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 This paper presents the design, development, and evaluation of a 5-degrees 

of freedom (5-DoF) humanoid robotic arm featuring a sophisticated 5-finger 

gripper. The five degrees of freedom include the base, shoulder, elbow, 

wrist, and gripper, all controlled by MG996R servo motors to enhance 

grasping, positioning, flexibility, and mobility. The arm is constructed from 

laser-cut aluminum sheets. It effectively picks and places objects such as 

bottles and bags. A high-speed portable computing system is used to control 

robotics hand operations. A webcam is used for object detection and to 

acquire information about the surroundings. The system uses a convolutional 

neural network-based MobileNet architecture for object detection. The 

robotic hand is used as an assistive aid for amputees. It mimics finger 

movements based on detected objects. The system achieved a precision of 

0.97 for bags and 0.93 for bottles, with accuracies of 96.83% and 92.42%, 

respectively. The system employs advanced computer vision algorithms and 

real-time strategies, ensuring adaptability across various tasks. It integrates 

advanced visual systems and improved feedback to enhance user interaction 

and overall usability. It addresses trade-offs between detection precision and 

processing time. 
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1. INTRODUCTION 

This paper presents the design, development, and evaluation of a 5-degrees of freedom (5-DoF) 

humanoid robotic arm with a sophisticated 5-finger gripper. The 5 DoFs are the base, shoulder, elbow, wrist, 

and gripper. These resources are controlled with servo motors, enhancing the arm’s capabilities in grasping, 

positioning, flexibility, and mobility. Serving as the central control unit is the Raspberry Pi, directing the 

movements of the five servo motors through advanced algorithms to ensure seamless and precise arm 

operations. This robotic arm is developed for the rehabilitation of hand amputees and can be used for other 

industrial applications with certain modifications. 

Factors affecting limb movement and grasp are analyzed by measuring joint angles using Kinect 

depth sensors and MediaPipe Framework [1]. This emphasized the integrated approaches for real-time 

challenges. To oversee the system [2], handheld input devices like joysticks, keyboards, computer mice, and 

touch screens are commonly employed. The constraint of limited DoF presents a hurdle, particularly when 

managing robots with numerous degrees of freedom, such as robotic arms. Additionally, joystick 

manipulation of a robotic arm necessitates non-intuitive transitions between position, orientation, and 

gripping control modes. Nodes [3] can control the arm, plan safe movements, and execute actions to reach 

initial and final positions. Neural network-based [4] learning offers accurate continuous mapping and handles 
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multiple object shapes, enhancing object detection capabilities essential for robotic interaction in varied 

environments [5]. It enables continuous estimation and addresses non-linearities. The suggested strategy in 

[6] seeks to overcome this drawback and improve semantic representation which adopts robotic fingers with 

force sensors designed to hold objects for daily activities like eating and drinking were controlled using a 

proportional-integrated-derivative (PID) algorithm. This arm was designed for children [7]. A robotic arm for 

pick and place robot operation using a greedy algorithm for prioritizing the action is described [8]. Defined 

sequences of operation were used along with image-based object recognition for industrial applications. 

Decision tree-based decision is integrated with rotating the robotic arm in the trajectory defined by the 

sequence of operations [9]. Robotic hand grasping unseen objects is described in [10]. It implemented the 

pick, sense, and place strategy using adaptive techniques. A robotic arm that can grasp objects from outside is 

more common. The arm that holds the object from inside is implemented in [11]. Symmetrical movement for 

grasping is used here for holding the object with stability. Water bottle identification was carried out using 

the YOLOv5 algorithm with 85% accuracy of grasping the bottle by taking the path trajectory [12]. For 

deformable objects, grip strength is important [13] to form a stable grip without damaging the object. Point 

cloud scanned output is used to define the gripper coordinates to hold the object. Tactile sensor-based 

identification of object hardness is carried out using machine learning [14]. The Cartesian robot is trained to 

detect 5 hardness levels using a machine learning algorithm. Twisted strings control the robotic hand [15] 

and intelligent sensing-based grip is achieved. A humanoid 3D-printed hand with 5 fingers with a virtual 

reality-based monitoring system is implemented. Exoskeleton robots are pivotal in stroke rehabilitation, 

utilizing innovative inverse kinematics and robust nonlinear control approaches. These advancements 

enhance trajectory accuracy and ensure stability during passive therapy. Future directions involve integrating 

visual systems like Kinect for further refinement and effectiveness in rehabilitation protocols [16]. Bilateral 

haptic collaboration [17] is proposed for human-robot cooperation, featuring a CoGripper and wearable 

interface. Three user studies confirm efficacy, showing reduced task time and improved grasp control. The 

system integrates sonar sensing and vibrotactile feedback for enhanced communication. Future enhancements 

include automated gripper reconfiguration and improve tactile cues for user recognition. Grasping and lifting 

objects [18] with suitable control remains a challenge in robotics. Neurophysiology sheds light on human 

hand dynamics, inspiring robotic solutions. Real-time processing of tactile data poses computational hurdles. 

A bio-inspired approach utilizing cellular nonlinear/neural networks is proposed, enhancing robotic grasping 

capabilities. Successful grasps of diverse objects validate the system’s efficacy. State of the art manipulators 

control using machine learning algorithms reviewed in [19] indicate cognitive skills development for robots. 

Recent studies [20] have focused on the evolution of robotic arms over the past two decades, delineating 

various parameters influencing their performance. These include accuracy, repeatability, kinematics, and 

working envelope. Commercially available arms exhibit diverse capabilities, yet research highlights gaps in 

optimization and suggests avenues for future algorithmic and simulation-driven enhancements. Designing 

[21] a three finger gripper robotic arm with low-cost components to enable various object-picking tasks is 

discussed. Incorporating a five-finger gripper and precise control algorithms, the prototype demonstrates 

effective functionality through comprehensive testing. Humanoid motion [22] planning for robotic arms 

integrates human arm physics and reinforcement learning, promising safer interaction for aged individuals. 

Robotic arm control for press, grasp, and flip operation was controlled using image inputs to a dual-arm robot 

[23]. Experimental results show successful implementation, enabling object manipulation via hand gestures. 

A pick-and-place algorithm [24] using a multirate event-triggered sliding mode controller for a robotic arm in 

3D space is proposed. Control updates occur when triggering rules are violated, optimizing resource use. 

Validated on a human arm system, it demonstrates efficiency in object manipulation with minimum control 

updates. A remotely operated 6 degrees of freedom (6-DoF) robotic manipulator was designed for the swab 

collection of Covid patients [25]. Robotic manipulators need precise operation, and more work needs to be 

done to provide assistive solutions to humans. 

One of the primary limitations of current robotic arms is the challenge of robust grasping. The 

surface curvature of objects poses significant difficulties, necessitating integrated approaches to manage real-

time grasping effectively. Additionally, the limited DoF in many robotic arms restricts precise control, 

particularly in arms with multiple DoFs. The control and interface mechanisms of robotic arms also present 

substantial limitations. Common input devices such as joysticks, keyboards, mice, and touch screens are non-

intuitive for managing the position, orientation, and grip of robotic arms. Joystick manipulation, in particular, 

requires complex transitions between different control modes, complicating user operation and reducing 

efficiency. Real-time processing of tactile data and the need for computational efficiency pose significant 

hurdles for robotic arms. Balancing computational resources while maintaining performance is an ongoing 

challenge, affects the overall effectiveness of robotic systems. Current robotic systems lack intuitive 

interfaces for effective human-robot cooperation, making tasks such as grasping and lifting complex and 

inefficient. The proposed system addresses the majority of challenges. It integrates advanced visual systems 
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and improved feedback to enhance user interaction and overall usability. It uses a lightweight MobileNet 

convolutional neural network (CNN) architecture, offers high accuracy and addresses trade-offs between 

detection precision and processing time. 

 

 

2. METHOD  

This work presents the design and development of an assistive robotic arm for hand amputees, with 

a particular focus on mimicking finger movements. Unlike a biological hand that receives instructions from 

the brain, this robotic arm detects objects through a computer vision system and forms the grip accordingly. 

The workflow of the proposed system in Figure 1 involves a sequential process starting with a camera 

capturing video frames. These frames are processed by the MobileNet architecture for object detection, 

followed by grip formation. The frames undergo normalization and resizing to a standardized 224×224-pixel 

format. The current system uses a camera-mounted spectacle to acquire information about the surroundings. 

 

 

 
 

Figure 1. Humanoid robotic arm 

 

 

The MobileNet CNN extracts relevant features for efficient and lightweight object recognition. 

Once the system recognizes an object, it uses the identified class information, such as “Bottle” or “Bag,” to 

trigger specific servo actions for grip formation. The servo motors then control the robotic arm to interact 

with the recognized objects in real-time, establishing a seamless integration between vision-based recognition 

and robotic manipulation. The comprehensive approach details the collection and preprocessing of the dataset 

as the initial phase, followed by an in-depth exploration of the system design and implementation processes. 

 

2.1.  Dataset and preprocessing 

The dataset used for training the robotic arm’s computer vision system comprises 1,943 custom 

images sourced from various open-source datasets. These images depict bags and bottles of different colors, 

shapes, and sizes. The dataset is essential for training the CNN architecture, specifically MobileNet, to 

classify objects into two distinct categories: bags and bottles. Preprocessing steps include normalization and 

resizing of images to a standardized 224×224-pixel format. This optimization ensures the dataset is suitable 

for effective model training. The chosen CNN architecture excels at discerning patterns unique to bottles and 

bags, enabling accurate real-time predictions for live input images. 

 

2.2.  Mechanical design of the robotic hand 

The robotic arm is crafted from high-quality aluminum sheets of 2 mm and 4 mm thickness, 

processed through laser cutting, and designed using SolidWorks in Figure 2. This design promises a dynamic 

range of applications due to its structural integrity and precision. The components undergo welding, drilling, 

and lathe work to ensure robust construction. The SolidWorks 3D model serves as a blueprint for seamless 

component integration, resulting in a balanced system where each DoF operates in harmony. 

The gripper in Figure 3 features five fingers, four of which are connected with shafts. Gears are used 

to control the precise and synchronized movement of the fingers, enhancing the efficiency of the grip. This 

coordinated design ensures smooth operation and improves the overall performance of the gripper. 
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Figure 2. Robotic arm design Figure 3. Gripper design 

 

 

2.3.  Electronic design of the robotic hand 

The electronic design focuses on the control and actuation of the robotic arm. MG996R servo 

motors are selected based on torque requirements. The torque calculation is given in (1) and (2). Let the 

torque (T) in kg cm, force (F) in Newton, and distance (D) in cm. Let weight=0.5 kg and D=20 cm. 

 

𝑇 = 𝐹 ∗  𝐷     (1) 

 

𝑇𝑒𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑇 = 0.5 ∗  20 

 

𝑇 = 10 𝑘𝑔/𝑐𝑚 (2) 

 

The selected MG996R servo motor, with a torque capacity of 11 kg/cm, accommodates the placement of a 

0.5 kg object at a distance of 20 cm from the robotic arm’s base. This choice ensures sufficient torque for the 

specified load and distance requirements. The workflow of the proposed system is presented in this section as 

algorithm 1. It begins with capturing video frames from a specified camera using OpenCV. These frames 

undergo normalization and resizing to a standardized 224224-pixel format. The resized images are 

processed by the MobileNet CNN to extract relevant features for efficient and lightweight object recognition. 

 

Algorithm 1. Robotic arm control 
while true do 

ret, frame=cap.read() 

if not then 

PRINT “Failed to grab frame” 

BREAK 

end if 

predictions=model.predict(input_image) 

predicted_class=int(predictions[0][0] > 0.5) 

label=if predicted_class == 0 then “bottle”  

else “bag”  

end if 

if predicted_class == 0 then 

call bottle() 

else 

call bag() 

end if 

 

Following object detection, the system utilizes the identified class information (e.g., “Bottle” or 

“Bag”) to trigger specific servo actions for grip formation. The script calls corresponding functions—either 

bottle() or bag()—to execute actions related to servo control based on the classification. This process is 

looped, continuously updating the displayed video frame with the predicted class and responding to detected 

objects in real time. The comprehensive approach ensures seamless integration between vision-based 

recognition and robotic manipulation, providing an assistive aid for amputees. By mimicking finger 

movements based on detected objects, the robotic arm demonstrates significant potential in various 

applications, including manufacturing, logistics, and healthcare. 
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3. RESULTS AND DISCUSSION  

The study presents a thorough analysis of the implemented humanoid robotic arm system, enabling 

successful object detection and ensuing robotic manipulation. Figure 4 and Figure 5, illustrate the system’s 

adeptness in detecting binary classes and executing precise grabbing functions. The system initiates specific 

grabbing functions designed for each class. This action then prompts the robotic arm to execute pick-and-

place tasks in a manner that ensures the efficient and precise handling of objects within the given 

environment. The robotic arm (Figure 5), detects the bottle and grabs it precisely, following the elbow motor, 

the fingers form the desired grip to pick up the bottle. Subsequently, the wrist rotates to a specific angle, after 

which the fingers form the desired grip to pick up the bag. 

 

 

  
  

Figure 4. Bottle detection Figure 5. Grip formation 

 

 

This graphical representation of the training and validation accuracy on the y-axis with respect to 

the number of epochs on the x-axis in Figure 6 provides a compelling narrative of the model’s learning 

behavior. The curve illustrates a positive correlation between the number of epochs and the training accuracy, 

showcasing a steady increase over time. However, the validation accuracy curve exhibits an interesting trend. 

Initially aligning with the training accuracy, it experiences a decrease around the midway point of epochs 

before resuming an upward trajectory. This phenomenon suggests that the model, while excelling in learning 

from the training data, encounters challenges in generalization, leading to a temporary dip in performance on 

unseen validation data. The observed training accuracy of 98% signifies a high level of model proficiency, 

but the validation accuracy hovering around 93% highlights the need for further exploration into techniques 

for mitigating overfitting and enhancing the model’s ability to generalize to new, unseen data. 

 

 

 
 

Figure 6. Training and validation accuracy 

 

 

The graphical representation of the training and validation loss on the y-axis with respect to the 

number of epochs on the x-axis in Figure 7 reveals a noticeable pattern. Initially, the training loss demonstrates 

a gradual decrease as the number of epochs increases, indicative of the model learning from the training data. 

However, the validation loss exhibits a distinctive behavior by increasing up to the midpoint before later 

decreasing. This divergence suggests that, while the model is effectively learning from the training data, there 

may be a point where it begins overfitting and does not generalize well to unseen validation data. The increase 

in validation loss could be attributed to the model capturing noise or specific patterns unique to the training set, 
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which may not necessarily apply to new data. This behavior underscores the importance of monitoring both 

training and validation loss to strike a balance between learning from the data and avoiding overfitting. Table 1 

shows that the model was subjected to a total of 192 tests, comprising 126 instances of the ‘Bag’ class and 66 

instances of the ‘Bottle’ class. Impressively, the model achieved a high overall accuracy of 95.31%, with 

96.83% accuracy, 0.97 predicting ‘Bag’ instances, and 92.42% accuracy for ‘Bottle’ instances. 
 

 

 
 

Figure 7. Training and validation loss 
 

 

Table 1. Model performance 
Class Bag class instances Bottle class instances 

Tests 126 66 
Correct Prediction 122 61 

False Prediction 4 5 

Accuracy (%) 96.83 92.42 
Recall 0.91 0.89 

Precision 0.97 0.93 

F1 Score 0.95 0.80 

 

 

The ‘Bag’ class, precision stands at 97%, emphasizing the model’s ability to accurately identify ‘Bag’ 

instances when predicted. Additionally, a recall of 91% signifies the model’s proficiency in capturing the 

majority of ‘Bag’ instances. Similarly, for the ‘Bottle’ class, while precision is slightly lower at 80%, the 

model excels with a recall of 93%. The model encountered four false predictions for the ‘Bag’ class, likely 

influenced by variations in lighting, diverse bag shapes, and occlusions in the real-world environment. 

Instances, where bags were partially obscured or positioned at unusual angles, could contribute to 

misclassifications. Similarly, in the ‘Bottle’ class, five false predictions may be attributed to variations in 

bottle shapes, sizes, and orientations, as well as challenges like label presence, translucency, and the presence 

of other objects. Factors such as different backgrounds and reflections could impact accurate ‘Bottle’ 

classification. Overall, these misclassifications are complex, influenced by diverse dataset conditions and real-

world complexities. This involves addressing challenges by refining the dataset, augmenting training data with 

diverse scenarios, and exploring advanced techniques like transfer learning for improved adaptability in varied 

conditions. The process entails refining the dataset to enhance its quality, incorporating diverse scenarios into 

training data to ensure robust learning, and implementing advanced techniques, such as transfer learning, using 

advanced techniques like transfer learning to make the system work well in various conditions. 

 

 

4. CONCLUSION  

This paper presented the design, development, and evaluation of a 5-DoF humanoid robotic arm 

featuring a sophisticated 5-finger gripper. The system is operated by a high-speed portable computing system, 

utilizing a webcam for object detection and environmental awareness. The robotic hand is designed as an 

assistive aid for amputees, mimicking finger movements based on detected objects. Unlike a biological hand 

that receives instructions from the brain, this robotic arm detects objects through a computer vision system and 

forms the grip accordingly. The CNN-based MobileNet architecture is employed for object detection, 

achieving precision scores of 0.97 for bags and 0.93 for bottles, with accuracies of 96.83% and 92.42%, 

respectively. The results demonstrate the potential of integrating advanced computer vision algorithms and 

real-time strategies to develop assistive technologies. The novel approach of using computer vision to guide 
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robotic manipulation sets a precedent for future developments in the field of assistive and industrial robotics. 

The high accuracy and efficiency of the system are highlighted by its performance metrics. The model’s 

precision, recall, and F1 scores demonstrate its ability to handle diverse real-world scenarios. However, the 

project also identifies the complex challenges that arise in real-world situations, especially regarding 

misclassification. Factors such as variations in object shapes, sizes, and lighting conditions contribute to false 

predictions. Addressing these challenges involves refining the dataset, augmenting training data with diverse 

scenarios, and exploring advanced techniques like transfer learning for improved adaptability. 
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