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 Vector synthesis of fault testing (simulation) map for logic is proposed, 

which without simulation allows to determine of all faults detected on test 

sets, as well as determining test sets to detect specified faults. For synthesis, 

a superposition of smart data structures is used, containing: a deductive 

matrix D, as a derivative of the logical vector L, test truth table T, and fault 

truth table F. The deductive matrix is seen as the gene of functionality and 

base of fault simulation mechanism to solve all the problems of testing and 

verification. In the matrix synthesis, an axiom is used: all the mentioned 

tables are identical in shape to each other and always interact with each other 

convolutionally T⊕L⊕F=0. A universal deductive reversing converter 

“test-faults” and “faults-test” for logical functionalities of any dimension is 

proposed. Converter functions: fault simulation on test sets T→F and 

synthesis of test sets F→T to detect the specified faults. The converter can 

be used as a test generation and fault simulation service for IP-core system-

on-chip (SoC) under the IEEE 1500 SECT standard. Based on the deductive 

matrix, a fault testing map for logic is built, where each test set is matched 

with the logic-detected faults of the input lines. 

Keywords: 

Fault simulation mechanism 

Fault testing map 

Fault truth table 

In-memory computing 

Logic vector computing 

Smart data structures 

Test truth table  

 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Vladimir Hahanov 

Design Automation Department, Computer Engineering Faculty, Kharkiv National University of Radio 

Electronics 

Kharkiv, Ukraine 

Email: hahanov@icloud.com 

 

 

1. INTRODUCTION 

System-on-chip (SoC) IP-core testing is dealt with by thousands of specialists and hundreds of 

companies that find reasonable technological and software solutions to create a product yield in a reasonable 

time-to-market [1]–[4]. At the same time, companies should pay more attention to mathematics and data 

structures, which could be better in almost most industrial systems for designing and testing digital devices. 

The market design metric “quick solution is better than correct one” leads any system with hundreds of 

software and hardware patches to a state inoperable for the market over a long time [1], [5]–[7]. The way out: 

the development of mathematically smart, as a rule, long-lived data structures invariant to the rapid change in 

programming technologies and the element base of digital systems [1], [8]–[10]. On such well-thought-out 

data structures, very compact, simple algorithms for their analysis are obtained [1], [3], [11]–[14]. There is a 

design pattern: if you spend 90% of your time on the mathematical culture of smart data structures, the time 

for creating simple algorithms for their processing will not be more than 10% [13], [15]–[20]. 

The Intelligent Computing Technology Metric [21]–[30] offers the following time and energy 

saving solutions. First is read-write transactions on memory [16]–[21], [26]. Second is in-memory synthesis 

of a simple logical processor [10], [11], [28]. Third is using RISC-V architecture instructions to process data 

in memory [21], [24], [31]. Fourth is synthesis of smart data structures for information processing without an 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 13, No. 3, September 2024: 293-306 

294 

algorithm [22], [23], [27], [29]. Finally, it is Neumann architecture in-memory to control data processing 

[21], [25], [30]. 

In-memory computing is gradually capturing new areas of the information technology (IT) industry 

due to the absence of iterations between memory and the central processor, which significantly saves energy 

in the intelligent processing of big data [21]–[30]. In addition, redundancy memory has reached the 

processor’s logical command speed [21], [24], [26], [30], forcing companies to leverage memory services to 

organize computing processes. Many publications consider memory as a convenient tool for implementing 

big data processing algorithms on a limited set of instructions for deterministic and probabilistic computing, 

including machine learning and artificial neural networks [22]–[25], [27], [28]. In addition, only in-memory 

read-write transactions can be leveraged to build big data processing architectures free from processor 

instructions [16]–[21]. The synthesis of smart data structures makes it possible to code computational 

algorithms based on in-memory read-write transactions [1], [16]–[19], [30] with a speed of 1 ns or less. 

Statement of the fault simulation problem. Fault simulation is essential for Automatic Test Pattern 

Generation (ATPG) [3]–[5], [10]–[13], diagnosis [10]–[12], [16], [17], and fault and test grading [16], [17], 

[32]–[35]. Fault simulation metrics are speed, memory, modeling functional blocks and delay capability, 

sequential circuits, multi-valued fault simulation to handle unknown X, and high-impedance Z [16], [17], 

[32]–[35]. In addition to the circuit model, a fault simulator usually needs stimuli and expected responses 

(required for true-value simulation), a fault model, and a fault list. Concurrent fault simulation [33], [34] is an 

event-driven simulation that involves good/bad events together. The simulated part of faulty circuits differs 

from that of good circuits. Memory management is complex. Practically all industrial fault simulation 

systems have unpredictable sizes of fault lists and unpredictable sizes of data structures. All six primary 

simulation engines use a processor with a high-power consumption level. The Electronic Design Automation 

(EDA) market needs simple and efficient fault simulation mechanisms to verify tests [1], [18], [19]. A metric 

comparison of fault simulation mechanisms existing in industrial systems is given in Table 1. Vector fault 

simulation is also evaluated in this metric, for which all metric points, except for one here, are in black. 
 

 

Table 1. Fault simulation techniques: metrics comparison 
Fault simulation 

technique 

Complexity Memory Data structure Level Delay Speed Fault 

model 

Multi-

valued 

Serial fault 

simulation [34] 

n× 𝑛3 Predictable Add fault 

model, fault list 

Gate, 

system 

No problem Slowest Any Easy 

Parallel fault 

simulation [3] 

1

𝑤
× 𝑛3 Predictable Register 

Memory 

Gate Not capable Middle Logic Difficult 

Deductive fault 
simulation [32] 

𝑛2 Unpredictable Deductive 
formulas 

Gate Not capable Middle Any Difficult 

Concurrent fault 

simulation [33] 

1

3
× 𝑛2 Unpredictable Add fault 

model, fault list 

Gate, 

RTL 

Capable Faster Logic Easy 

PPSFP – Parallel 

pattern single fault 

propagation [10] 

1

𝑤
× 𝑛3 Unpredictable Add fault 

model, fault list 

Gate Capable Middle Logic Easy 

Differential fault 

simulation [35] 

1

2
× 𝑛2 Unpredictable Add fault 

model, fault list 

Gate, 

RTL 

Not capable Middle Any Difficult 

Vector fault 
simulation [18] 

1

2
×

1

3
× 𝑛2 Predictable No, as true-

value simulation 
Gate, 
RTL, 

System 

Not capable Faster Logic Capable 

 

 

The goal is to significantly reduce the latency and energy consumption of in-memory computing for 

fault simulation of Boolean functionality by modeling a deductive matrix via smart data structures on a logic 

vector. The objective of this paper is to i) develop smart (connected) data structures based on a logical vector, 

including a deductive matrix and two truth tables: tests and faults, ii) development of an algorithm for 

simulation faults on a test set, iii) create of an algorithm for generating test sets for given faults, iv) synthesis 

of a reversible converter of test sets into detected faults and vice versa, detected faults into test sets,  

v) synthesis of fault testing map for logic using a deductive matrix, and vi) verification of data structures and 

algorithms for their analysis. 

A new scientific direction of vector logical computing (VLC) is proposed. This is processor-free 

computation in memory based on read-write transactions on logical vectors. The new vector logic computing 

metrics for fault modeling and simulation are i) free-from-processor data processing means energy-saving 

computing technology, ii) the absence of the classical von Neumann architecture means no iterations between 

the data bus between memory and the arithmetic logic unit (ALU), significantly reducing data processing 

time, iii) read-write transactions instead of a robust processor instruction set that allows you to organize the 
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computational process on any memory device, iv) logical vectors assume their simple placement in memory 

without time-consuming synthesis into a technologically permitted system of elements, v) an address is an 

attribute of memory and truth tables and a fault as address simulation mechanism, vi) smart data structures 

reduce the algorithm for their analysis to linear computational complexity, vii) all digital functionality testing 

tasks are solved using a logical vector and its derivatives, and viii) the simulation of tests and faults on the 

truth table addresses does not include the simulation algorithm. Everything set out in the metric of vector-

logical computing, as well as models, methods, algorithms, and mechanisms for fault as address simulation, 

is new and has no global analogs. The advantage of the proposed study is that it reduces models and 

algorithms to simple engineering mechanisms. 

 

 

2. DEDUCTIVE MATRIX SYNTHESIS  

The truth table is an ideal model for solving all combinatorial problems, including test synthesis and 

fault simulation [17]. The logical vector is the most compact universal model of a logical element. D-matrix 

is a genome for solving all problems in the field of design and testing. These three models comprise smart 

data structures for organizing any in-memory testing SoC IP-core. The properties of the deductive matrix 

obtained from the logical vector for solving the problems of synthesis and analysis of the test by simulation 

faults are considered. Smart data structures make it possible to solve the problem of transporting input faults 

to the output without simulation when a binary set is put to the inputs of a logic element. The problem of 

synthesis of a minimum test for input faults of a component is also solved by trivial analysis of the deductive 

matrix. The essence of these methods is to build smart data structures based on a logical vector (truth table), 

by interacting the logical vector “with itself,” a quadratic matrix of the activity of the logical element is built. 

Recoding the coordinates of this matrix by binary-decimal addresses leads to a deductive matrix, which 

initially solves the problems of test generation and fault simulation efficiently. The computational complexity 

of solving these problems is determined by a quadratic estimate of the length of the logical vector С=2𝑛 × 

2𝑛. To create a deductive matrix, follow five steps of the algorithm as shown in Figure 1. 

 

 

 
 

Figure 1. Algorithm for creating deductive matrix 

 

 

i. Initial data: the logical L-vector of functionality from n-variables is written horizontally and vertically in 

the active A-matrix in Figure 2. 

ii. The activity matrix A, consisting of logical vectors and their inversions, is created based on the given 

logical vector. Construction of A-activity table rows as shown in Figure 2 carried out according to the 

rule: 𝐴𝑖= L⨁Li. Here 𝑄𝑖  , the state of the i-bit of the logical (vertical) L-vector. Put, if the coordinate of 

the vertical L-vector is equal to 1, then the inversion of the logical vector Ai= L̅ is written to the 

corresponding row of the A-matrix. Otherwise, the logical vector 𝐴𝑖 =L is written to the row. Empty 

cells in the matrices denote zero coordinates to reduce the load on vision. The activity A-matrix is 

always symmetrical in relation to the main diagonal. A deductive matrix is an active matrix, bits of 

which are ordered by binary-decimal addresses via an H-matrix. 

iii. The bit-recoding matrix H is needed to build a deductive matrix quickly. The H-matrix is the same for all 

logical functionalities from n variables. The recursive mechanism of H-matrix synthesis in Figure 3 uses 

the operations sequentially to calculate the coordinates of the four quadrants: 1) Hi+1
1 = Hi; 2) Hi+1

2 =
2𝑛 + Hi; 3) Hi+1

3 = Hi+1
2 ; Hi+1

4 = Hi+1
1 . 
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iv. Creating of deductive D-matrix by the formula: Dj = LHij
, j = 1,  2𝑛̅̅ ̅̅ ̅̅ ̅ , which recodes the bits of the A-

activity matrix according to the H-matrix recoding coordinates addresses (obtained in step 3 of the 

algorithm). Thus, the D-matrix is obtained based on the execution of the operator D= (L⨁Li)H, obtained 

because of the superposition of the operators: A = L⨁Li and D= AH. D-matrix is a genome for solving 

all problems in the field of design and testing. 

v. A synthesis of a logical functionality testing map is carried out using a deductive matrix. Section 5 of 

this paper will describe this procedure. 

 

 

 
 

Figure 2. Procedure for creating a deductive matrix 

 

 

 
 

Figure 3. Recursive scheme for obtaining H-matrix of recoding 

 

 

3. ANALYSIS OF DEDUCTIVE MATRICES  

It is straightforward to create deductive matrices of logical functionalities in n-variables. However, it 

remains to clarify the deductive matrix’s beneficial properties for solving fault simulation problems and 

testing the generation of logical functionalities. Deductive matrices of three essential elements from three 

variables have the form in Figure 4. 

The first helpful property of the deductive matrix is that without simulation, it determines all input 

faults detected on the test set. Simulation formula: Based on the binary test set, a row of the D-matrix is 

selected, the 1-unit values of which activate the 1-unit coordinates of the upper fault TT, which are 

additionally determined by the inverse values of the coordinates of the selected column of the truth table 

equal to the test set. Following the simulation formula, we determine which faults are detected on test set 101 

of all three elements. The first matrix gives the following result: stuck-at-1 is detected on the second input 

X2=1. The second matrix forms the result of the multiple fault check: X1, X3 = 00. The third matrix forms the 

following checked stuck-at-faults: X1 = 0, X2 = 1, X3 = 0, multiple fault X1 , X2, X3 = 010. Thus, the 
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deductive matrix without simulation detects faults of any combination on the binary input set, which are 

described by 1-unit coordinates in the columns of the fault TT. All interacting components, such as tests, 

faults, and logic, are defined on the same truth table (logical vector), the derivative of which is the deductive 

matrix. 

 

 

 
 

Figure 4. Deductive matrices of three basic logical functions 

 

 

4. DEDUCTIVE REVERSIBLE CONVERTER 

Next, a deductive reversible converter is proposed that, without simulation, allows you to determine 

all the faults detected on test sets (define test sets for detected given faults), thanks to the superposition of 

smart data structures in memory [17], including two truth tables: test TT, faults TT and deductive D-matrix. 

Figure 5 shows an example of the synthesis of a deductive matrix and its leverage for fault simulation and 

test generation on the same data structures. Empty cells in the active and deductive matrix and faults TT 

indicate zero coordinates. 

 

 

 
 

Figure 5. Synthesis of the deductive matrix of a logical element 

 

 

Using the deductive matrix, one can quickly generate a test for stuck-at-faults of the input variables 

(columns 1, 2, 4), which has the form of T = (110, 111, 101, 111, 011, 111) = (110, 101, 011, 111). The test 

is obtained by projecting each column (1, 2, 4) with faults to all 1-unit coordinates of the D-matrix, the 

projection of which onto the test TT rows form the minimum test. Geometrically, the algorithm is represented 

by the angle “↲” of two arrows that define test sets by the deductive matrix: ↓ – from each chosen column of 

faults TT, descend to the intersection with the matrix 1-units, ← – then from the matrix 1-units we move to 

the left until the intersection with the rows of the test TT. 

As for the simulation of faults for the L=01111111 element: let us have 4 test sets: 110, 101, 011, 

111. When simulating manually, we will carry out such a “→↑” movement along the matrix from the test set 

to the right until it intersects with 1-units and then up from them to the intersection with the columns of faults 

TT, where each 1-unit of the column is converted into a fault, the sign of which is determined by the 

inversion of the state of the input variable on the test set. The results of the simulation of faults on test sets 

are as follows: 110 – X1 = 1, 101 – X2 = 1, 011 – X1 = 1, 111: X1 = 0, X2 = 0, X3 = 0, and all their four 

possible combinations. 
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An innovative solution to design and test problems is practically proposed as a universal deductive 

reversible converter “test faults” and “faults → test” based on the deductive matrix in Figure 6 for logical 

functionalities of any dimension. The functions of the converter are i) fault simulation on test sets F=D(T) 

and ii) generating test sets that detect given faults T=D(F). On the converter, it is possible to perform fault 

diagnosis of logical devices on given test sets and verify the test to detect a given set of faults in a logic 

element in percent. 

 

 

 
 

Figure 6. Deductive reversable test–fault converter and his two functions 

 

 

To create such a converter from three smart (connected) components, it is necessary to generate the 

rows A-activity matrix leveraging the coordinate-vector operation Ai= L⨁Li based on the logical L-vector 

and transform it into a deductive D-matrix using the recoding matrix of coordinates addresses D=AH as 

shown in Figure 7. The recoding matrix is the universal key for obtaining the deductive matrix of any n-input 

element. The deductive matrix is a genome for solving all the problems of testing digital functional elements 

of any complexity. The formula for obtaining the D-matrix is D= (L⨁Li)H. 

 

 

 
 

Figure 7. Scheme for obtaining a deductive matrix 

 

 

The fee for creating such services is a sufficiently large memory required to store the deductive 

matrix and two truth tables M = 2𝑛 × 2𝑛+2 n × 2𝑛, n – the number of input variables of the functional logic 

element. If we talk about the entire fault simulation mechanism (FSM) in Figure 8, then its implementation 

also requires memory for the synthesis of the deductive matrix: M =2 ×( 2𝑛 × 2𝑛) + 2𝑛. The memory 

estimation for data storage (logical vector, two truth tables, and three quadratic matrices) to implement the 

entire FSM is M =3( 2𝑛 × 2𝑛)+ 2𝑛+ 2n× 2𝑛. 
 

 

 
 

Figure 8. The structure of the fault simulation mechanism 

 

 

Let us talk about the novelty of the research. Smart data structures based on the logical L-vector of 

the element are described here, which allows the creation of a deductive matrix (blocks 1 to 4) and leverage it 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

 Vector synthesis of fault testing map for logic (Vladimir Hahanov) 

299 

as a reverse in-memory converter for fault simulation and test synthesis (blocks 4 to 6) based on truth tables: 

Test TT, Faults TT and deductive D-matrices, which form a common topological space used to describe 

FSM. This mechanism contains four procedures for sequentially creating four matrices based on a logical L-

vector: A-matrix – H-matrix – D-matrix – S-matrix (simulation). The last matrix is also called the fault 

testing map (FT-map). In this scheme, the essence of the mechanism for fault simulation of logical elements 

of any dimension. It could not be easier. 

The formula of D-matrix synthesis [17], as presented in Figure 8, are as follows. According to the 

logical L-vector of functionality (block 1) a quadratic A-matrix of activity (block 2) is created, where each 

row is a logical vector or its or its inversion Ai= L⨁Li depending on the state of the i-cell of the L-vector and, 

then all the coordinates of the resulting A-matrix are ordered by the indices of the quadratic recoding H-

matrix (block 3) to obtain a deductive D-matrix (block 4 and 5), which is a reverse converter of the test set 

into detected faults and vice versa, where the 1-unit values of the D-matrix coordinate define a one-to-one 

correspondence between the rows (test sets) of test TT (block 6) and columns (combination of faults) faults 

TT (block 7). Formula for fault simulation: from the selected test set, move to the right along the term of the 

deductive matrix until it intersects with 1-coordinate, then move up from each 1-unit until it intersects with 

the columns of faults TT, where the inverse states of the input variables of the test set further define the 1-

unit coordinates. Formula for test synthesis: from selected in faults TT of the column as combinations of 

faults specified by 1-units, the movement is carried out down the deductive matrix until it meets the 1-units 

of the D-matrix, after which it moves from 1-units to the left until it meets the test sets of Test TT, which 

always detect combinations of faults that are inverse to the states of the variables on the test set. 

The technological novelty of the fault simulation mechanism lies in placing all components of smart 

data structures (6 components) in any memory that can be processed by a limited set of logical commands in 

the limit read–write transactions. The synthesis and operation of the converter do not require a powerful 

system of CPU instructions, which makes it economical in terms of energy and time for fault simulation (test 

generation) since a read-write transaction on emergence memory is completed in 1 ns. 

 

 

5. SYNTHESIS FAULT TESTING MAP 

The goal is to move from a deductive matrix to an explicit assignment of all faults to be detected on 

test input sets. To do this, it is necessary to define all 1-coordinates of the deductive matrix with fault vectors 

detected on the test set by constructing a projection of the 1-coordinate of the matrix onto the vectors of the 

test and fault truth tables. In other words, it is necessary to record the faults detected on the test set in the 1-

coordinates of the deductive matrix. To do this, superpositions of two truth tables are performed: tests and 

faults based on a deductive matrix. 

The examples of processing logical functionalities as shown in Figure 9 are switch circuits and 

adder circuits. These circuits have a known structure, but only a logical vector synthesizes the test-fault 

converter. Obtaining a fault testing map for these two functionalities is accompanied by three operations 

presented from left to right in Figure 10: i) obtaining an activity matrix by manipulating a logical vector, ii) 

synthesizing a deductive matrix based on applying bit transcoding matrix activity to the matrix, and iii) 

constructing a test-fault map by superposition of test sets with fault table codes at 1-values of the coordinates 

of the deductive matrix. 

 

 

 
 

Figure 9. Logic circuits considered as elements 
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Figure 10. Build fault testing map for two circuits treated as elements 

 

 

The formula for constructing a fault testing map from a deductive matrix: each 1-coordinate of the 

deductive matrix is determined by the inverse values of the coordinates of the test (left) set for all 1-

coordinates of the (upper) vector of the fault table. The obtained vector of the faults to be tested in place of 

the unit coordinates of the deductive matrix is determined by the alphabet (0,1, “.”), where the third character 

indicates the absence of a fault check at this input coordinate. Each unit coordinate of the deductive matrix 

denotes the meeting point of the test set with the fault vector, which forms, at this point, the vector of input 

faults checked on the test set. Thus, the test-fault card solves the issues of fault simulation, fault diagnosis, 

and test generation for logical functionality of any complexity without processing. Given that any process or 

phenomenon can be easily digitized and turned into a logical function, this map can serve as a tool for 

identifying errors in a business process, a social process, or a critical process, including transport, nuclear 

energy, astronautics, and urban infrastructure. Figure 11 shows the symmetrical circuit and its representation 

as a function. The synthesis of the fault testing map in Figure 12 of the functionality specified by the logical 

vector 11000011. The deductive D-matrix is a genome for solving all problems of testing digital functional 

elements of any complexity. The formula for obtaining a D-matrix is D=(L⨁Li)H. D-matrix functions are 

fault simulation on test sets F=D(T) and definition of test sets for fault detection T=D(F). These two 

functions are explicitly shown on the fault testing map. 

The formula for the synthesis of the D-matrix: a quadratic A-matrix of activity is constructed from 

the logical L-vector of functionality, where each line is a logical vector or its or an inversion Ai=L⨁Li 

depending on the state of the i-cell of the L-vector, then all the coordinates of the resulting matrix are ordered 

according to the indices of the quadratic H-matrix (secret key) of bit recoding to obtain a deductive D-matrix, 

which is a reversible converter of the test set into testable faults and vice versa, where the unit values of the 

coordinates of the D-matrix build a functional correspondence between the truth table test sets and the faults 

being tested fault truth table. This fault simulation mechanism has no global analogs regarding 

manufacturability and efficiency. H-matrix bit recording brings the unordered bits of the A-matrix activity to 

the standard order of the addresses of the D-matrix rows and columns defined by the binary addresses of the 

test and fault truth tables. 

 

 

 
 

Figure 11. Structural and functional circuits with symmetry 
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Figure 12. Fault testing map synthesis for symmetric logical functionality 

 

 

The superposition of the D-matrix and the two truth tables (test and fault) creates a test-set and fault-

set coordinate system (T, F) for all 1-units of the D-matrix. The test map synthesis formula is determined by 

the superposition of a pair of coordinates for each 1-unit cell of the D-matrix to determine the 1-coordinates 

of the fault-set with the inverse values of the corresponding bits of the test-set according to the simple rule: If 

Fi =1, then Di=Ti̅. The truth table of this analytical coordinate converter (T, L) to F is shown in Table 2. 

 

 

Table 2. Identifying input line faults 
Ti Li Fi 

0 0 . 

0 1 . 

1 0 1 
1 1 0 

 

 

Similarly, you can create an alternative test map by placing test vectors on the unit coordinates of 

the D-matrix, which will detect faults defined in the fault truth table. Thus, it can be argued that the D-matrix 

is the genome for solving all the problems of functional testing. The matrix’s unit coordinates indicate critical 

functionality areas that test benches must detect. It can be argued that the fault truth table of functionality is a 

universal source form from which all kinds of faults and functional coverage are extracted. A test is built for 

malfunctions if the goal is to determine the location, cause, and types of defects in the circuit or model. The 

functional coverage test aims to verify the functionality defined in the specification. There may be errors in 

the synthesis stages when one functionality is synthesized. To do this, it is enough to introduce fault into one 

bit of the logical vector. Detection of such faults is possible only on an exhaustive or complete test. A 

compromise or cheaper option can be a test to cover the critical points of functionality determined by 1-

values of the coordinates of the deductive matrix. Automatic test-bench synthesis can substantially reduce the 

time-to-market of a digital product with valid Yield parameters. 

The computational complexity of algorithms multiplied by the redundancy of data structures is a 

constant value C×R = Constant in Figure 13 for solving equivalent problems. Using this rule to synthesize 

the fault simulation mechanism made it possible to reduce the algorithm’s computational complexity to three 

operations on smart and explicit data structures due to their high level of redundancy. At the same time, the 

fault simulation process is reduced to zero operations, thanks to the superposition of smart data compiled 

from two truth tables and one deductive matrix. The simplest implementation of vector-logical fault as 

address simulation starts with functionality with a single variable as shown in Figure 14. Based on the logical 

vector, a deductive matrix and a map of tests and repairs are constructed (00, 01, 10, 11). 

 

 

 
 

Figure 13. The relationship between complexity and redundancy 
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Figure 14. Synthesis of a test map for logical functions of a single variable 

 

 

The following are the results of a Python application designed to verify data structures and fault 

modeling algorithms. The fault testing map of the most common functions of two variables in Figure 15 

given by logical vectors is presented: 0111 – L=𝑥1 ∨ 𝑥2, 0001 – L=𝑥1𝑥2, 1011 – L=𝑥1 ∨ 𝑥̅2, 1101 – 𝑥̅1 ∨ 𝑥2, 

0110 – L=𝑥̅1𝑥2 ∨ 𝑥1𝑥̅2, L=1001 – L=𝑥̅1𝑥̅2 ∨ 𝑥1𝑥2. The primary purpose of a fault testing map is to simulate 

(stuck-at and multiple) faults without simulation on input test sets. The H-matrix is the key for fast synthesis 

of the deductive matrix and fault testing map. The H-matrix is the same for all logical functionalities from n 

variables. A synthesis of maps for testing the essential logical functions of two variables is presented. This 

information can be helpful for engineers and students who wish to master the mechanisms of fault 

simulation, as the truth table addresses. Having learned this lesson, a specialist can manually build a test map 

for any functionality. Alternatively, a test map synthesis program can be created in a few hours, where the 

input data is a logical vector, and that is it. 

 

 

 
 

Figure 15. Fault testing map synthesis for the 2-input logic 
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The second property is that, with a fault testing map, minimal tests can be obtained easily by finding 

the minimum coverage of all input faults with the minimum number of input test sets. The second applicable 

property of the fault testing map is that, without synthesis, it defines minimized input test sets that detect the 

input stuck-at faults of a logic element. Minimum test synthesis is based on covering faults (stuck-at-0, stuck-

at-1) of the input lines specified in the coordinates of the matrix with the minimum number of test input sets. 

For the Schneider circuit [32] in Figure 16, a deductive matrix in Figure 17 was constructed using 

the logical vector 1000000000000001. In this example, the advantages of the proposed fault simulation 

mechanism are emphasized, which consists of the invariance of four simple procedures for building a fault 

testing map to the dimensions of the logical vector. The only inconvenience for a person is the large size of 

the fault testing map. Therefore, to prove the validity of the simulation mechanism, we used simple 

functionalities that emphasize the beauty and simplicity of this technology regarding existing analogs in the 

world. 

 

 

 
 

Figure 16. Symmetrical Schneider circuit 

 

 

 
 

Figure 17. Deductive matrix synthesis of the Schneider circuit 

 

 

Based on the deductive matrix, a fault testing map in Figure 18 is built to simulate the faults of input 

variables without simulation and synthesize the minimum test by finding the optimal fault coverage of the 

input test sets. As it turns out, the minimum test to detect all the faults of the input functionality variables will 

be the minimum test to detect all the faults of the circuit’s input and output lines. The minimum test input 

sets are six test vectors: 0000, 0001, 0111, 1000, 1110, 1111. 

The fault testing map of the Schneider circuit corresponds between the input test sets and the faults 

to be detected, which are placed in the cells of the matrix. When the tests are placed in the cells of the matrix, 

it is not difficult to build an alternate match. Such a matrix would focus more on solving the coverage 

problem to find the minimum test. 

The development of this FSM is supposed to create trivial technological algorithms for processing 

circuits, including structures with global feedback. The mechanism’s advantages are the simplicity and 

clarity of smart data structures and the ease of human understanding of creating a fault testing map for 

simulating faults and generating tests. 

Smart data structures and fault simulation algorithms are implemented in Python code. The 

complexity of the program code for implementing the fault simulation mechanism is estimated at 500 lines. 

The algorithms were verified on several dozen functional elements, for which fault testing maps were built. 

The FSM takes only 90 minutes to teach students. 
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Figure 18. Fault testing map for input variables of the Schneider circuit 

 

 

 

6. CONCLUSION 

In-memory computing architecture is proposed based on read-write transactions over smart data 

structures obtained from logical vectors for fault testing. A deductive synthesis fault testing map for logic is 

proposed, which, without simulation, allows the determination of all faults detected on test sets and the 

determining test sets to check specified faults. A superposition of smart data structures is synthesized, 

containing a deductive matrix D as a derivative of the logical vector L, test truth table T, and fault truth table 

F. The deductive matrix is seen as the gene of functionality that solves all the problems of testing and 

verification. In the matrix synthesis, an axiom is used: all the mentioned tables are identical in shape to each 

other and constantly interact with each other convolutionally T⨁L⨁F=0. A universal deductive reversing 

converter, “test-faults” and “faults-test” for logical functionalities of any dimension, is proposed. Converter 

functions: fault simulation on test sets T→F and synthesis of test sets F→T to detect the specified faults. The 

converter can be used as a test generation and fault simulation service for IP-core SoC under the IEEE 1500 

SECT standard. Based on the deductive matrix, a fault testing map for logic is built, where each test set is 

matched with the detected stuck-at and multiple faults of the input lines. This fault testing map is designed 

for automatic test or test-bench synthesis, covering all critical points of verifiable functionality defined by 1-

unit values in the deductive matrix. Automatic test-bench synthesis can substantially reduce the time-to-

market of a digital product with valid Yield parameters. 

The metric of the novelty of the proposed study: A new scientific direction of vector logical 

computing (VLC) is proposed. This is processor-free computation in memory based on read-write 

transactions on logical vectors. New vector logic computing metrics for fault modeling and simulation are 

represented: i) professorless data processing means energy-saving computing technology, ii) the absence of 

the classical von Neumann architecture means no iterations between the data bus between memory and the 

ALU, significantly reducing data processing time, iii) read-write transactions instead of a robust processor 

instruction set that allows you to organize the computational process on any memory device, iv) logical 

vectors assume their simple placement in memory without time-consuming synthesis into a technologically 

permitted system of elements, v) an address is an attribute of memory and truth tables and a fault as address 

simulation mechanism, vi) smart data structures reduce the algorithm for their analysis to linear 

computational complexity, vii) all digital functionality testing tasks are solved using a logical vector and its 

derivatives, viii) the simulation of tests and faults on the truth table address does not include the simulation 

algorithm, ix) everything set out in the metric of vector-logical computing, as well as models, methods, 

algorithms, and mechanisms for fault as address simulation, is new and has no global analogs, and x) the 

proposed study’s advantage is that it reduces models and algorithms to simple engineering mechanisms. 

Future research directions involve fault-in-memory digital circuit simulation with feedback using 

only read-write transactions. A new faults-as-address simulation (FAAS) Technique will be presented that 

leverages input faults combination as the address of deductive vector bits, which forms the output vector of 

the detected input faults in logic elements. The FAAS technique is proposed for digital circuit simulation, 

where logical vectors represent elements as a compact form of the truth table. 
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