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 The artificial neural network (ANN) with a single layer has a limited 

capacity to process data. Multiple neurons are connected in the human brain, 

and the actual capacity of the brain lies in the interconnectedness of multiple 

neurons. As a specified generalization of ANN deep learning makes use of 

two or more hidden layers, which implies that a greater number of neurons 

are required to construct the model. A network that has more than one 

hidden layer, also known as two or more hidden layers, is referred to as a 

deep neural network, and the process of training such networks is referred to 

as deep learning. The research article focuses on the design of a multilayer 

or deep neural network presented for the target field programmable gate 

array (FPGA) device spartan-6 (xc6stx4-2t9g144) FPGA. The simulation is 

carried out using Xilinx ISE and ModelSim software. There are two hidden 

layers in which (2×1) multiplexer blocks are utilized for processing twenty 

neurons into the output of ten neurons in the first hidden layer and 

demultiplexers (1×2) and vice versa. The hardware utilization is estimated 

on FPGA to compute the performance of the deep neural hardware chip 

based on memory, flip flops, delay, and frequency parameters. The design is 

scalable and applicable to various FPGA devices, which makes the work 

novel. FPGA-based neuromorphic hardware acceleration platform with high 

speed and low power for discrete spike processing on hardware with great 

real-time performance. 
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1. INTRODUCTION 

Deep neural network (DNN) has a lot of popularity due to which is used for most of the 

applications. Like detection applications, specific hardware design of multilayer neural networks is required 

when a general computer is not sufficient as it has limitations in speed, cost of the chip, and consumption of 

energy. A deep learning model is used here which has two hidden layers. The multilayer neural network is 

made up of numerous layers between the input and output layers, with all hidden levels being Fully 

connected.  

Deep learning neural network implementation on field programmable gate arrays (FPGAs) presents 

various challenges, including storage, resource requirements, and memory utilization [1]. Deep neural 

networks are made up of numerous “deep” and hidden layers, and each one of them does a particular task. 

Deep learning is learning about different levels of data representations and their underlying distribution of the 

data [2]. DNNs are most used in video editing applications, such as object detection and real-time speech 
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translation. DNNs will become increasingly significant in medicine, robotics, and finance for weather 

forecasting and detection [3]. DNNs are now the basis for many modern artificial intelligence applications 

[4]. Since the groundbreaking use of DNNs in speech recognition and image recognition, the number of 

places where DNNs have skyrocketed. These deep neural networks are used in a wide range of applications, 

including self-driving cars, cancer detection, and complicated gameplay [5]. In most fields, multilayer neural 

networks can be done much more accurately than humans. Overall, multilayer artificial neural networks 

(ANNs), particularly deep networks, proved themselves better at handling complicated tasks such as image 

identification, speech recognition, language translation, and others, making them an essential component of 

modern artificial intelligence systems [6]. DNNs are used in a wide variety of artificial intelligence 

applications, including computer vision, speech recognition, robotics, and many more. DNNs can achieve 

cutting-edge accuracy on a wide variety of artificial intelligence tasks [7]. The computational complexity of 

these networks is rather high. Better performance, higher bandwidth, and deterministic low latency are 

achieved with the usage of FPGA and HDL in the design of programmable processors. Parallel processing 

and operations [8] are the foundation of the architectures of ANN to process neuronal information, regular 

chips are unable to sustain a huge number of highly simultaneous processes [9]. Several distinct processors 

that enable parallel processing are included in the artificial intelligence-based hardware chip. 

The problem statement of the work is to design the deep neural network hardware chip and estimate 

its performance on FPGA. The chip is designed for 20 neuron input and each neuron input is of 8 bits. Each 

20-neuron input is multiplied by 20 input weights and each weight is 8-bit so when these 20 input weights are 

multiplied by 20 neuron inputs in the multiplier it gives a 16-bit output. The multiple demultiplexer (1×2) is 

used which again converts 10-neuron output into 20-neuron output which is given to the second hidden layer. 

A control logic is used in this neuromorphic hardware chip design which is used to feed multiplier output to 

each input of the hidden layer. The hidden layer output is then given to the multiplexer which has 20 inputs 

and one single output. The mux has a 5-bit selection line which can be used to select any of the 20 outputs of 

the control logic. Hardware utilization characteristics such as slices used, look-up tables (LUTs), flip-flops 

(FFs), input/output blocks (IOBs), memory, and total propagation latency are used to calculate the deep 

neural hardware chip’s performance. 

 

 

2. RELATED WORK 

Although software can easily create multilayer neural network models on computers, there are 

numerous challenges when designing deep neural networks on silicon. These challenges include 

implementing the multiplication of input with weights at each layer, designing the storing network weights, 

and activation function, and selecting an appropriate number format for calculations. To achieve performance 

efficiency, each layer in a deep ANN architecture, which will be the focus of this work, necessitates its own 

independent space for memory and its weight. In a deep network that has two or more hidden layers, the 

memory requirement for the weight matrices of the entire network increases at the fastest as its network’s 

size and memory accesses grow. Furthermore, computations within each layer should be executed in parallel 

for applications requiring high speed. These characteristics have a substantial influence on the efficiency and 

performance of DNNs. In this context, the FPGA is viable for implementing a DNN accelerator. The 

designing of deep ANN and the use of FPGA is very prevalent in research areas [10], [11]. convolution 

neural networks (CNNs) have been used for real-time embedded systems, exploring the impartial 

classification of cutting-edge system-on-chips [12]. Multi-dimensional trade-offs are investigated to 

configure programmable accelerators for neural interpretation using the finest software libraries. The 

framework is open source to promote fair benchmarking assessments. It has become increasingly common to 

design multilayer perceptron neural networks on reconfigurable hardware to carry out a wide range of 

applications, including pattern recognition and classification. The purpose of the research by Huynh [13] was 

to investigate the combined impact of neural network size and decreased precision number formats, which 

are utilized for the representation of the ideal parameters, on the recognition rate of a handwritten digit 

recognition system that is based on neural networks. ANN architecture [14] was evaluated on Virtex-5 FPGA 

for pattern recognition and tested for scalability and hardware resource use. Deep learning is now the most 

advanced solution for almost all significant machine-learning tasks in a wide range of domains [15], [16]. 

Deep learning techniques outperform typical machine learning algorithms that require human feature 

extraction (handcrafted features) [17]. Deep learning models extract hierarchical features and perform better 

as the amount of data increases [18]. There are various deep learning methods and architectures applied in the 

design, such as multi-layer perceptron (MLP), deep belief network (DBN), autoencoder (AE), CNNs, 

recurrent neural network (RNN) with long short-term memory (LSTM) and gated recurrent units (GRU), 

generative adversarial network (GAN), deep reinforcement learning (DRL) [19]. These models have spanned 

a wide range of fields and applications. Deep learning architectures have enabled autonomous driving (AD) 
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systems [20] to acquire a high level of precision in their performance; these systems are comprised of 

numerous perception-level tasks. Traditional supervised learning methods are no longer applicable to the 

many tasks that make up autonomous driving systems, except for perception. In computer vision 

applications, CNN models have demonstrated encouraging outcomes in areas including robotics, autonomous 

vehicle vision systems, and drone navigation [21]. In healthcare, CNNs have also outperformed other 

methods, especially for image identification. 

It has been used to detect tumors or other types of lesions by more experienced radiologists [22]. 

Brain images have been used for humans for magnetic resonance imaging (MRI) that detects disease 

Alzheimer’s with the help of CNN [23]. Deep learning methodologies [24] have proved effective in 

addressing artificial intelligence difficulties, while FPGAs have been used to improve reconfigurable 

computer hardware and software for artificial intelligence design. Multilayer Networks have been 

designed using FPGA [25]. Graphic processing units (GPUs) are unsuitable for embedded applications due 

to their high-power consumption. Many academics have explored techniques to create deep neural 

networks on low-power hardware [26]. The most expensive operations in deep convolutional neural 

networks (DCNNs) are generated by deep CNNs, which are made up of numerous layers of three-

dimensional convolutions, each of which has between tens and hundreds of filters. The restriction of 

flowing data in and out of the hardware chip accelerator, which is synthesized on Xilinx Zynq-7000, is a 

challenge for systems that run DCNNs. These systems are required to pass 3D input maps to the hardware 

accelerators to perform convolutions [27]. An implementation of High-Level Synthesis was employed on a 

Virtex-6 FPGA board, and CNN was utilized [28] to analyze the design flow. The FPGA resources can be 

decreased by up to 13 times when compared to accelerators that use traditional scratchpad memories, 

while yet maintaining the same level of performance. A fixed point DNN is designed on FPGA and uses 

any external memory. Its power consumption and time of execution are compared with GPU-based 

implementation [29]. To construct feed-forward deep neural networks in real-time, GPUs are commonly 

used due to the high amount of arithmetic and memory operations required [30]. The implementation of an 

optimized deep learning architecture was carried out on a parallel computing platform. This architecture 

featured flexible layer topologies and fast matrix operation kernels. This is the design to support minimum 

hardware utilization [31]. The integration of several types of deep architectures into a unified neural 

training-testing system is accomplished by the implementation of layer-wise procedures that have been 

meticulously designed. A neural network hardware model can be designed on FPGA. This neural model 

contains more types of layers, connections, and data [32]. Retraining via backpropagation was created as 

an alternative to direct weight quantization [33]. Feedforward DNNs with several hidden layers function 

well in many requests, but they require complex hardware. The system hardware complexity can be 

minimized by reducing the weights and signal word length. Quantized weights and fixed-point signals are 

used in backpropagation for retraining and output computation. However, precision numbers are used to 

change networks [34]. The developed networks typically used 2 to 8 bits for weights and more than 7 bits 

to represent signals in analog or high-precision fixed points [35]. Limited work has been done in the 

domain of hardware chip design and synthesis on the specific hardware specifically targeting any FPGA 

hardware and deep neural network processing. The problem statement of the presented work is to design 

the scalable hardware chip of a deep neural network and evaluate the system performance in terms of 

delay, frequency, LUTs, and memory.  

 

 

3. METHODS 

The system design includes an input layer, two hidden layers, and only one output layer. The design 

of the deep neural hardware chip consists of hidden layers which are more than one. The two hidden layers 

are used, and multipliers are used for multiplying the neuron inputs with the neuron’s weight, apart from the 

(2×1) multiplexer component, the demultiplexer (1×2) component and one (8×1) multiplexer component are 

used. Figure 1 presents the basic building blocks for the multilayer Feed-forward artificial neural network 

(MFFANN). Figure 2 represents the design of a multilayer neural network. It consists of one input, two 

hidden layers, and one output layer. The design of this multilayer ANN is done in VHSIC Hardware 

Description Language (VHDL) using an FPGA Spartran-6 device. The main parts of the system design are as 

follows. 

− Multiplier: The input layer is implemented using a multiplier that multiplies (0-19) neuron input with 20 

neuron weights and each input consists of 8-bit neuron input and gives a single 16-bit output after 

multiplication. X0, X1……….X19 as the inputs of neurons, and W0, W1……. W19 as the weights by 

multiplying this in the multiplier we get the output Y0, Y1……. Y19, which is 16-bit. 

− Control Logic: The control logic is used for the hidden layer. The output of the multiplier, which is Y0, 

Y1, Y2……. Y19 is given to the control logic the input of the control logic is taken as M0, M1, 
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M2…….M19 each is of 16-bit input and N0, N1, N2……. N19 is the output of the control logic which is 

also 16-bit. After this, the 2×1 multiplexer is used. 

− Multiplexer (2×1): There are 20 outputs of the control logic each pair of two outputs is given to a (2×1) 

multiplexer, so the 20 outputs of the control logic now become 10 outputs. 

− Demultiplexer (1×2): The 10 outputs of the (2×1) multiplexer are again given to the (1×2) 

demultiplexer which now becomes 20 outputs, and the output of the (1×2) demultiplexer is again given 

to control logic which is the second hidden layer. The 20 outputs of the control logic are given to the 20 

to1 demultiplexer so we get the single output of 16 bits from this. 

  

 

 
 

Figure 1. Multilayer feed-forward artificial neural network (MFFANN) 

 

 

 
 

Figure 2. Block diagram representation of MFFANN 

 

 

Adders and multipliers are important components that are utilized in ANNs to carry out the crucial 

mathematical operations that are required for processing and learning. This is a comprehensive look at the 

roles that they play [35]. In an ANN each neuron gets several inputs, each of which has a weight associated 

with it. The net input to the neuron is formed by adding up all these contributions to the neuron. Each input 

that is received by a neuron is multiplied by the weight that corresponds to that input. To alter the influence 

that each input has on the output of the neuron is an extremely important step. His multiplication takes place 

for every input that the neuron receives. Multipliers are utilized in the process of calculating gradients during 

the training of ANNs that are trained using backpropagation. The process of multiplying derivatives is 

performed to calculate the error gradient regarding the weights and inputs. It is essential for hardware 
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accelerators such as FPGAs and application-specific integrated circuits (ASIC) that are used for neural 

networks to have adders and multipliers that are implemented properly and efficiently. ANNs can have their 

speed greatly increased and their power consumption dramatically decreased if they are designed with 

optimized adders and multipliers, such as carry-lookahead adders and booth multipliers, respectively. The 

concept of parallelism is utilized in hardware implementations. The inference and training processes can be 

sped up by designing multipliers and adders to run in parallel [36]. This allows for the simultaneous 

computation of many neuron outputs, which speeds up the process. The characteristics of a neural network 

refer to the variables and qualities of the dataset [37]. To enhance the accuracy of your model, it is customary 

to use a subset of variables. Therefore, the attributes of a neural network are in the input layer, rather than the 

nodes in the hidden layer. In ANNs, the basic activities of summing weighted inputs and computing gradients 

are performed by adders and multipliers, which are essential components for conducting these operations 

[38]. The performance and energy efficiency of neural network hardware accelerators are directly correlated 

to the efficiency with which they are implemented. 

 

 

4. RESULTS AND DISCUSSION  

The design structure of a multilayer feed-forward neural network hardware chip consists of the 

multiplier, control logic, multiplexers (2×1), demultiplexers (1×2), and another multiplexer (20×1) 

components. Figure 3 shows the RTL representation of a multilayer neural network.  

 

 

 
 

Figure 3. RTL of multilayer ANN 

 

 

Figure 4 presents the simulation inputs verified in the simulation and Figure 5 presents the 

simulation waveform outputs of a multilayer neural network simulated in the design. Figure 6 presents the 

multilayer hardware chip utilization chart, and Figure 7 presents the multilayer hardware chip utilization pie 

chart. The usage of RTL is to present the complete details of the input and output pins in the design. The 

simulation input and output pins with stimuli inputs are shown in the waveforms in the form of binary data. 
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Figure 4. Simulation waveform of inputs for multilayer ANN 

 

 

Neuron_X0_input (7:0) presents the 8-bit input of the neuron X0 and Neuron_Weight_W0_input 

(7:0) presents the corresponding weight input. Neuron_X1_input (7:0) presents the 8-bit input of the neuron 

X1 and Neuron_Weight_W1_input (7:0) presents the corresponding weight input. Neuron_X2_input (7:0) 

presents the 8-bit input of the neuron X2 and Neuron_Weight_W2_input (7:0) presents the corresponding 

weight input. Neuron_X3_input (7:0) presents the 8-bit input of the neuron X3 and Neuron_Weight_W3_input 

(7:0) presents the corresponding weight input. Neuron_X4_input (7:0) presents the 8-bit input of the neuron 

X4 and Neuron_Weight_W4_input (7:0) presents the corresponding weight input. Neuron_X5_input (7:0) 

presents the 8-bit input of the neuron X5 and Neuron_Weight_W5_input (7:0) presents the corresponding 
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weight input. Neuron_X6_input (7:0) presents the 8-bit input of the neuron X6 and Neuron_Weight_W6_input 

(7:0) presents the corresponding weight input. Neuron_X7_input (7:0) presents the 8-bit input of the neuron 

X7 and Neuron_Weight_W7_input (7:0) presents the corresponding weight input. Neuron_X8_input (7:0) 

presents the 8-bit input of the neuron X8 and Neuron_Weight_W8_input (7:0) presents the corresponding 

weight input. Neuron_X9_input (7:0) presents the 8-bit input of the neuron X9 and Neuron_Weight_W9_input 

(7:0) presents the corresponding weight input. Neuron_X10_input (7:0) presents the 8-bit input of the neuron 

X10 and Neuron_Weight_W10_input (7:0) presents the corresponding weight input. Neuron_X11_input (7:0) 

presents the 8-bit input of the neuron X11 and Neuron_Weight_W11_input (7:0) presents the corresponding 

weight input. Neuron_X12_input (7:0) presents the 8-bit input of the neuron X12 and 

Neuron_Weight_W12_input (7:0) presents the corresponding weight input. Neuron_X13_input (7:0) presents 

the 8-bit input of the neuron X13 and Neuron_Weight_W13_input (7:0) presents the corresponding weight 

input. Neuron_X14_input (7:0) presents the 8-bit input of the neuron X14 and Neuron_Weight_W14_input 

(7:0) presents the corresponding weight input. Neuron_X15_input (7:0) presents the 8-bit input of the neuron 

X15 and Neuron_Weight_W15_input (7:0) presents the corresponding weight input. Neuron_X16_input (7:0) 

presents the 8-bit input of the neuron X16 and Neuron_Weight_W16_input (7:0) presents the corresponding 

weight input. Neuron_X17_input (7:0) presents the 8-bit input of the neuron X17 and 

Neuron_Weight_W17_input (7:0) presents the corresponding weight input. Neuron_X18_input (7:0) presents 

the 8-bit input of the neuron X18 and Neuron_Weight_W18_input (7:0) presents the corresponding weight 

input. Neuron_X19_input (7:0) presents the 8-bit input of the neuron X19 and Neuron_Weight_W19_input 

(7:0) presents the corresponding weight input. Neuron_mid_layer_source_address (4:0) presents the address 

of the mid-layer blocks to support the design. Neuron_mid_layer_destination_address (4:0) presents the 

destination address of the mid layers to support the design. Mux21_selector is used to select the specific 

multiplexer of the block in input. Demultiplexer12_selector is used to select the specific demultiplexer of the 

block in output. Port_address (4:0) is the address to support the memory blocks. The complete output of the 

entire module is taken by neuron_output (15:0). 

 

 

 
 

Figure 5. Simulation waveform outputs of multilayer ANN 

 



                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 485-494 

492 

 
 

Figure 6. Multilayer hardware chip utilization chart 

 
 

 
 

Figure 7. Multilayer hardware chip utilization pie chart 

 

 

Table 1 lists the hardware parameters utilized by the multilayer hardware chip and the device 

utilization report for this neuromorphic hardware chip is taken from Xilinx software. The number of slices 

used is 960 in the multilayer hardware chip, which is out of a total of 4800, Moreover, the number of slices 

LUTs used is 1547 out of a total of 2400. Input-outputs used are 53 out of a total of 102. The number of DSP 

elements used is 8 out of a total of 8. The total delay used in multilayer hardware chips is 11.688ns. The 

memory utilized for the multilayer hardware chip is 4667944 kilobytes. The target device used is spartan-6 

FPGA with the device (XC6TS4-2TQG144) for simulation and synthesis. The Spartan-6 family offers the 

most advanced capabilities for system integration at the lowest possible overall cost for applications that 

require high volume capacity. It is developed using an established low-power copper process technique that 

operates at 45 nanometers. DNNs require high memory-to-processing unit data transmission rates. Memory 

bandwidth can limit large-scale models with many layers and parameters. When trained and run on non-

optimal hardware, DNNs can use a lot of power. This affects data mobile, centers, and embedded devices 

since energy efficiency is crucial. When working with larger models or more complex DNN tasks, scalability 

requires efficient parallelization across numerous processing units. Due to deep neural networks’ complexity 

and resource requirements, hardware implementation has become harder.  

 

 

Table 1. Hardware parameters utilized by multilayer hardware chip 
Parameter Value 

ANN Chip size ANN-20 
Multiplier used 20 

Target device (FPGA) Spartan-6(xc6stx4-2t9g144) 

Used LUTs FFPs 352/2155 
Slices 960/4800 

Delay (ns) 6.359 

IOBs 53/102 

Memory (KB) 4665304 
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5. CONCLUSION  

The model of neural networks is called a deep neural network when it uses two or more hidden 

layers. DNN chips based on FPGAs can be optimized for particular neural network models or tasks, which 

could lead to better performance than generic alternatives. It is distinguished by the utilization of artificial 

neural networks with various other layers of processing units, sometimes known as neurons or nodes, to learn 

representations of input. These neural networks may automatically identify patterns or features in data 

without the need for explicit programming. The multilayer hardware chip for 20-neuron input is designed in 

Spartan-6 (XC6SLX4-2TQG144) FPGA Xilinx ISE 14.7 successfully. The RTL, internal schematic, and 

simulation of the multilayer hardware are verified. The hardware parameter utilization reports show that 

LUT’s flip-flop used is 352 out of 2155 which is 16.33 %. The number of bonded IOBs used is 53 out of the 

available total 102 IOBs, which is 51.96 %. The number of DSP elements used is 8 total out of 8 which is 

100.00 %, Number of slice registers used is 960 of the total available 4800 which shows that it is 20.00% 

utilized. The multilayer ANN design supported 313 MHz frequency, delay 6.359 ns, memory 4665304 KB, 

and optimal power estimation of 11.45 nW. A new, more efficient dual-register 6-input LUTs logic and a 

large range of built-in system-level blocks are both included in the Spartan-6 family of integrated circuits, 

which offers the best mix of cost, power, and performance. 
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