
IAES International Journal of Robotics and Automation (IJRA)

Vol. 13, No. 4, December 2024, pp. 452~468

ISSN: 2722-2586, DOI: 10.11591/ijra.v13i4.pp452-468  452

Journal homepage: http://ijra.iaescore.com

Faults-as-address simulation

Vladimir Hahanov, Svetlana Chumachenko, Eugenia Litvinova, Ivan Hahanov,

Veronika Ponomarova, Hanna Khakhanova, Georgiy Kulak
Design Automation Department, Kharkov National University of Radio Electronics, Kharkov, Ukraine

Article Info ABSTRACT

Article history:

Received Apr 5, 2024

Revised Aug 13, 2024

Accepted Aug 27, 2024

 Fault-as-address-simulation (FAAS) is a simulation mechanism for testing

combinations of circuit line faults, represented by the bit addresses of

element logical vectors. The XOR relationship between the test set T and the

truth table L of the element forms a deductive vector for fault simulation,

using truth table addresses or the logic vector bits. Addresses are used in the

simulation matrix to mark those n-combinations of input faults detected at

the element's output. The columns of the simulation matrix are treated as n-

row addresses to generate an element output row via a deductive vector.

There is no transport of input faults to the element output, Only the 1-signals

written in the non-input row coordinates of the circuit simulation matrix. The

simulation matrix is initially filled with 1-signals along the main diagonal.

The line faults detected on the test set of circuits are determined by the

inverse of lines good values, which have 1-values in the matrix row

corresponding to the output circuit element. The deductive vector is obtained

by the XOR-relations between the test set and logical vector in three table

operations. The advantage of the proposed FAAS mechanism is the

predictable complexity of the algorithm and memory consumption for

storing data structures when simulating a test set.

Keywords:

Fault simulation matrix

Fault truth table

Fault-as-address simulation

In-memory computing

Logic vector computing

Smart data structures

Test truth table

This is an open access article under the CC BY-SA license.

Corresponding Author:

Vladimir Hahanov

Design Automation Department, Kharkov National University of Radio Electronics

Kharkov, Ukraine

Email: hahanov@icloud.com

1. INTRODUCTION

Statement of the problem the paper is addressing. Most of the existing solutions for processing big

data, including design and verification, use potent computers, networks, and computing centers where arrays

of information are stored. Such solutions require a lot of electrical energy and are close to power plants.

Given that there will always be insufficient electricity, everything related to the energy-intensive processing

of big data will gradually become a thing of the past. Instead, there is a steady increase in in-memory

computing, which will solve the problems of intelligent processing of big data on smart data structures

without programming algorithms and architectures free of potent processors. One of these cost-effective

solutions is proposed for research: in-memory modeling and simulation on smart data structures that use only

read-write transactions. The study's formula is the use of smart data structures in vector-table forms of logic

circuit description to organize in-memory computing based on read-write transactions [1] for simulating

faults as addresses [2], [3]. Experts in computer technology, including Gartner, predict a shift to mass

computing in memory and the abandonment of the von Neumann architecture [2] and powerful processors

[4], [5]. They advocate the gradual transition of computing to any substance that can store data. To perform

any computational actions, two read-write transactions on memory elements are enough [1], [2]. This is the

practical essence of the proposed study. On the other hand, intelligent computing, according to leading

https://creativecommons.org/licenses/by-sa/4.0/

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

453

experts, has a strong tendency to use smart memory-based data structures [4], [6] to process big data without

programming algorithms [7], [8]. At the same time, smart data structures can be created once by a

superposition of explicit computing components or by training a machine learning (ML) model when the data

structure acquires valuable properties for a successful solution to the problem. In both cases, the

computational complexity of the smart data structure processing algorithm tends to zero due to the significant

redundancy of data structures. The economy of in-memory mass computing involves a substantial reduction

in energy (78%) [2] for processing big data and the time (32%) [4] to solve problems due to the speed of

read-write transactions at the level of one nanosecond [5].

Here are what has been done before about the problem. Models and algorithms are strongly

interconnected. Redundancy of one component leads to a decrease in the other and vice versa. If an engineer

wants a simple algorithm, he should use the redundancy and simplicity of explicit data structures (logical

vectors, truth tables [1], [3], [9], and matrices) instead of analytical [10]–[12], or graph [13]–[15] models.

Design and testing have been, are, and will continue to be the most advanced technology for building

intelligent computing [10], [16], the goal of which is to create the cyber brain of humanity. An urgent

problem is verifying new digital solutions using system-on-chip (SoC) numbering billions of transistors.

Automatic synthesis systems of Synopsys, cadence can design a system of any complexity. However, the

question is how to verify such a system. How can a test for it be built to determine its qualities in detecting

logical or physical faults? Electronic design automation (EDA) applies testable design standards to break

down a complex system into the market's SoC intellectual property (IP) cores. Tests are then built for these

modules, which must be verified using fault simulation algorithms. Typically, these algorithms use compact

analytical or hardware description language (HDL) digital circuits and element models. Their processing

involves the creation of powerful compilers based on the use of processor instructions. Such simulators are

costly and require a lot of time and energy [17], [18]. What can be offered in return? Technologically simple,

cheap-to-use test generators and simulators [19]–[21] that consume a minimum amount of energy [22]–[24].

The research formula for this metric is to develop mechanisms for in-memory modeling and simulation of

faults-as-addresses based on logical vectors [21], [25] of circuit elements, which are processed based on read-

write transactions [20], [26]. For this purpose, redundant smart and explicit data structures [20], [27], [28]

have been introduced and used, significantly reducing the computational complexity of simulation algorithms

[1], [15], [29]. Logical vectors, truth tables, and logical matrices represent smart data structures. Only one

XOR operation and a read-write transaction are required to process them for fault-as-address simulation.

However, this XOR operation can also be reduced to read-write transactions on a logical vector [1], [19]. The

efficiency of the simulation mechanism is unparalleled, providing simplicity and good economics of the

solution. Computer engineering students master this mechanism in one lesson, 45 minutes. The topic of fault

simulation in the EDA market has been relevant for 70 years and occupies one of the first places in the

development of researchers and companies. The market relevance of this topic is determined by the following

metrics [29]–[31]: i) the development of smart data structures and efficient algorithms for testing increasingly

complex computer systems and networks consisting of billions of equivalent gates; ii) invariance of

structures and algorithms concerning technologies and types of digital products that change rapidly over time

[32]; iii) the flexibility of data structures and algorithms will allow the processing of a wide range of digitized

technical devices and processes for their testing, verification, diagnostics, and fault detection [33]–[35]; iv)

considering faults as big data, algorithms for their analysis must be efficient in terms of time and energy

consumption. Therefore, fault simulation should be implemented on primitive read-write transactions as in-

memory computing without the use of the robust instruction set of the universal processor in the von

Neumann architecture [2], [36], [37]; v) data structures for fault simulation should be simple and accessible

to computers and humans [36]. Such ideal data structures, invariant in time, are the unjustly forgotten truth

table and its compact derivative, the logical vector. They are ideal for efficiently solving in-memory

computing tasks, including big data processing [38] and fault simulation; vi) The truth table should be

elevated to the rank of an ideal internal model of a computational process or circuit that is invariant

concerning dozens of languages describing hardware or software [37], [38]; vii) The truth table generates a

complete set of logic-fault combinations for arbitrarily complex logical functionality [1], [10], [16]. Thus,

combining in-memory computing and smart data structures based on the truth table may be a rational way to

solve design and test problems over a long time in the development of global computing [39]–[41].

The proposed solution and the results achieved. The goal is to significantly reduce the latency and

energy consumption when simulating faults-as-addresses using in-memory computing technology in logical

circuits of any dimension based on read-write transactions over smart data structures built based on a logical

vector. The objectives of this research are to i) identify the components of smart compact data structures for

logic circuit fault simulation; ii) create a simulation algorithm for faults F of a logical circuit on an input test

set T by synthesizing deductive vectors of elements from their logical vectors L, using the equation D=T⨁L;

and iii) verify the data structures and algorithms for modeling and simulation faults-as-addresses, using

examples of logic circuits. Without going into details, von Neumann's architecture [2] controls and executes

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

454

the computational process. Therefore, it can be transferred to memory, where big data resides. Moreover, this

architecture can be used to simulate both logic and circuits in two modes: good simulation of test-as-

addresses and simulation of fault-as-addresses. The device of control and execution in computing has not yet

been canceled [2], [14], [19].

2. FAULTS-AS-ADDRESS CIRCUIT SIMULATION: UNUSUAL AND SIMPLE ENGINEERING

MECHANISM

What is new? Faults-as-addresses simulation (FAAS) is a technique that leverages input faults

combination as deductive vector bits addresses that form detected input faults in logic element output. FAAS

technique is proposed for digital circuit simulation, where logical vectors represent elements as a compact

form of the truth table. The truth table is proposed as a smart data structure for fault simulation of input and

internal lines of logic circuits. The logical vector in the truth table and the input test set are used to generate a

deductive vector that detects any combination of faults in the circuit lines to its external outputs. The novelty

of the FAAS mechanism is the Fault Simulation Matrix address filling using deductive vectors, which

simulate a combination of faults as an address. The in-memory simulation uses read-write transactions, which

makes the FAAS technique a free central processing unit (CPU) instruction system and cost-effective in

terms of power and time to simulate faults. The circuit fault simulation contains novelty points: circuit 1 is

the deductive vector synthesis for input set and logic vector to detect input faults on element output; circuit 2

is the development of a quadratic fault simulation matrix of the circuit for every test set; circuit 3 is the

simulation of circuit lines faults-as-addresses using a simulation matrix and deductive vectors of logic

elements to obtain a vector of detected faults on the input test set; and circuit 4 is the formation of a table of

detected faults to determine the quality of the input sets and the test. Algorithms and data structures are

proposed for in-memory simulating fault-as-addresses and logical schemes of any structural complexity.

Smart data structures have three macro components: circuit description, simulation matrix, and fault

detection table. The truth table is the longest-lived model of the computational process; it is more than 100

years old, and today, it is practically not used for organizing computations. Underneath the simplicity of the

form of the truth table, which is understandable to humans and machines, there is an undeciphered genome of

emerging computing. Fault simulation algorithms use read-write transactions on smart data structures in any

SoC, field programmable gate arrays (FPGA), application-specific integrated circuit (ASIC), or reduced

instruction set computer (RISC-V) memory and do not require processor instructions and pre-synthesis of the

circuit to bring logical functionalities to a specific element basis. The market goal of the proposed technique

is to solve IP-core verification problems based on in-memory computing using the IEEE 1500 standard for

embedded core test (SECT) standard [21]. A data structure metric is a logical vector or truth table. The

practical novelty of the FAAS mechanism is the fault simulation matrix address filling using deductive

vectors, which simulate a combination of faults as an address as shown in Figure 1. It provides a model of a

good-value line behavior circuit using logic vectors and a circuit model for fault simulation using deductive

vectors. A quadratic fault simulation matrix is presented, which is filled along the main diagonal with single

values identifying faults of the circuit lines. Three truth tables for the synthesis of the deductive vector are

also presented. All the listed data structures are required to model the fault as addresses on a single input test

set 0011. The result of a good simulation is shown in the G-line of the simulation matrix. The result of the

fault simulation is shown in the F-line of the simulation matrix.

Figure 1. Faults-as-address circuit simulation

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

455

The relationship T⨁L=D between the test set T and the truth table L of the element forms a

deductive vector for fault simulation, using addresses the truth table or the logic vector bits. On the other

hand, addresses are used in the simulation matrix to mark those n-combinations of input faults detected at the

element's output. The columns of the simulation matrix are treated as n-row addresses to generate an output

row of the element via the deductive vector. There is no transport of input faults to the output of the element,

Only the 1-signals written in the non-input row coordinates of the circuit simulation matrix. The simulation

matrix is initially filled with 1-signals along the main diagonal. The line faults detected on the test set of

circuits are determined by the inverse of the good values of lines G, which have 1-values in the matrix row

corresponding to the output of the last circuit element. The deductive vector is obtained by the XOR-relations

between the test set and the logical vector in three table operations. The advantage of the proposed FAAS

mechanism is the predictable complexity of the algorithm and the memory consumption for storing data

structures when simulating a test set, determined by the formula Q = N2 +∑ (Yi +
n
i=1 Di), where N, n are

number of lines and elements in the circuit and Y, D are a set of logical and deductive vectors.

Construction of the recoding matrix [1] by taking a Cartesian ⨁-square on the addresses of the truth

table from n-variables according to the formula: H=A⨁A=𝐴⨁
2 . Addresses act as test sets T and combinations

of logic faults F. The resulting matrix is a constant for all logical functions from n-variables. There are

several modifications to the recoding matrix construction. Next, a simple recursive mechanism for building a

recoding matrix based on prediction is proposed. Four sequential operations are performed on the four

quadrants of the matrix: Hi+1
1 = Hi; Hi+1

2 = 2𝑛 + Hi; Hi+1
3 = Hi+1

2 ; Hi+1
4 = Hi+1

1 . The construction of a matrix

of any dimension starts from 0: H0
1 =0. Another mechanism for recursively constructing a recoding matrix

uses computational history: Hi
1 = Hi−1 ; Hi

2 = 2n– 1–Hi
1; Hi

3 = Hi
2; Hi

4 = Hi
1. The computational

complexity of both mechanisms for constructing a recoding matrix for a logical function from n-variables is

equal to 2n+1. The data structures reflecting the recursive generation of the matrix are shown in Figure 2.

Figure 2. Synthesis of H-matrix recoding

The practical use of this H-matrix is the rapid construction of a deductive vector by recoding the

coordinates of the logic vector on the decimal codes of a string with a number determined by the test input

set. An example of a deductive vector construction uses logic vector 0111, n=2, test set 10. Consider the

matrix of two variables on a string number 2 (T=10), which is equal to 2301. Recoding the coordinates of a

logical vector gives a deductive vector: D=LHT=2= 01112301 = 1011. Using an H-matrix recoding to

synthesize deductive vectors speeds up logic circuit fault simulations by 30%. One recoding matrix for an

element with the maximum number of variables is needed to synthesize deductive vectors of a logical circuit.

3. DATA STRUCTURES FOR LOGIC ELEMENT AND CIRCUIT FAULT SIMULATION

Vector-logical design and test computing is a processor-free in-memory SoC IP-core testing

mechanism based on read-write transactions on logical vectors and their derivatives. A mechanism is a

communicating relationship between the redundancy of data structures and the computational complexity of

algorithms for their processing when an increase in one of them leads to a decrease in the other and vice

versa. Mechanisms for modeling, simulation, and testing digital projects are proposed. The object of the

study is to design and test computing based on vector-logic mechanisms located in memory to save energy

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

456

and design time. The subject of the research is vector-logical in-memory computing for solving the problems

of modeling, testing, and verification of digital projects based on vector-logical models of the IP-core SoC in

Figure 3. Here, all computing components are completely new and focus on the EDA market of cost-effective

engineering solutions. There's no potent CPU here, not even RISC-V. Only read-write transactions and one

vector XOR operation are easily converted to transactions.

Figure 3. Vector logic design and test computing in memory

The vector-logic computing equation T⊕ L⊕ F = 0 is used to solve all testing problems. It defines

the relationships between the same component formats (test, logic, faults) to determine any of them by the

other two. Such formats can be logical vectors, truth tables, and logical matrices. All these components form

smart data structures interconnected to get a result without an algorithm. The problem of modeling data

structures is solved by superpositioning those explicit components that provide solutions without an algorithm.

This trend is expected in the IT market, which aims to create and train a structure of smart data for intelligent

solutions to all problems in cyber-physical space without programming algorithms. All verification

technologies use the convolution equation of the relations between L⊕T⊕F=0 specification L,

implementation T, and errors F (faults). Verification is the process of determining the correspondence between

the specification and the synthesized device. This correspondence is then used to eliminate design errors

T⊕L=F by introducing logical-time redundancy. Test verification involves identifying faults F=T⊕L and

designing based on a synthesized test (project redundancy) for a given class of faults. Suitable design

standards, such as IEEE 11.49, 1500, and 1687, allow you to reduce the length of the test of IP components of

a project and improve its quality by using boundary scan registers [21]. Formal verification is the process of

achieving the quality of a project T⊕L=F based on logical-temporal redundancy (temporal logic) and a library

of valid circuit solutions. Disassembling a model is the process of obtaining a digital device model based on

the XOR interaction of a test and a given class of faults L=T⊕F. Fault diagnosis is the process of determining

the cause, location, and type of defects in a digital circuit. Next, all the components of smart data structures are

defined to solve the problems of testing using the characteristic equation and based on the XOR operation.

Components of smart data structures are introduced to develop simulation algorithms. These

structures' metrics use the dimensionality of a logical vector determined by the number of input variables. A

logical element is any binary functionality of n variables, with an indeterminate internal structure, given by a

logical vector, dimension 2𝑛. Logical vector L is an explicit form of defining functionality using an ordered

sequence of 2𝑛 bits, where each bit has its binary address in the metric n variables. A logical vector and an

ordered set of explicitly specified binary addresses form a truth table. A logical vector has all the properties

of a truth table, while it is more compact and technologically advanced for solving design and test in-memory

problems. Input binary test set x is an input test sequence of n binary bits, considered the address of a

deductive vector that provides transportation of a combination of an element's input faults to its output. The

output state of element Y is a binary value that results from feeding a test binary set x to an element specified

by the logical vector L. Test vector refers to concatenation of binary input set x and output state Y, using the

functions T=(xY). Active truth table A=T⨁L is an unordered form of specifying all combinations of input

faults by a set of 1-coordinates predetermined by n inverse values of the bits of the input binary set. Fault

truth table F is an explicit form of specifying all combinations of input faults by a set of unit coordinates that

are additionally determined by n inverse values of the bits of the input binary set. The truth table of the T-

tests is an explicit form of defining all 2𝑛 combinations of input binary test cases for a logical element. A

functional coverage truth table is an explicit form of specifying all combinations of input binary test sets and

the 2𝑛 state of logical element outputs. A functional coverage is essentially a logical vector of an element.

Deductive D-vector, dimension 2𝑛, points with its single bits to the columns with the faults to be detected at

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

457

the 1-coordinates of the fault truth table. Deductive matrix, dimensionality 2𝑛 × 2𝑛 is a gene of logical

functionality that contains complete information about all faults of a functional element detected on a test set.

Smart data structure (for fault simulation) is the explicit data structures (logical vectors, truth tables,

deductive matrices) interconnected by the unified metric of the logical vector space 2𝑛. Smart data structure

does not require conditional processing. The truth table, as a smart data structure, helps to exclude

conditional IF statements from the program code. Since the truth table is the complete set of conditional if

statements (in each variable metric) translated into the table of ordered addresses of the bits of the logical

vector. Circuit description (circuit input set data) contains information about the relationships between the

schematic elements (the number of inputs of each element and their numerical identifiers) and logical and

deductive vectors for performing the circuit fault simulation. Simulation matrix (matrix of circuit fault

simulation on input set) refers to quadratic matrix of the schematic structure for stuck-at-faults simulation of

input, internal, and output lines, dimension, of the number of lines of the circuit, determined by 1-values of

the coordinates of the main diagonal. It is designed to model circuit faults as addresses by using deductive

vectors of logic elements to obtain a vector of faults to be detected on the input set. End-to-end numbering of

schematic lines makes tracing structural features (reconvergence fanouts) easy in fault analysis based on a

simulation N-squared matrix. The table for test–detected circuit faults contains integral information about the

faults detected on each input set and an assessment of the quality of the input set and the test. It is used to

validate the test and find faults in the digital device. The formula for simulating stuck-at-faults of circuit lines

is as follows: from the input set on the external inputs and numbered N-lines of the circuit is synthesized N2

simulation matrix filled with 1-coordinates diagonally to obtain a vector of detected faults on the N-lines of

the circuit by constructing a matrix of deductive vectors from the m-number of functional elements of the

circuit, based on logical vectors and binary sets at the inputs of the elements, after which each output of the

schematic element is simulated by the sequential processing of the combination of lines of the simulation

matrix at the element inputs as addresses of the cells corresponding to the corresponding deductive vectors,

after which a disjunction operation is performed on those lines of the simulation matrix that belong to the

external interface outputs of the circuit, in order to obtain an integral ∨-vector of the simulation, the 1-

coordinates of which are further determined by the inverse values of the lines of the vector of the good

simulation to obtain the vector of tested faults on the input binary set. Faults-as-addresses simulation is a

technique that leverages input fault combinations as the addresses of deductive vector bits, which forms the

output vector of the detected input faults in a logic element. The model of detected line fault is represented by

a 1-signal in the simulation matrix, and the fault that was not detected is noted by a 0-signal.

4. INPUT DATA MODELS FOR LOGICAL ANALYSIS

Input data models for logical processing can be represented in Figure 4. Number 1 is the set of

compact unstructured data requiring complex and sequential input processing [42]. Number 2 is the binary

vector of unitary-encoded data that uses complex processor register variables to process pairs of input vectors

in parallel. Number 3 is the addresses formed by the columns of the input matrix of unitary-encoded data to

perform read-write in-memory transactions on the bits of the logical vector (without traditional processor

logic) with parallel analysis on the columns of data as addresses. Here, the vector L = 01101001 is an XOR

function of three variables that form addresses from the data to be analyzed. The longer the logical vector

length, the greater the degree of parallelism when processing big data as addresses. Logical vectors do not

need to be reduced to the logic of the processor using rather complex synthesis. In-memory computing based

on logic vectors is free from synthesis and traditional CPU logic, replaced by read-write transactions (600 ps

latency), which are not inferior in speed to the arithmetic logic unit (ALU) [38]. At the same time, in-

memory computing has half the power consumption when processing big data compared to a processor [39].

Two data processing options represent fault-as-address simulation techniques as shown in Figure 5.

− Technique 1. Use the columns of the S-matrix simulation along the input lines of the element as the

addresses of the deductive vector bits, which form the coordinates of the vector of the faults to be

detected on the output line Yi,j = Dxj
. For this example, it would be 𝑌12 = 100001000100. Here, each

1-unit is defined by address 100 in the truth table of the deductive vector, where D(100)=1. This

technique is implemented in the FAAS engine for circuit fault simulation.

− Technique 2. Distribute all columns of the S-matrix of the simulation with the input numbers of the

circuit lines to the addresses of the deductive vector truth table, and then generate the 1-coordinates of

the fault vector to be tested on the output line using the numbers of the lines equivalent to the columns,

if the column of the truth table is covered by the 1-coordinate of the deductive vector. Both techniques

for fault simulation of circuit lines as addresses have the same computational complexity Q=n×N

(where n is the number of inputs of the element being processed and N is the number of lines of the

circuit). The second technique has a valuable property: the faults equivalence of circuit lines by the

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

458

columns of the truth table, which is used to diagnose defects in the circuit. Another essential feature of

the proposed techniques is that in the simulation matrix, the tested faults of both signs (stuck-at-1,

stuck-at-0) are represented by a 1-coordinate, which is very convenient for generating addresses for

their parallel processing on deductive vectors. 1-coordinates are further determined by specific faults,

inverse to the good state of the lines, after the formation of the entire matrix of the circuit simulation.

The first technique for fault simulation of elements as part of a circuit is focused on implementation in

the EDA market using in-memory computing technology. This technique can also be effectively used

for parallel processing of big data, such as addresses, to solve problems of determining similarity–

difference and equivalence of patterns.

Figure 4. Input data models for logical analysis

Figure 5. Techniques for fault simulation as addresses on a deductive vector

The fault simulation matrix of circuit lines as addresses is the basis of the simulation engine in

Figure 6. The circuit fault simulation matrix on the input test set has dimensions N× N=𝑁2, where N is the

number of lines in the circuit. It is filled with one unit along the main diagonal, which, in the simulation

process, turns into binary vectors of the faults to be detected for each output number of the element.

The 1-coordinate of the matrix encodes the fault detection on the circuit line of both fault types

(stuck-at-0, stuck-at-1). Vector Sum ∨ performs the function of logically concatenating those rows of the

simulation table that are the external outputs of the circuit. In this example, there is one external circuit input,

number 12. The Good vector shows the state of all circuit lines in the absence of faults. The faults vector

identifies faults (stuck-at-0, stuck-at-1) that are detected on a test set using a simple rule: If (SumV)i =1, then

(Faults)i=Goodi̅̅ ̅̅ ̅̅ ̅̅ . This expression can be implemented using the truth table shown at the bottom of Figure 6.

The fault vectors form the result of the simulation, which is the table of test-detected circuit faults. To form

the address of a deductive vector bit, the coordinates of those strings whose numbers form the element's

inputs are used to form the address of the bit. Each deductive vector of element forms its output row of the

simulation matrix using eventfulness rules, a set of empty cells or null addresses are not processed. To obtain

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

459

vector line 12 for the element shown in Figure 6, you need to concatenate the addresses by input numbers

term (10,8,11): 101, 111, 011, 000, ... The computational complexity of processing the simulation matrix on

the test set is determined by the complexity of address concatenation. It is equal to
1

2
𝑁2, where N is the

number of lines in the circuit.

Figure 6. Matrix of fault simulation of circuit lines as addresses on the input set

5. FAULTS AS ADDRESS SIMULATION IN THE LOGIC CIRCUIT

The problem of transferring the von Neumann architecture to memory and replacing the powerful

processor on read-write with transactions on logical and deductive vectors to reduce energy and time

consumption when logic circuit simulation of any dimension is solved. The goal is to develop a FAAS

mechanism for fault-as-address simulation for digital circuits of any dimension. The tasks as presented in

Figure 7 are as follows. Task 1 is synthesis of deductive vectors for transporting input faults to the output of

an element on an input test set. Task 2 is development of a quadratic matrix of the circuit structure to

simulate stuck-at-faults of input, internal, and output lines. Task 3 is simulation of circuit faults-as-addresses

using simulation matrix and deductive vectors of the logic element to obtain a vector of the detected faults.

The end-to-end numbering of circuit lines makes tracing structural features (reconvergence fanouts) easy in

fault analysis using a simulation matrix. Task 4 is formation of a table of detected faults to determine the

quality of the input set and the test.

Figure 7. Circuit fault simulation structure

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

460

Truth table synthesis of the H-matrix line for deductive vector creation in Figure 8. The coordinates

of each row of the H-matrix [10] of bit recoding are represented by decimal address codes, which are

obtained by XOR interaction of the input binary test set T and the columns of the truth table L:A=T⨁L of

any functionality from the n-variables. This is the theoretical essence of the synthesis of the bit-recoding

matrix. The results of the XOR interaction of the input binary test vectors (T=0000, 0111) and 2𝑛=16

columns of the truth table form the 0 and 7 rows of the bit-recoding matrix to generate a deductive vector.

Each table shows the result of the XOR summation of the test set T and the standard truth table L. The upper

part of each table is represented by the recoding vector obtained to compile the H-matrix. The binary-decimal

code of the test set forms the corresponding string of the recoding matrix. Knowing the recoding vector

H0111 it is easy to obtain the deductive vector D by executing the formula: from the test set T=0111 as the bit

address of the logical vector L0111 = 1, the state of the element's output is determined Y=1, XOR-summation

of which with all the bits of the logical vector L=1110001111000111 gives a vector of activity

A=Y⨁L=0001110000111000, to which the H-vector of the recoding of the bits on the test set T=0111 is

applied to obtain the deductive vector D=AH= 0011100000001110 whose bits are already written to the

binary-decimal addresses standard. The H-matrix of bit recoding is the key to constructing a matrix of

deductive vectors of any logic.

Figure 8. Truth table synthesis of the H-matrix line for deductive vector creation

It is proposed to use a truth table to synthesize the deductive vector of a functional element in

Figure 9 based on a logical vector and a given binary input set for its use in simulating stuck-at-faults in a

digital circuit. The formula for deductive vector modeling is as follows. The input binary set, as the cell

address of the logical vector, contains the output state of the element, the concatenation of which with the

Figure 8. Truth table synthesis of the H-matrix line for deductive vector creation

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

461

input binary forms an input-output state vector for XOR interaction with all the columns of the truth table to

synthesize the activity table, to which the procedure of ordering the columns in ascending order of the binary

addresses of the input variables is applied to obtain a deductive vector in the ordered activity table.

Figure 9. Generation of the deductive vector for an element via a truth table

Data structures for logic circuit fault simulation are represented by the following macro-

components: circuit description and simulation matrix. The fault detection table consists of i) identifiers of

the input-output of the circuit and logic elements, which together make up the interface of the circuit; ii) a

matrix of logical vectors that define the functionality of each element of the circuit; iii) a matrix of deductive

vectors that form lists of input faults to be detected at the output of each element of the circuit; iv) vector of

binary good behavior of all circuit lines in the format of input, internal and output lines; v) quadratic matrix

(𝑁2 of the number of circuit lines) for simulation of circuit faults on an input binary test set, pre-populated

with 1-values at diagonal coordinates, creating a stuck-at-fault circuit model; and vi) vector of faults detected

on the binary test set, inverse concerning the state of the circuit lines of good behavior. Next, a circuit as in

Figure 10 is proposed, for which data structures will be built to execute the fault simulation algorithm. Here

is the circuit fault simulation formula: Simulation N2 matrix filled with unit coordinates diagonally is

synthesized from the binary test set on the external inputs and numbered N-lines of the circuit to obtain a

vector of detected faults on the N-lines of the circuit by constructing a matrix of deductive vectors based on

the m-number of functional elements of the circuit, based on logical vectors and binary sets on the inputs of

the elements, after which each output of the circuit element is simulated by sequential processing

combination of the lines of the simulation matrix at the inputs of the element as addresses of the cells of the

corresponding deductive vectors, after which the disjunction operation is performed on those lines of the

simulation matrix that belong to the external interface outputs of the circuit, in order to obtain an integral

∨ −vector of the simulation, the 1-coordinates of which are supplemented by the inverse values of the lines

of the vector of the good simulation to obtain the vector of the detected faults on the input binary set. These

can be seen in Figure 11.

Figure 10. Circuit for simulation of faults

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

462

Figure 11. Data structure for circuit fault simulation on the input set 11001

The circuit fault simulation metric consists of several key components and methodologies aimed at

optimizing fault detection and diagnostics within a circuit system, as outlined in the following points. i)

Smart and easy-to-implement structured data contains three macro components: circuit description,

simulation matrix, and fault detection table. ii) A diagonal of 1 unit represents a simple fault model in a

simulation matrix. iii) The simulation algorithm uses fault-as-addresses of the bits of deductive vectors

composed from the input coordinates of the simulation table. iv) The algorithm for obtaining the deductive

vector of an element uses only three operations on the logical vector and the binary input set. v) The

simulation matrix structures the faults to be tested according to the external outputs of the circuit, which

improves the quality of the test and provides additional opportunities to increase the depth of fault

diagnostics during the operation of the device. vi) The structure of the simulation matrix makes it possible to

handle faults of reconvergent fanouts as addresses without additional particular calculations. vii) Using the

eventfulness principle in processing the simulation and deduction matrix makes it possible to increase the

speed of fault analysis by 30%. Lastly, viii) when processing circuits with feedback, you must introduce

pseudo-variables into the circuit model. When processing the simplest automata as elements, it is also

necessary to enter pseudo-variables. Introducing pseudo-variables makes the fault simulation algorithm

iterative when processing a binary test set. Figure 12 shows the interface for displaying information about the

results of circuit fault simulations on the input binary test sets.

The circuit fault simulation table column components are i) input set, which is input binary test sets;

ii) Q, which is the quality of the current test vector, defined as the number of faults to be tested on the test

vector divided by twice the number of circuit lines Q=F/2N, iii) Σ or the integral quality of the test vectors,

which is a non-additive assessment of the counting of the faults to be detected by the lines of the circuit or

the columns of the table; if the test T1…i,j in the column j in lines 1... i tables are present 0.1, then the integral

quality score is increased by two Σ = Σ +2, If only 0 or 1 are present in the column, the integral score is

increased by one Σ=Σ+1 and the formula for calculating integral quality Σ= Σ/2N; iv) 1…N, which are

columns containing circuit line faults detected on test sets; and v) empty cells in the table that indicate the

coordinates of the lines on which faults are not detected. The software implementation of the circuit fault

simulation interface is shown in Figure 13. The output files of the circuit fault simulation interface are

represented by three components (left to right). The first is the circuit fault simulation table on the whole test.

If you click on a row in the table, a simulation matrix of the input set and data structure (logical and

deductive vectors) appears. The second one is the schematic element simulation matrix on the input set. For

visual verification of the simulation process, it is possible to track changes in data structures by generating

fault vectors on each input binary set. Here are the last two lines: output (fault-free simulation vector) and

(fault) fault detection vector. The third is deductive fault simulation vectors for circuit elements' input set and

logic vectors.

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

463

Figure 12. Circuit line fault simulation table

Figure 13. Circuit fault simulation table

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

464

The following is a simulation of switch circuit faults on a complete verification test as shown

in Figure 14. Adding external outputs (for example, 7, 8, 9) to the circuit affects the quality of the test

and each test set. Making all the internal lines observable can significantly reduce the length of the test

while keeping it 100% quality to detect all defects in the digital circuit. The inferences are described as

follows. i) Faults as addresses simulation technique is proposed for processing input, internal, and

output lines of a circuit based on logical vectors of functional elements, which are used to construct

deductive vectors for transporting input faults to the circuit outputs. ii) Faults are treated as addresses for

selecting the appropriate bits of deductive vectors, which makes it possible to increase the parallelism of

circuit fault vector processing by increasing the complexity of logic elements. iii) The input fault model of

the circuit on the input set is initially represented by a quadratic matrix of the number of the circuit

line, where 1-values are diagonally arranged. iv) In the simulation process, such a matrix makes it easy to

handle elements' most complex structural relationships, including reconvergence fanouts. v) The technique

does not require synthesis to reduce logical functionalities to a specific basis of elements. Conversely,

the technique will work faster if longer vectors in memory represent the macro functionalities .

vi) The technique is focused on implementation in any memory based on the execution of read-write

transactions, which makes it free from a potent CPU instruction system and economical in terms of energy

and time for fault simulation. vii) To process circuits with feedback, you need to introduce

pseudo-variables and additional loops to process the input binary vectors to bring the simulation results to

a stable form. viii) To process digital automata, it is necessary to perform a preliminary synthesis of

the automaton model to reduce it to a vector form with pseudo-variables. Python is the most popular

function-oriented programming language [40], [41] today, which can process big data with the help of

Excel files, including the simulation of large digital projects with the preservation of the result of such

processing. Python supports operations on big data structures, which is especially important for

implementing procedures and algorithms focused on in-memory computing. Therefore, smart data

structures and fault-as-address simulation are implemented in Python code. The complexity of the program

code for implementing FAAS-technique is estimated at 900 lines. The smart data structure and

algorithms were verified on several dozen logic circuits on which fault detection tables were built.

Figure 14. Result of simulation of switch circuit faults

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

465

6. CONCLUSION

The novelty of this is the future of the EDA market in implementing energy-saving in-memory

design and test computing. FAAS is a technique that leverages input faults combination as the addresses of

deductive vector bits that form the output vector of the detected input faults in the logic element. FAAS

technique is proposed for digital circuit simulation, where logical vectors represent elements as a compact

form of the truth table. The truth table is the longest-lived model of the computational process; it is more than

100 years old, and today, it is practically not used for organizing computations. Underneath the simplicity of

the form of the truth table, which is understandable to humans and machines, there is an undeciphered

genome of emerging computing. The truth table is proposed as an ideal data structure for fault simulation of

input and internal lines of logic circuits. The logical vector in the truth table and the input test set are used to

construct a deductive vector that transports any combination of faults in the circuit lines to its external

outputs. Algorithms and data structures are proposed for in-memory simulating faults as addresses, as well as

logical schemes of any structural complexity. Smart data structures have three macro components: circuit

description, simulation matrix, and fault detection table. The schematic fault simulation algorithm metric

contains the following novelty points: i) synthesis of a deductive vector on an input binary set to transport

input faults to the output of an element; ii) development of a quadratic matrix of the circuit structure to

simulate constant faults of input, internal, and output lines, including converging branches reconvergent

fanouts; iii) simulation of circuit faults-as-addresses using a simulation matrix and deductive vectors of logic

elements to obtain a vector of defects tested on the input test set; and iv) formation of a table of detected

defects to determine the quality of the input sets and the test. Fault simulation algorithms use read-write

transactions on smart data structures in any SoC, FPGA, ASIC, or RISC-V memory and do not require

processor instructions and pre-synthesis of the circuit to bring logical functionalities to a specific element

basis. The market goal of the proposed FAAS-Technique is to solve IP-core verification problems based on

in-memory computing using the IEEE 1500 SECT standard. The data structure metric is logical vector or

truth table. The metric of the simulation algorithms is the XOR transformation of the truth table on the test

set T⨁L with the subsequent ordering of columns by address. The in-memory simulation uses read-write

transactions, which makes the FAAS technique free of the CPU instruction system and cost-effective in terms

of energy and latency to simulate fault-as-address.

REFERENCES
[1] W. Gharibi, A. Hahanova, V. Hahanov, S. Chumachenko, E. Litvinova, and I. Hahanov, “Vector-deductive memory-based

transactions for fault-as-address simulation,” Èlektronnoe modelirovanie, vol. 45, no. 1, pp. 3–26, Mar. 2023, doi:

10.15407/emodel.45.01.003.
[2] A. Coluccio et al., “Hybrid-SIMD: A modular and reconfigurable approach to beyond von Neumann computing,” IEEE

Transactions on Computers, pp. 1–1, 2021, doi: 10.1109/tc.2021.3127354.

[3] M. Davis, “Emil Post’s contributions to computer science,” in [1989] Proceedings. Fourth Annual Symposium on Logic in
Computer Science, 1989, pp. 134–136. doi: 10.1109/LICS.1989.39167.

[4] B. Wu, H. Zhu, K. Chen, C. Yan, and W. Liu, “MLiM: High-performance magnetic logic in-memory scheme with unipolar

switching SOT-MRAM,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 6, pp. 2412–2424, Jun.
2023, doi: 10.1109/tcsi.2023.3254607.

[5] P. Wang et al., “RC-NVM: Enabling symmetric row and column memory accesses for In-memory databases,” in 2018 IEEE

International Symposium on High Performance Computer Architecture (HPCA), Feb. 2018, pp. 518–530. doi:
10.1109/HPCA.2018.00051.

[6] B. Ahn, J. Jang, H. Na, M. Seo, H. Son, and Y. H. Song, “AI accelerator embedded computational storage for large-scale DNN

models,” in 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Jun. 2022, pp. 483–
486. doi: 10.1109/AICAS54282.2022.9869991.

[7] M. Moreau et al., “Reliable ReRAM-based logic operations for computing in memory,” Oct. 2018. doi: 10.1109/vlsi-
soc.2018.8644780.

[8] W. Kang, H. Zhang, and W. Zhao, “Spintronic memories: From memory to computing-in-memory,” in 2019 IEEE/ACM

International Symposium on Nanoscale Architectures (NANOARCH), Jul. 2019, pp. 1–2. doi:
10.1109/NANOARCH47378.2019.181298.

[9] R. Gauchi et al., “Memory sizing of a scalable SRAM in-memory computing tile based architecture,” in 2019 IFIP/IEEE 27th

International Conference on Very Large Scale Integration (VLSI-SoC), Oct. 2019, pp. 166–171. doi: 10.1109/VLSI-
SoC.2019.8920373.

[10] W. Gharibi, A. Hahanova, V. Hahanov, S. Chumachenko, E. Litvinova, and I. Hahanov, “Vector–logic synthesis of deductive

matrices for fault simulation,” Èlektronnoe modelirovanie, vol. 45, no. 2, pp. 16–33, Apr. 2023, doi:
10.15407/emodel.45.02.016.

[11] T. Liu, T. Yu, S. Wang, and S. Cai, “An efficient degraded deductive fault simulator for small-delay defects,” IEEE Access, vol.

8, pp. 204855–204862, 2020, doi: 10.1109/access.2020.3037292.
[12] M. Burhan et al., “A comprehensive survey on the cooperation of fog computing paradigm-based IoT applications: layered

architecture, real-time security issues, and solutions,” IEEE Access, vol. 11, pp. 73303–73329, 2023, doi:

10.1109/access.2023.3294479.
[13] Z. Kaya, M. Garrido, and J. Takala, “Memory-based FFT architecture with optimized number of multiplexers and memory

usage,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 8, pp. 3084–3088, Aug. 2023, doi:

10.1109/tcsii.2023.3245823.

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

466

[14] V. Hahanov et al., “Vector-qubit models for SoC (system on a chip) logic-structure testing and fault simulation,” Feb. 2021. doi:

10.1109/cadsm52681.2021.9385266.
[15] V. I. Hahanov, S. M. Hyduke, W. Gharibi, E. I. Litvinova, S. V. Chumachenko, and I. V. Hahanova, “Quantum models and

method for analysis and testing computing systems,” in 2014 11th International Conference on Information Technology: New

Generations, Apr. 2014, pp. 430–434. doi: 10.1109/ITNG.2014.125.
[16] M. Karavay, V. Hahanov, E. Litvinova, H. Khakhanova, and I. Hahanova, “Qubit fault detection in SoC logic,” in 2019 IEEE

East-West Design & Test Symposium (EWDTS), Sep. 2019, pp. 1–7. doi: 10.1109/EWDTS.2019.8884475.

[17] V. Hahanov, W. Gharibi, E. Litvinova, and S. Chumachenko, “Qubit-driven fault simulation,” in 2019 IEEE Latin American Test
Symposium (LATS), Mar. 2019, pp. 1–7. doi: 10.1109/LATW.2019.8704583.

[18] Z. Zhao, P. X. Liu, and J. Gao, “Fault detection for non-Gaussian stochastic distribution systems based on randomized

algorithms,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–9, 2022, doi:
10.1109/tim.2022.3192829.

[19] V. Hahanov, Cyber physical computing for IoT-driven services. Cham: Springer International Publishing, 2018. doi: 10.1007/978-

3-319-54825-8.
[20] R. Ubar, J. Raik, M. Jenihhin, and A. Jutman, Structural decision diagrams in digital test: theory and applications. Springer

Nature Switzerland, 2024. doi: 10.1007/978-3-031-44734-1.

[21] E. J. Marinissen and Y. Zorian, “IEEE Std 1500 enables modular SoC testing,” IEEE Design & Test of Computers, vol. 26,
no. 1, pp. 8–17, Jan. 2009, doi: 10.1109/mdt.2009.12.

[22] K. Aslansefat and G.-R. Latif-Shabgahi, “A hierarchical approach for dynamic fault trees solution through semi-Markov process,”

IEEE Transactions on Reliability, vol. 69, no. 3, pp. 986–1003, Sep. 2020, doi: 10.1109/TR.2019.2923893.
[23] B. Kaczmarek et al., “LBIST for automotive ICs with enhanced test generation,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 41, no. 7, pp. 2290–2300, Jul. 2022, doi: 10.1109/TCAD.2021.3100741.

[24] S. Lee, K. Cho, S. Choi, and S. Kang, “A new logic topology-based scan chain stitching for test-power reduction,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3432–3436, Dec. 2020, doi:

10.1109/TCSII.2020.3004371.
[25] P. Papavramidou and M. Nicolaidis, “Iterative diagnosis approach for ECC-based memory repair,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 2, pp. 464–477, Feb. 2020, doi:

10.1109/tcad.2018.2887052.
[26] H. Zhang, K. Liu, M. Zhao, Z. Shen, X. Cai, and Z. Jia, “Pearl: Performance-aware wear leveling for nonvolatile FPGAs,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 2, pp. 274–286, Feb. 2021, doi:

10.1109/tcad.2020.2998779.
[27] D. V Efanov, D. V Pivovarov, and V. V Khóroshev, “Conditions for detecting errors in the concurrent checking circuits by

Boolean complement method to the code ‘2-out of-5,’” Nov. 2023. doi: 10.1109/ncs60404.2023.10397527.

[28] A. Wagle and S. Vrudhula, “Heterogeneous FPGA architecture using threshold logic gates for improved area, power, and
performance,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 6, pp. 1855–1867,

Jun. 2022, doi: 10.1109/tcad.2021.3099780.

[29] L. Lin, Y. Huang, L. Xu, and S.-Y. Hsieh, “A complete fault tolerant method for extra fault diagnosability of alternating group
graphs,” IEEE Transactions on Reliability, vol. 70, no. 3, pp. 957–969, Sep. 2021, doi: 10.1109/tr.2020.3021233.

[30] I. Pomeranz, “Bit-complemented test data to replace the tail of a fault coverage curve,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 32, no. 4, pp. 609–618, Apr. 2024, doi: 10.1109/tvlsi.2024.3365355.
[31] D. Jinling and X. Aiqiang, “A fault simulation method based on mutated truth table of logic gates,” Nov. 2016. doi:

10.1109/icam.2016.7813557.

[32] Q. Wang, T. Jin, and M. A. Mohamed, “A fast and robust fault section location method for power distribution systems
considering multisource information,” IEEE Systems Journal, vol. 16, no. 2, pp. 1954–1964, Jun. 2022, doi:

10.1109/jsyst.2021.3057663.

[33] J. Hu et al., “Adaptive multidimensional parallel fault simulation framework on heterogeneous system,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 6, pp. 1951–1964, Jun. 2023, doi:

10.1109/tcad.2022.3213617.

[34] A. Ehteram, H. Sabaghian-Bidgoli, H. Ghasvari, and S. Hessabi, “A simple and fast solution for fault simulation using
approximate parallel critical path tracing,” Canadian Journal of Electrical and Computer Engineering, vol. 43, no. 2, pp. 100–

110, 2020, doi: 10.1109/cjece.2019.2950280.

[35] S.-H. Chang, C.-N. J. Liu, and A. Kuster, “Behavioral level simulation framework to support error-aware CNN training with in-
memory computing,” in 2022 18th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and

Applications to Circuit Design (SMACD), Jun. 2022, pp. 1–4. doi: 10.1109/SMACD55068.2022.9816307.

[36] A. Zarei and F. Safaei, “LIMITA: Logic-in-memory primitives for imprecise tolerant applications,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 68, no. 11, pp. 4686–4699, Nov. 2021, doi: 10.1109/tcsi.2021.3106017.

[37] Z. Yao, Y. Liu, J. Chen, J. Ji, M. Zhang, and Y. Gong, “Active high-impedance fault detection method for resonant grounding

distribution networks,” IEEE Access, vol. 12, pp. 10932–10945, 2024, doi: 10.1109/access.2024.3352258.
[38] B. Wu, H. Zhu, K. Chen, C. Yan, and W. Liu, “MLiM: High-performance magnetic logic in-memory scheme with unipolar

switching SOT-MRAMxx,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 6, pp. 2412–2424, Jun.

2023, doi: 10.1109/tcsi.2023.3254607.
[39] W. Jiang et al., “Device-circuit-architecture co-exploration for computing-in-memory neural accelerators,” IEEE Transactions on

Computers, vol. 70, no. 4, pp. 595–605, Apr. 2021, doi: 10.1109/tc.2020.2991575.

[40] C. Scalfani, “A new way to squash bugs: functional programming is hard to learn but yields fewer nasty surprises,” IEEE
Spectrum, vol. 59, no. 12, pp. 40–45, Dec. 2022, doi: 10.1109/mspec.2022.9976475.

[41] M. Zaman, K. Tanahashi, and S. Tanaka, “PyQUBO: Python library for mapping combinatorial optimization problems to QUBO

form,” IEEE Transactions on Computers, vol. 71, no. 4, pp. 838–850, Apr. 2022, doi: 10.1109/tc.2021.3063618.
[42] W. Gharibi, V. Hahanov, S. Chumachenko, E. Litvinova, I. Hahanov, and I. Hahanova, “Vector-logic computing for faults-as-

address deductive simulation,” IAES International Journal of Robotics and Automation (IJRA), vol. 12, no. 3, p. 274, Sep. 2023,

doi: 10.11591/ijra.v12i3.pp274-288.

IAES Int J Rob & Autom ISSN: 2722-2586 

Faults-as-address simulation (Vladimir Hahanov)

467

BIOGRAPHIES OF AUTHORS

Vladimir Hahanov was born in the USSR in 1953. He is a Doctor of Science,

Professor of Computer Engineering Faculty, Design Automation Department, Kharkov

National University of Radio Electronics, Ukraine. His research and development fields

include design and test of computers, test generation and fault simulation for soc, quantum

memory-driven computing, cyber-physical, cyber social computing, pattern recognition &

machine learning computing, digital smart cyber university, and cloud-driven traffic control.

He has supervised 4 Doctors of Science and 36 Ph.Ds. He has been the General Chair of the

IEEE East-West Design & Test Symposium for 22 years since 2003. He is also the author of

650+ publications and 25 textbooks, 5 patents, and 202 Scopus-indexed papers: with 722

citations by 507 documents, h-index 14. Prof. Hahanov has been an IEEE Senior Member

since 2010, IEEE Computer Society Golden Core Member, SAE member, and IFAC

member, and communication society member. He can be contacted at hahanov@icloud.com.

Svetlana Chumachenko was born in USSR in 1969. She is a Doctor of

Technical Sciences, Professor, and Head of the Design Automation Department, Kharkov

National University of Radio Electronics, Ukraine. Her research and development fields

include Mathematics, Computer Engineering, and Smart Cyber University. Her international

activities include the fundamental research within agreement cooperation on scientific and

technical “Strategic partnership” with the firm Aldec Inc. (USA) in 2000, 2005; SEIDA

BАITSE “Baltic Academic IT Security Exchange”, Blekinge Institute of Technology,

Sweden in 2011–2012; international project “Curricula Development for New

Specialization: Master of Engineering in Microsystems Design 530785-TEMPUS-1-2012-1-

PL-TEMPUS-JPCR” Priority – Curricula Reform in 2012–2016. She is also the author of

250+ publications, 10 textbooks, and 100 Scopus-indexed papers: with 325 citations, h-index

11. She can be contacted at svetachumachenko@icloud.com.

Eugenia Litvinova was born in Kharkov in 1962. She is a Doctor of Science

and a Professor of Computer Engineering Faculty, Design Automation Department, Kharkov

National University of Radio Electronics, Ukraine. Her research and development fields

include the design and testing of computers and quantum computing. Her international

activities include being a staff member of the Tempus Project No. 530785-TEMPUS-1-2012-

PL-TEMPUS-JPCR Curricula Development for New Specialization: Master of Engineering

in Microsystems Design and a member of the organizing committee of IEEE East-West

Design & Test Symposium from 2007 to present. She is also the author of 250+ publications

10 textbooks, and 100 Scopus-indexed papers: with 325 citations, h-index 11. She can be

contacted at litvinova_eugenia@icloud.com.

Ivan Hahanov was born in Kharkov in 1997. He is an IEEE member and a PhD

in Computer Engineering, Kharkov National University of Radio Electronics, Ukraine. Ivan

Hahanov is an Experienced Coursera-certified ML specialist and ex-mobile developer. He

successfully accomplished and delivered projects using developed algorithms and acted as a

team lead and the principal researcher on many of them. International activity: Staff member

of the Tempus Project No. 530785-TEMPUS-1-2012-PL-TEMPUS-JPCR Curricula

Development for New Specialization: Master of Engineering in Microsystems Design.

Research fields: computer vision, machine learning, deep learning, data analysis, NLP,

MLOps, cloud, and big data. Ivan Hahanov received a diploma as the best student in Ukraine

in computer engineering and won the competition for the best scientific student work in

Ukraine. He authorizes 50 publications, Scopus h-index: 5, 48 citations by 26 documents.

Hobbies and interests: tennis, gymnastics, alpine skiing, tourism. He can be contacted at

ivanhahanov@icloud.com or ivanhahanov@gmail.com.

Veronika Ponomarova is an engineer. She was born in Kharkov in 1987. In

2012, she graduated from the Kharkov National University of Radio Electronics with a

degree in computer systems and networks and received the qualification of a computer

systems analyst. Research interests: design and test of computing, project management, and

systems administration. Her hobbies are knitting, grooming. She can be contacted at

veronika.ponomarova@nure.ua.

http://orcid.org/0000-0001-5312-5841
https://scholar.google.com.ua/citations?user=lmVrEM4AAAAJ&hl=ru
https://www.scopus.com/authid/detail.uri?authorId=7801667873
https://www.webofscience.com/wos/author/record/AIE-3976-2022
https://orcid.org/0000-0001-8913-1194
https://scholar.google.com.ua/citations?user=J5ePrKcAAAAJ&hl=ru&authuser=4
https://www.scopus.com/authid/detail.uri?authorId=57188710840
http://orcid.org/0000-0002-9797-5271
https://scholar.google.com.ua/citations?user=-owoIXcAAAAJ&hl=ru
https://www.scopus.com/authid/detail.uri?authorId=25650378900
https://www.webofscience.com/wos/author/record/P-5568-2019
https://orcid.org/0009-0009-3449-9595
https://scholar.google.com/citations?hl=en&user=wKbh1-UAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56535298900
https://orcid.org/0009-0004-8015-8744

  ISSN: 2722-2586

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468

468

Hanna Khakhanova was born in 1978 in Kharkov. Doctor of Science,

Associate Professor of Design Automation Department, Computer Engineering Faculty,

Kharkov National University of Radioelectronics, Ukraine. R&D fields: Cyber-physical,

cyber-social computing, pattern recognition, and machine learning. Digital Smart Cyber

University. Her international activities include being a staff member of the Tempus Project

No. 530785-TEMPUS-1-2012-PL-TEMPUS-JPCR Curricula Development for New

Specialization: Master of Engineering in Microsystems Design. Previous positions: Deputy

Dean of Computer Engineering Faculty (2013-2016). Author of more than 85 publications

and 4 monographs, 1 patent, and 39 articles indexed in Scopus: 93 citations by 83

documents, h-index = 7. She can be contacted at anna.khakhanova@nure.ua or

anna.hahanova@nure.ua.

Georgiy Kulak was born in Kharkov in 2001. He is a Master of Computer

Engineering. He was born in Kharkov in 2001. He is a Master of Computer Engineering,

Kharkov National University of Radio Electronics, Ukraine. His research and development

fields include design and test of computers, test generation, and fault simulation for SoC. He

is the author of 4 publications, 1 patent, and 2 Scopus-indexed papers: with 3 citations by 2

documents. His dominating interests are programming and developing embedded devices. In

his free time, he’s making open-source tools and POCs, developing applications for IoT

hardware and software for compact flying vehicles. His hobbies are gymnastics, paintball,

karting, and running. He can be contacted at kulakgeorgij@gmail.com.

https://orcid.org/0000-0002-1318-7973
https://scholar.google.com/citations?hl=en&user=Auk3dIwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=8326375900
https://www.webofscience.com/wos/author/record/60475
https://orcid.org/0009-0008-7685-5909
https://scholar.google.com/citations?user=FKffypgAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57336874000

