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 The neuromorphic architectures are hardware network systems designed 

with neural functions. Neural networks seen in biology serve as an 

inspiration for network systems. A synapse connects every node or neuron in 

an artificial neural network (ANN) to every other node. As in biological 

brains, the amplitude of the linking between nodes referred to as synaptic 

weights will regulate the connection. In contrast to conventional design, 

ANN uses many highly organized dealing pieces that work together to solve 

real-world issues. The design of the neuromorphic hardware chip is 

discussed in the paper. The target device used is a Virtex-5 Field 

Programmable Gate Array (FPGA) and the simulation is taken on Xilinx 

ModelSim software. This chip is designed for 20 neuron inputs, each of the 

neuron inputs is 8-bit. Each 20-neuron input is multiplied by 20 input 

weights and each weight is 8-bit so when these 20 input weights are 

multiplied by 20 neuron inputs in the multiplier it gives 16-bit output. A 

control logic is used in this neuromorphic hardware chip design which is 

used to feed multiplier output to each input of the hidden layer. The system-

level outcome of the hidden layer is then given to the multiplexer which has 

20 inputs and one single output. The multiplexer is used to select any of the 

20 outputs of the control logic. Finally, to gain an understanding of the 

performance of this neuromorphic hardware chip, we have computed the 

hardware utilization parameters. These parameters include slices, 

input/output blocks (IOBs), registers used, memory, and the overall 

propagation delay used by the hardware chip. 
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1. INTRODUCTION 

Neuromorphic computing seeks to mimic the functionality of the human brain. It is predicated on 

the notion that the brain is a supercomputer with great efficiency and power that can process information in a 

non-linear fashion. To accomplish this, neuromorphic computing makes use of a network of interconnected 

neurons, which are basic processing units that process data. The electrical and chemical characteristics of 

biological neurons are mimicked in the design of the artificial neurons. Because of its ability to handle 

information in a manner close to that of the human brain, neuromorphic computing is a perfect fit for the 

improvement of brain-computer interfaces (BCIs). The capacity of neuromorphic computing to process 

information in a manner like the human brain is one of its primary advantages. This implies that it can be 

applied to develop BCIs that make sense to users more naturally. For instance, a neuromorphic BCI might 

make use of the same signals such as electroencephalography (EEG) signals that the brain uses to regulate 
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movement. The capacity of neuromorphic computing to process massive amounts of data quickly is another 

advantage. Additionally, by lowering the amount of power needed to operate BCIs, neuromorphic computing 

may enhance their overall performance. This may result in the creation of BCIs that are longer-lasting, 

lighter, and more portable. A device known as brain-computer interaction enables direct connection between 

the brain and external devices without relying on peripheral nerves. Nowadays, BCI is more of a science-

invented topic than it was in the precedent because of significant breakthroughs in neurology, signal 

processing, computational neuroscience, sensors, and other related fields. BCI is an expanding field of study. 

Through the use of the EEG or other brain signals, people with severe mobility disabilities can communicate 

with external assistive devices through the use of BCI technology [1]. The interconnected microprocessing 

units are called neurons [2] Four general functions of neurons are input, trigger, conduction, and output [3]. 

The electrical activity produced by brain structures and recorded from the surface of the scalp using 

electrodes is known as an electroencephalogram, or EEG. EEG is the primary method used by researchers to 

define brain activity since it can be recorded non-invasively with the use of disposable equipment. Through a 

full BCI system, the EEG or brain activity can be applied in real-time processing to control external 

equipment. A data collecting system, pre-processing of the obtained signals, feature extraction, feature 

classification, post-processing of the classifier output, and lastly the control user interface and device 

controller are the standard components of a BCI scheme. 

In recent years, the field of BCI has witnessed significant breakthroughs in both the medical and 

information technology fields. The non-invasive version of BCIs, which is based on EEG, is particularly 

popular [4]. BCI is based on an EEG and presents new avenues of communication connecting the human 

brain and a computer [5]. Among the numerous different methods that are accessible, artificial neural 

networks (ANNs) are a well-established method that has several successful applications in the field of BCI 

research [6]. It is possible to apply neural networks using either analog or digital systems. Because of its 

benefits precision, more repeatability, reduced sensitivity to noise, improved testability, increased flexibility, 

and compatibility with various preprocessor types-the digital approach is more often used. The hardware 

implementations of digital neural networks are further divided into three categories: field programmable gate 

array (FPGA) based, digital signal processing (DSP) based, and application-specific integrated circuits 

(ASIC) based [7]. Since DSP implementation is sequential, the parallel architecture of the neurons in a layer 

is lost [8]. The ASIC applications do not allow for user reconfiguration. Because it allows for flexible 

reconfiguration and maintains the parallel architecture of the nerve cell neurons in a layer, FPGA is an 

appropriate piece of hardware for neural network implementation. 

 

 

2. RELATED WORK 

Three computational traits commonly linked with ANNs include parallelism, modularity, and 

dynamic adaptation. Because FPGA-based reconfigurable computing architectures allow for rapid 

reconfiguration and concurrency to adjust an ANN's weights and topology, they are an excellent choice for 

implementing ANNs. Large-scale neural network FPGA realization remains a difficult task due to the 

‘multiplication-rich’ nature of ANN algorithms and their comparatively high implementation costs. 

Numerous studies have been published in this field, including multi-chip realization [9], NNs with certain 

limitations to obtain faster speed of operation at a cheaper cost [10], and new NN multiplication algorithms 

[11]. The assessment of EEG signals by incorporating the feed-forward multilayer ANN and FPGA utilizing 

VHDL language in the time-frequency representations for the domain analysis has been used to diagnose 

epilepsy, a neurological condition [12]. The current requirement for neuromorphic chips in real-world 

applications that require the best hardware and memory is what drove the development of ANN hardware 

chips. The architecture of the deep learning-based ANN is intended to deliver the best performance [13]. 

Architecture for using ANNs on FPGAs. The framework frees the user from handling low-level hardware 

details, allowing for the quick deployment of already trained ANNs on FPGA systems [14]. There is only one 

activation operational block incorporated in the new hardware architecture for feed-forward neural network 

(FFNN), that is external to the whole network. To minimize complexity and area usage. Intermediate results 

are easily accessible because the single activation block is not part of the network [15]. Additionally, only 

one hidden layer is used in this instance; all other layers ought to make use of the same hardware. The layer 

that is put into practice will be the biggest layer with the most neurons [16]. The architecture is often a 

systolic array. It is a uniform network of linked data processing units (DPU) known as cells or nodes [17]. 

The idea behind ANNs originated with brain concepts that were modified for use with digital computers. 

ANNs were first developed as mathematically modeled brain neurons [18]. These studies demonstrate that 

every neuron in ANNs receives information as input from either external or other neurons. This data is 

distributed as an output that is applied as a non-linear function and calculated as the weighted total of the 

inputs [19]. The best option for FFNN realization is hardware for FPGA implementations, but there are 
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numerous obstacles to overcome [20]. Activation function implementation, matrix multiplication 

implementation, weight matrix storage, partial results, coefficients, etc. are important for selecting an 

appropriate number format to optimize area, power, and speed [21]. Neural networks have many applications 

in very large-scale integration (VLSI) design, one of which is learning how to categorize brain behavior 

patterns. Furthermore, it is in situations where there is a strong correlation [22]. It is illustrated with VLSI 

networks of spike neurons and a multidimensional pattern of varying sacking rates [23]. The robust spike-

driven flexibility approach is used to implement dynamic synapses [24]. Moreover, the input pattern to the 

output neuron, the input signal will offer an extra contribution spike train during training. It is employed to 

respond to the input prototype at a modest rate or with a high charge [25]. Silicon neurons were implemented 

based on the application needs of a collection of solutions. Different computational models can be 

implemented using the wide range of neuromorphic silicon circuits available [26]. The prediction of the 

overall number of tourists arriving in Spain was made using neural single-input single-output neural networks 

[27] and multiple-input multiple-output neural networks. An ANN receives a large number of signal inputs 

from the distinct data collection or output of previously associated neurons. Every input enters through a link 

known as a synapse, which has a mass [28]. A scalable ANN chip can be created with features like quick 

response times, low costs, low power consumption, and the ability to integrate with FPGA and work with 

embedded circuits. To implement the ANN, it is necessary to ensure that there are enough FPGA logic 

elements (LEs) or lookup tables (LUTs) available. This is crucial for handling the required number of 

neurons and their connections. Efficient utilization of registers or flip-flops is crucial for the storage of 

weights and intermediate values. It is required to calculate the necessary throughput to determine the clock 

frequency for your design. For your whole design, make sure that the setup and hold times are within the 

allowed range. 

 

 

3. METHODS 

Neuromorphic systems necessitate unique network topologies. The most common kind of network 

model implementation is the feed-forward neural network, which is employed in multilayer sensing. In 

addition to these, there are many other types of neural network topologies, such as artificial neural networks, 

cellular neural networks, recurrent neural networks, cellular automata, spiking neural networks, artificial 

neural networks, and neural networks that are pulse-coupled. In keeping with the current trend in neural 

network research, the hop-field network, a recurrent neural network (RNN) network design, was particularly 

popular in early neural morphology implementations. More modern implementations of this architecture 

exist. For example, data categorization, fault detection, graph partition, etc. work together to solve real-world 

issues. Artificial neural networks, or ANNs, are computer programs that draw stimulation from the human 

brain [29]. They can resolve extremely complicated issues that the traditional processing system is unable to 

handle. Because of its quick processing speed and accurate output, ANN is used in many different fields. 

There are already several varieties of ANNs. The most popular and straightforward one is feed-forward 

neural networks (FFNN). Neural networks and neuromorphic networks are the two ways to do ANN.  

Neural networks are simply a software approach that runs on PC-based platforms. Due to its 

inability to manage the required throughput, a PC-based system is unfit for high-speed processing, prediction, 

decision-making, or categorization. Therefore, neuromorphic design or another hardware approach will be 

the way to go for ANN implementation [30]. Central processing units (CPUs) and graphics processing units 

(GPUs) are ideal for this task due to their lightning-fast data processing capabilities; nevertheless, they are 

relatively powerful when compared to FPGAs and other hardware platforms. Figure 1 presents the 

architecture of the single-layer feed-forward neural network. Figure 2 presents the functional blocks of the 

single-stage neuron network. We designed a system using VHDL modeling, which includes a single-stage 

neuron chip. We designed three primary units: the multiplication unit, the control unit, and a multiplexer 

[31]. The neuromorphic chip which had been designed can be divided mainly into three parts. 

− Multiplier unit: The multiplier that was used to configure multiplies 20 neuron inputs with 20   neuron 

weights each having 8-bit information and 8-bit weights and gives one single output which is 16 bits. 

So, after the multiplication of neuron weight, we get the values, M0, M1, M2, M2, M3, M4, M5, M6, M7, 

… M19. 

− Control unit: In the control logic we have the inputs from M0, M1, M2, M2, M3, M4, M5, M6, M7, ... 

M19, one source address of 5 bits, and the outputs are N0, N1, N2, N3, N4, N5, N6, N7, …, N19. The 

destination address is also 5 bits. Therefore, based on the source address and destination address the 

output of the multiplier is fed to each node of the hidden layer. 

− Multiplexer unit: From the control unit we get 20 outputs which are from N0, N1, N2, N3, N4, …, N19. In 

the multiplexer unit, we have 20 inputs. Each input is 16 bits and one selection line which is 5 bits and 

based upon the selection line the output of the multiplexer unit we get. 
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To achieve parallelism, it is necessary to execute the computations of several neurons 

simultaneously, if the available FPGA resources allow for it. Pipelining improves the network's throughput 

by breaking down the processing into smaller parts. To provide proper management and synchronization of 

the input/output (I/O) pins, particularly when dealing with multiple clock domains, it is essential to ensure 

that all components of the design are synchronized with each other. To minimize power consumption, it is 

necessary to optimize the design by reducing switching activity and implementing low-power design 

solutions. Based on the simulation, the design is confirmed to have data rates for the ANN inputs and outputs 

that are consistent with the input/output bandwidth of the FPGA. The constraints of your FPGA board will 

determine the allocation of pins for data inputs, outputs, and control signals. The design is verified on the 

FPGA, utilizing in-circuit testing and debugging techniques, such as test benches and internal signal 

monitoring. The ANN is structured in a modular fashion, enabling easy expansion and modification to 

accommodate more intricate networks or diverse uses in the future. This functionality allows you to 

customize the ANN to suit different datasets and scenarios by modifying parameters such as the number of 

neurons or layers.  

 

 

 
 

Figure 1. Architecture of single-layer feed-forward neural network 

 

 

 
 

Figure 2. Functional blocks of single-stage neuron network 

 

 

4. RESULTS AND DISCUSSION  

The hardware neuromorphic chip for 20 neurons input is designed and each neuron is 8-bit input 

which is given first to the multiplier. The neuron input which we have given is from X0, X1, X2 to X19 and the 

weights which we have used here are W0, W1, W2, W3 to W19. The weights with the input are first multiplied 

by the multiplier. It is important to optimize timing and data pathways, provide adequate synchronization, 

manage FPGA resources efficiently, consider power consumption and I/O limits, and design a single-layer 

ANN in HDL for FPGA. 
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Figure 3. Single stage neuromorphic hardware chip register transistor logic (RTL) 

 

 

The products we get are M0, M1, M2 to M19.which are the inputs of the control logic, and the outputs 

of the control logic are No, N1, N2 to N19. The control logic is used to feed one neuron input to each of the 

inputs in the hidden layer. The output of the control logic is given to M3the multiplexer which mux all the 

inputs and gives a single output Z0. The multiplexer inputs are from D0 to D19, and it has one selection line 

which is of 5 bits, and one single output Z0 which is of 16 bits. The inputs are processed as Neuron_X0_input 

(7:0) to Neuron_X19_input (7:0) presenting the 20 neurons inputs, the corresponding weights are 

Neuron_weight_w0(7:0) to Neuron_weight_w19(7:0). The port address (4:0) denotes layer address which is 

limited to single layer here. The neuron_output(15:0) is the 16-bit output of the neural network. Figure 3 

presents the RTL of a stage neuromorphic hardware chip. Figure 4 represents the schematic of single-stage 

neuromorphic hardware chips, respectively. The use of RTL in a VHDL programming language is crucial to 

developing a single-layer ANN that optimizes speed, resource consumption, and power efficiency, while also 

ensuring deterministic performance, scalability, and flexibility. To establish a scalable ANN, it is imperative 

to construct an architecture that can effectively handle high-dimensional, noisy, and temporal data. To create 

a versatile network for EEG applications, focus on incorporating modularity, optimizing memory use, 

implementing effective preprocessing techniques, and employing robust training methods. To enhance the 

system's performance and user-friendliness, it is advisable to consider the utilization of hardware 

acceleration, as well as the aspects of interpretability and real-world validation. ANNs in EEG applications 

can receive a diverse range of inputs, which can be complex and varied. These inputs include raw time-series 

signals, pre-processed and filtered data, and extracted features. To properly utilize EEG data in ANN, it is 

crucial to perform appropriate preprocessing, feature extraction, and data structure. To achieve the best 

performance and precise outcomes, it is advisable to adjust the input representation based on the specific 

problem and neural network structure. 

Figures 5 and 6 represent the simulation waveform for single stage 20 inputs and outputs of ANN in 

binary using ModelSim. Figures 7 and 8 represent the simulation waveform for single stage 20 inputs and 

outputs of ANN in an integer using ModelSim. Tables 1 and 2 show the amount of hardware parameter used 

and its percentage used. The device utilization report for this neuromorphic hardware chip is taken from 

Xilinx software. The number of slices used is 320 in the neuromorphic hardware chip which is out of a total 
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of 12480. The number of LUTs used is 232 out of a total of 12480. Input-output blocks (IOB) used is 351 out 

of a total of 172. The total delay used in this neuromorphic hardware chip is 6.359 ns. The memory utilized 

for this neuromorphic hardware chip is 4665304 kilobytes. The target device used is Virtex-5 FPGA with the 

device (xc5vlx20t-2-ff323) for simulation and synthesis. The design utilized a power of 12.90 milliwatts and 

experienced a delay of 9.20 nanoseconds. Figure 9 depicts the neuromorphic hardware chip utilization chart. 

 

 

 
 

Figure 4. Schematic of single-stage neuromorphic hardware chip 
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Figure 5. ModelSim simulation of single stage 20 inputs ANN in binary 

 

 

 
 

Figure 6. ModelSim simulation of the single-stage outputs of ANN in binary 
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Figure 7. ModelSim simulation of single stage 20 input ANN in integer 

 

 

 
 

Figure 8. ModelSim simulation of single-stage outputs of ANN in integer 
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Table 1. Hardware parameters utilized by neuromorphic hardware chip 
Neuromorphic Chip size Multiplier used Target device (FPGA) LUTs Slices Delay (ns) IOBs Memory (KB) 

ANN-20 20 Virtex-5 (xc5vlx20t-2-ff323) 232 320 6.359 351 4665304 

 

 

Table 2. Hardware parameters utilized by neuromorphic hardware chip 
Hardware parameters Parameter used Available Percentage (%) of parameters used 

Slices 320 12480 2 

Registers 232 12480 1 

IOBs 351 172 204 

 

 

 
 

Figure 9. Neuromorphic hardware chip utilization chart 

 

 

5. CONCLUSION  

The architecture and operation of the human brain serve as the inspiration for the design of a chip 

known as a neuromorphic hardware chip. The neuromorphic hardware chip for 20-neuron input was designed 

successfully in Virtex-5 FPGA Xilinx ISE 14.7. The schematic of the single-stage neuromorphic chip is 

extracted successfully and the ModelSim simulation for different test inputs, respectively. The RTL of the 

single-stage neuromorphic chip is done using the detailed hardware parameters utilized by the neuromorphic 

hardware chip. The hardware utilization chart for the neuromorphic hardware chip includes the number of 

LUTs utilized in the neuromorphic hardware chip, which is 232, the Slices utilized are 320, and the IOBs 

used are 351. The total path delay is 6.359 ns, and the memory utilized in the design of the neuromorphic 

hardware chip is 46,65304 KB. Hardware parameters percentage utilized in the neuromorphic hardware chip 

design, number of LUT utilized in the neuromorphic hardware chip which is 232 and available are 12480 so 

percentage of parameter utilized in only 1%. and the Slices utilized are 320 and available are 12480, so 

percentage of parameter utilized is only 2%, and the input-output or IOBs used are 351 and available are 172 

which is 204% of the whole. 
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