a controller 

without employing any other types of internal and external sensors. The camera is utilized to perceive the 

environment, formulate path planning, and control AGV movements by avoiding static obstacles. Experiments 

were conducted on several paths using the camera sensor. 

 

 

2. PROPOSED SYSTEM OVERVIEW 

The scientific rationale behind developing this system is to eliminate the need for various sensors 

fixed on the AGV to collect different environmental information. The single web camera is utilized to map the 

environment, recognize the obstacles, plan the path, and control the AGV along that path. The AGV navigation 

is planned and executed in a structured environment by considering the limitations of a single camera working 

both as a sensor and controller. In such a navigation system, environment mapping is essential for accurate 

positioning of the AGV, determining the end position, and landmarks. The positions of the AGV or obstacles, 

as determined by the camera, are initially in image coordinates (in pixels) and need to be mapped into world 

coordinates (in millimeters or meters) to ascertain the actual path traveled by the AGV in the world coordinate 

system. Therefore, as the first step, the inverse mapping matrix (𝑀𝑖𝑛𝑣) for 2D points in the world plane and 

their corresponding points in the image plane is determined using a checkerboard sheet. For estimating the 

mapping matrix (M), a checkerboard sheet with 100 mm × 100 mm square is placed in the environment, and 

the camera is activated to capture images of the environment. Using a camera’s pinhole model, the projection 

from the 3D space to the image plane can be described with (1). 
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where 𝜆 is an arbitrary scale factor, p = [u v 1] T are the coordinates of the 2D point projected onto the image 

plane, P = [X, Y, Z, 1] T are the coordinates of the point in the reference or world plane of the 3D space. R 

represents the rotation of the coordinate system of the 3D points with respect to the origin; T is a vector 

representing the translation of the origin of the camera coordinate system, [R T] represents the transformation 

between the camera frame and the world coordinate system.  

Equation (1) can be simplified as (2). 

 

𝜆|𝑝̅| = Κ⌈RΤ⌉|P̅|, further can be simplified as 𝜆|𝑝𝑖̅| = Μ|P̅i| (2) 

 

The projection matrix M can be estimated by detecting point correspondence with pi = [u, v, 1] T being the pixel 

positions and Pi = [X, Y, 1] T being the world coordinates of the corresponding feature point of index, ‘i’ on the 

planar pattern or checkerboard. In order to eliminate the scaling factor, cross product of each term of (2) is 

taken as (3). 

 

𝑝̅𝑖 × |𝜆𝑝𝑖̅| = p̅i × |ΜP̅i|, since cross product of 𝜆|𝑝̅𝑖 × 𝑝̅𝑖| = 0 (3) 

 

Equation (3) can be written as (4). 

 

p̅i × |ΜP̅i| = [
u1

v1

1
] [
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𝑚2𝑇 𝑃̅𝑖

𝑚3𝑇 𝑃̅𝑖

] (4) 

 

Equation (4) is formulated as (5). 
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Equation (5) is in the form of AM = 0, where A is a 3×9 matrix and M is a vector with row-wise nine elements 

of M. The AM is linear in M and has two linearly independent equations i.e., one row can be removed. 

Removing the third row of (5), the following equation is obtained.  
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] (6) 

 

Equation (6) is valid for all homogeneous representations. The matrix M has 8 parameters along with a 9 th 

homogeneous scaling factor. To solve for the parameters of M, a sufficient number of equations are required. 

Since each point correspondence gives rise to two equations (one for the x-coordinate and one for the y-

coordinate), you need at least four correspondences (8 equations) to solve for the 8 parameters in M. However, 

in practice, more correspondences are often used to create an over-determined linear system. This redundancy 

helps improve the robustness and accuracy of the solution by minimizing errors and handling outliers more 

effectively. 

The over-determined equations are solved using the linear least square technique to determine matrix 

(M). The complete procedure is outlined in [25]. The inverse mapping matrix (𝑀𝑖𝑛𝑣) can be calculated by 

simply taking the inverse of the mapping matrix (M) i.e., (M-1). Equation (7) is utilized to determine any world 

point from its corresponding image point. 

 

𝑃(𝑤𝑜𝑟𝑙𝑑) = 𝑀𝑖𝑛𝑣P(image) (7) 

 

The system consists of a personal computer (PC), camera, radio frequency (RF) module, colored 

markers, and an AGV as shown in Figure 1. The colored markers are used for structuring the environment as 

per the requirement. The actuation time is determined by recognizing the positions of the colored markers in 
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both the image as well as world coordinate system. The AGV is then actuated for a specified time and then 

feedback is taken through visual information obtained from the camera.  

 

 

 
 

Figure 1. Experimental setup layout 

 

 

3. COLOURED MARKER RECOGNITION 

This section presents the results of acquiring and recognizing circular markers of colors such as red, 

green, and blue. Additionally, colored markers of shapes like square, triangular, and circular may also be used 

in experimentations. These markers are placed in a testing environment where the camera is fitted to the ceiling. 

Initially, a red colored marker of a circular shape was placed in the mapped environment. High-quality images 

captured by the camera are selected for further processing in MATLAB using an image processing algorithm. 

The original-colored markers and their processed images are shown in Figures 2 and 3. The blob analysis 

technique is used to process RGB images to detect and recognize colored markers in the input image. During 

blob analysis, a blob is a region that has a value of 1 (or true). There is no way for the different color blobs to 

overlap in the binary image and therefore, only one blob is considered even though blobs have different colors. 

The complete process of object recognition is grouped into four operations: labeling, grouping, extracting, and 

matching. Once a set of regions has been identified, the properties of the regions become the input to the higher-

level procedure that performs decision-making tasks such as recognition or inspection. 

 

 

 
 

Figure 2. Expanded view of the RGB and grey image of sample red-colored objects 
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Figure 3. The connected component labeling in binary image 

 

 

The blob analysis was performed on an RGB image that has a red color circular marker with a white 

background. MATLAB code was developed to perform blob analysis on the given image. The experimental 

results of blob analysis are presented step by step in Figure 4. Markers of the same color with different shapes 

or the same shape with different colors can also be used for experimentation. The major steps of the image 

processing algorithm employed in experimentation are shown in Figure 4. In [17], colored marker recognition 

techniques using the Hough transform were utilized, claiming an average recognition accuracy of around 

98.8%. 

 

 

 
 

Figure 4. Display of results of image processing algorithm 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

The navigation and path planning of an AGV gives a reliable estimation of the vehicle's position and 

an accurate workspace or navigation map [14]. The approach adopted here involves decomposing the given 

path into straight segments and circular curves or simple 90-degree turns. However, such paths cannot be 

precisely tracked due to discontinuities in curvature at transition points between segments, which necessitate 

instantaneous accelerations. Taking into account the constraints of image processing, position control of the 

AGV, and the field of view (FOV) of the environment using a single camera, a real-time position and path 

control system has been developed and utilized in the experimentations and for corrections. 

The experimentation of AGV presented in this paper considers the position and path control of AGV 

on straight paths with and without static obstacles using a single camera as a sensor and controller. In a straight 

path with no obstacles, path planning is simple, and the path is converted into a single segment. In the case of 

a straight path with a static obstacle in a given path, the total path needs to be segmented into straight paths 

and 90-degree turns or circular arcs. Then, the time required to cover the given segment is determined. As the 

speed of the AGV is predetermined, only the segment distance needs to be calculated, either in pixels or in 

millimeters. 

The time required to cover a particular segment is calculated by using (8), and the time required to 

execute a 90-degree turn is calculated by using (10). 

 

𝑡1 =
𝑑1

𝑣1

, 𝑡2 =
𝑑2

𝑣2

, 𝑡3 =
𝑑3

𝑣3

, … … … … . . , 𝑡𝑛 =
𝑑𝑛

𝑣𝑛

 (8) 

 

Equation (8) can be summarized as (9). 

 

𝑇𝑠𝑒𝑔 =
1

𝑣
∑ 𝑑𝑖

𝑛

𝑖=1

 (9) 

 

As the AGV speed is calibrated, the time required to take a 90-degree turn is calculated using (10). 

 

𝑇𝑡𝑢𝑟𝑛 = ∑ 𝑇𝑟𝑖𝑗

𝑛

𝑗=1

 (10) 

 

The total time to cover a given path can be calculated by adding the times obtained from (9) and (10). 

The AGV with differential drive configuration was developed and employed in the experimentation. It has four 

wheels, out of which two rear wheels are connected to two geared DC motors of the same speed, driven 

independently, and the front two wheels are used only for balancing purposes. A 12-volt battery is used to 

supply the required voltage and current. 

 

4.1. AGV on straight path 

To test the performance of an AGV on the straight path, two distinct path conditions were tested: a 

straight path with no static or dynamic obstacle and a straight path with a static obstacle. In case 1, the AGV 

was tested on a clear, unobstructed straight path. This condition served as a baseline to assess the AGV’s basic 

performance, including its ability to maintain a straight trajectory and its responsiveness to control inputs when 

no external factors are present. In case 2, static obstacles were placed along the straight path. These obstacles 

do not move but require the system to detect the obstacles, an AGV, and navigate around them. 

 

4.1.1. Straight path with no obstacles 

In straight path planning with no obstacles in the path, an AGV (with a red colored circular marker at 

the top) is placed at the starting position in switched-off condition. Another marker, colored red, green, or blue 

is placed at the goal (end) position as in Figure 5(a). When the system starts, the camera captures the first image 

and subsequently, the image is processed in MATLAB and the initial positions of the AGV and end position 

are determined. The positions detected by image processing algorithms and segmented paths are depicted in 

Figure 5(b). These positions are subsequently transformed into world coordinates using an inverse mapping 

matrix (𝑀𝑖𝑛𝑣) to compare the actual path traveled by the AGV on the ground floor. Further, these positions are 

also utilized to generate the total path and to calculate the distance between the starting point and the goal point, 

both in the image as well as in the world coordinate system. 
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(a) (b) 

 

Figure 5. Binary image showing (a) the positions of starting and goal point and (b) the segmented path 

 

 

Using the distance and the calibrated AGV speed, the time required for the AGV to reach the goal 

point is calculated. Following this calculation, the AGV is then actuated for that duration through an RF remote 

control. The distance between two positions is determined by using (11) in image coordinates 𝑑𝑖𝑚𝑎𝑔𝑒(pixels) 

and in world coordinates 𝑑𝑤𝑜𝑟𝑙𝑑 (mm). 

 

𝑑𝑖𝑚𝑎𝑔𝑒 = √(𝑢𝑔 − 𝑢𝑠)
2

+ (𝑣𝑔 − 𝑣𝑠)
2

, 𝑑𝑤𝑜𝑟𝑙𝑑 = √(𝑋𝑔 − 𝑋𝑠)
2

+ (𝑌𝑔 − 𝑌𝑠)
2
 (11) 

 

The actual path traveled by the AGV during testing and the predicted path utilizing calibrated speed 

during a given time duration is depicted in Figure 6. On the straight path, the distance covered by the AGV in 

the world coordinates system and the actual distance measured on the floor are given in Table 1. The percentage 

error was found to be 2.41%. 

 

 

 
 

Figure 6. The predicted and actual path 
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Table 1. Error in distance measurement for straight path 
Distance 

in pixels 

Distance in m calculated 

using inverse mapping (𝑀𝑖𝑛𝑣) 

Distance actual 

measured in meters 

Error in calculated and 

measured distance meters 

Percentage 

error 

183 1.2687 1,300 0.0313 2.41 

 

 

4.1.2. Straight path with static obstacle 

To test the performance of an AGV on a straight path with a static obstacle, a red-colored rectangular 

object is positioned between the starting position and the end position Upon system initialization, the first 

image captured by the camera undergoes processing using an image processing algorithm to estimate the 

positions of the starting point, end point, and obstacle in the image coordinate system. In addition to the 

centroids of these positions, the four corner positions of the rectangular color marker (obstacle) are also 

necessary, as illustrated in Figures 7(a) and 6 (b).  

All these positions are initially in pixels and are then transformed into world coordinates using the 

inverse mapping matrix (𝑀𝑖𝑛𝑣). The distance between each segment and the actuation time required for the 

AGV to cover that segment is calculated. The total path is divided into different segments as depicted in Figure 

7(b), comprising straight segments and arcs of radius ‘r’. The total actuation time is the sum of the times 

required for the AGV to cover the horizontal distance, navigate the curve, and traverse the vertical distance. 

The total actuation time required for AGV to cover all segments and reach the goal point while avoiding the 

obstacle is calculated using (10) and (11). Subsequently, the AGV is actuated for the calculated time, and the 

resulting positions and paths achieved in real-time are presented in Figure 8. 

 

 

  
(a) (b) 

 

Figure 7. Binary image of the AGV (a) the initial, goal, and corner positions of obstacle and (b) the total path 

and segmented paths with turning points 

 

 

 
 

Figure 8. Positions and path achieved by the AGV in real time application for straight path with static 

obstacle 
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5. CONCLUSION 

The primary objective of performing the experimentation was to utilize a single off-board fixed ceiling 

camera to determine the position of the AGV, end position, and obstacles in the mapped environment and then 

to control the position and path of the AGV by avoiding obstacles along a straight path. To achieve the 

objectives, the work was divided into different areas including hardware, software, environment mapping using 

the camera, object recognition, and position and path control of AGV on the paths that are planned by the off-

board camera. 

The experiment was successfully performed with the given constraints and the final conclusions are 

as follows. First, the efficiency of colored marker detection and recognition was recorded at 100% for defined 

thresholds and lighting conditions. The constant-speed AGV was tested on paths such as straight paths with 

and without static obstacles. Second, the developed algorithm generated vehicle paths according to the node 

positions detected by the camera using image processing, both in the image plane and the world plane. The 

total path was segmented, and segment-wise actuation times were calculated in seconds. The AGV was then 

navigated along the given path for the calculated actuation time. During real-time testing, the AGV successfully 

reached the end position while avoiding obstacles for each planned path. The average error in reaching the end 

position was found to be 3.94% in the world coordinate system and 3.82% in the image coordinate system, for 

a length of 1269 mm or 183 pixels. Third, the recorded position error is attributed to factors such as camera 

resolution, uncertainties in image capturing time, variations in lighting conditions, and pixels in the blob area. 

Fourth, in the repeatability test, the AGV could reach a given destination with an accuracy of 99%. Finally, 

structuring and environment mapping are indeed crucial steps before automated guided vehicle (AGV) 

navigation. Therefore, it is essential to invest time and resources in accurately mapping the environment before 

deploying the AGV solutions. 
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