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 Fault-as-address-simulation (FAAS) is a simulation mechanism for testing 

combinations of circuit line faults, represented by the bit addresses of 

element logical vectors. The XOR relationship between the test set T and the 

truth table L of the element forms a deductive vector for fault simulation, 

using truth table addresses or the logic vector bits. Addresses are used in the 

simulation matrix to mark those n-combinations of input faults detected at 

the element's output. The columns of the simulation matrix are treated as n-

row addresses to generate an element output row via a deductive vector. 

There is no transport of input faults to the element output, Only the 1-signals 

written in the non-input row coordinates of the circuit simulation matrix. The 

simulation matrix is initially filled with 1-signals along the main diagonal. 

The line faults detected on the test set of circuits are determined by the 

inverse of lines good values, which have 1-values in the matrix row 

corresponding to the output circuit element. The deductive vector is obtained 

by the XOR-relations between the test set and logical vector in three table 

operations. The advantage of the proposed FAAS mechanism is the 

predictable complexity of the algorithm and memory consumption for 

storing data structures when simulating a test set. 
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1. INTRODUCTION 

Statement of the problem the paper is addressing. Most of the existing solutions for processing big 

data, including design and verification, use potent computers, networks, and computing centers where arrays 

of information are stored. Such solutions require a lot of electrical energy and are close to power plants. 

Given that there will always be insufficient electricity, everything related to the energy-intensive processing 

of big data will gradually become a thing of the past. Instead, there is a steady increase in in-memory 

computing, which will solve the problems of intelligent processing of big data on smart data structures 

without programming algorithms and architectures free of potent processors. One of these cost-effective 

solutions is proposed for research: in-memory modeling and simulation on smart data structures that use only 

read-write transactions. The study's formula is the use of smart data structures in vector-table forms of logic 

circuit description to organize in-memory computing based on read-write transactions [1] for simulating 

faults as addresses [2], [3]. Experts in computer technology, including Gartner, predict a shift to mass 

computing in memory and the abandonment of the von Neumann architecture [2] and powerful processors 

[4], [5]. They advocate the gradual transition of computing to any substance that can store data. To perform 

any computational actions, two read-write transactions on memory elements are enough [1], [2]. This is the 

practical essence of the proposed study. On the other hand, intelligent computing, according to leading 
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experts, has a strong tendency to use smart memory-based data structures [4], [6] to process big data without 

programming algorithms [7], [8]. At the same time, smart data structures can be created once by a 

superposition of explicit computing components or by training a machine learning (ML) model when the data 

structure acquires valuable properties for a successful solution to the problem. In both cases, the 

computational complexity of the smart data structure processing algorithm tends to zero due to the significant 

redundancy of data structures. The economy of in-memory mass computing involves a substantial reduction 

in energy (78%) [2] for processing big data and the time (32%) [4] to solve problems due to the speed of 

read-write transactions at the level of one nanosecond [5]. 

Here are what has been done before about the problem. Models and algorithms are strongly 

interconnected. Redundancy of one component leads to a decrease in the other and vice versa. If an engineer 

wants a simple algorithm, he should use the redundancy and simplicity of explicit data structures (logical 

vectors, truth tables [1], [3], [9], and matrices) instead of analytical [10]–[12], or graph [13]–[15] models. 

Design and testing have been, are, and will continue to be the most advanced technology for building 

intelligent computing [10], [16], the goal of which is to create the cyber brain of humanity. An urgent 

problem is verifying new digital solutions using system-on-chip (SoC) numbering billions of transistors. 

Automatic synthesis systems of Synopsys, cadence can design a system of any complexity. However, the 

question is how to verify such a system. How can a test for it be built to determine its qualities in detecting 

logical or physical faults? Electronic design automation (EDA) applies testable design standards to break 

down a complex system into the market's SoC intellectual property (IP) cores. Tests are then built for these 

modules, which must be verified using fault simulation algorithms. Typically, these algorithms use compact 

analytical or hardware description language (HDL) digital circuits and element models. Their processing 

involves the creation of powerful compilers based on the use of processor instructions. Such simulators are 

costly and require a lot of time and energy [17], [18]. What can be offered in return? Technologically simple, 

cheap-to-use test generators and simulators [19]–[21] that consume a minimum amount of energy [22]–[24]. 

The research formula for this metric is to develop mechanisms for in-memory modeling and simulation of 

faults-as-addresses based on logical vectors [21], [25] of circuit elements, which are processed based on read-

write transactions [20], [26]. For this purpose, redundant smart and explicit data structures [20], [27], [28] 

have been introduced and used, significantly reducing the computational complexity of simulation algorithms 

[1], [15], [29]. Logical vectors, truth tables, and logical matrices represent smart data structures. Only one 

XOR operation and a read-write transaction are required to process them for fault-as-address simulation. 

However, this XOR operation can also be reduced to read-write transactions on a logical vector [1], [19]. The 

efficiency of the simulation mechanism is unparalleled, providing simplicity and good economics of the 

solution. Computer engineering students master this mechanism in one lesson, 45 minutes. The topic of fault 

simulation in the EDA market has been relevant for 70 years and occupies one of the first places in the 

development of researchers and companies. The market relevance of this topic is determined by the following 

metrics [29]–[31]: i) the development of smart data structures and efficient algorithms for testing increasingly 

complex computer systems and networks consisting of billions of equivalent gates; ii) invariance of 

structures and algorithms concerning technologies and types of digital products that change rapidly over time 

[32]; iii) the flexibility of data structures and algorithms will allow the processing of a wide range of digitized 

technical devices and processes for their testing, verification, diagnostics, and fault detection [33]–[35]; iv) 

considering faults as big data, algorithms for their analysis must be efficient in terms of time and energy 

consumption. Therefore, fault simulation should be implemented on primitive read-write transactions as in-

memory computing without the use of the robust instruction set of the universal processor in the von 

Neumann architecture [2], [36], [37]; v) data structures for fault simulation should be simple and accessible 

to computers and humans [36]. Such ideal data structures, invariant in time, are the unjustly forgotten truth 

table and its compact derivative, the logical vector. They are ideal for efficiently solving in-memory 

computing tasks, including big data processing [38] and fault simulation; vi) The truth table should be 

elevated to the rank of an ideal internal model of a computational process or circuit that is invariant 

concerning dozens of languages describing hardware or software [37], [38]; vii) The truth table generates a 

complete set of logic-fault combinations for arbitrarily complex logical functionality [1], [10], [16]. Thus, 

combining in-memory computing and smart data structures based on the truth table may be a rational way to 

solve design and test problems over a long time in the development of global computing [39]–[41]. 

The proposed solution and the results achieved. The goal is to significantly reduce the latency and 

energy consumption when simulating faults-as-addresses using in-memory computing technology in logical 

circuits of any dimension based on read-write transactions over smart data structures built based on a logical 

vector. The objectives of this research are to i) identify the components of smart compact data structures for 

logic circuit fault simulation; ii) create a simulation algorithm for faults F of a logical circuit on an input test 

set T by synthesizing deductive vectors of elements from their logical vectors L, using the equation D=T⨁L; 

and iii) verify the data structures and algorithms for modeling and simulation faults-as-addresses, using 

examples of logic circuits. Without going into details, von Neumann's architecture [2] controls and executes 
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the computational process. Therefore, it can be transferred to memory, where big data resides. Moreover, this 

architecture can be used to simulate both logic and circuits in two modes: good simulation of test-as-

addresses and simulation of fault-as-addresses. The device of control and execution in computing has not yet 

been canceled [2], [14], [19]. 

 

 

2. FAULTS-AS-ADDRESS CIRCUIT SIMULATION: UNUSUAL AND SIMPLE ENGINEERING 

MECHANISM 

What is new? Faults-as-addresses simulation (FAAS) is a technique that leverages input faults 

combination as deductive vector bits addresses that form detected input faults in logic element output. FAAS 

technique is proposed for digital circuit simulation, where logical vectors represent elements as a compact 

form of the truth table. The truth table is proposed as a smart data structure for fault simulation of input and 

internal lines of logic circuits. The logical vector in the truth table and the input test set are used to generate a 

deductive vector that detects any combination of faults in the circuit lines to its external outputs. The novelty 

of the FAAS mechanism is the Fault Simulation Matrix address filling using deductive vectors, which 

simulate a combination of faults as an address. The in-memory simulation uses read-write transactions, which 

makes the FAAS technique a free central processing unit (CPU) instruction system and cost-effective in 

terms of power and time to simulate faults. The circuit fault simulation contains novelty points: circuit 1 is 

the deductive vector synthesis for input set and logic vector to detect input faults on element output; circuit 2 

is the development of a quadratic fault simulation matrix of the circuit for every test set; circuit 3 is the 

simulation of circuit lines faults-as-addresses using a simulation matrix and deductive vectors of logic 

elements to obtain a vector of detected faults on the input test set; and circuit 4 is the formation of a table of 

detected faults to determine the quality of the input sets and the test. Algorithms and data structures are 

proposed for in-memory simulating fault-as-addresses and logical schemes of any structural complexity. 

Smart data structures have three macro components: circuit description, simulation matrix, and fault 

detection table. The truth table is the longest-lived model of the computational process; it is more than 100 

years old, and today, it is practically not used for organizing computations. Underneath the simplicity of the 

form of the truth table, which is understandable to humans and machines, there is an undeciphered genome of 

emerging computing. Fault simulation algorithms use read-write transactions on smart data structures in any 

SoC, field programmable gate arrays (FPGA), application-specific integrated circuit (ASIC), or reduced 

instruction set computer (RISC-V) memory and do not require processor instructions and pre-synthesis of the 

circuit to bring logical functionalities to a specific element basis. The market goal of the proposed technique 

is to solve IP-core verification problems based on in-memory computing using the IEEE 1500 standard for 

embedded core test (SECT) standard [21]. A data structure metric is a logical vector or truth table. The 

practical novelty of the FAAS mechanism is the fault simulation matrix address filling using deductive 

vectors, which simulate a combination of faults as an address as shown in Figure 1. It provides a model of a 

good-value line behavior circuit using logic vectors and a circuit model for fault simulation using deductive 

vectors. A quadratic fault simulation matrix is presented, which is filled along the main diagonal with single 

values identifying faults of the circuit lines. Three truth tables for the synthesis of the deductive vector are 

also presented. All the listed data structures are required to model the fault as addresses on a single input test 

set 0011. The result of a good simulation is shown in the G-line of the simulation matrix. The result of the 

fault simulation is shown in the F-line of the simulation matrix. 

 

 

 
 

Figure 1. Faults-as-address circuit simulation 
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The relationship T⨁L=D between the test set T and the truth table L of the element forms a 

deductive vector for fault simulation, using addresses the truth table or the logic vector bits. On the other 

hand, addresses are used in the simulation matrix to mark those n-combinations of input faults detected at the 

element's output. The columns of the simulation matrix are treated as n-row addresses to generate an output 

row of the element via the deductive vector. There is no transport of input faults to the output of the element, 

Only the 1-signals written in the non-input row coordinates of the circuit simulation matrix. The simulation 

matrix is initially filled with 1-signals along the main diagonal. The line faults detected on the test set of 

circuits are determined by the inverse of the good values of lines G, which have 1-values in the matrix row 

corresponding to the output of the last circuit element. The deductive vector is obtained by the XOR-relations 

between the test set and the logical vector in three table operations. The advantage of the proposed FAAS 

mechanism is the predictable complexity of the algorithm and the memory consumption for storing data 

structures when simulating a test set, determined by the formula Q = N2 +∑ (Yi +
n
i=1 Di), where N, n are 

number of lines and elements in the circuit and Y, D are a set of logical and deductive vectors. 

Construction of the recoding matrix [1] by taking a Cartesian ⨁-square on the addresses of the truth 

table from n-variables according to the formula: H=A⨁A=𝐴⨁
2 . Addresses act as test sets T and combinations 

of logic faults F. The resulting matrix is a constant for all logical functions from n-variables. There are 

several modifications to the recoding matrix construction. Next, a simple recursive mechanism for building a 

recoding matrix based on prediction is proposed. Four sequential operations are performed on the four 

quadrants of the matrix: Hi+1
1 = Hi; Hi+1

2 = 2𝑛 + Hi; Hi+1
3 = Hi+1

2 ; Hi+1
4 = Hi+1

1 . The construction of a matrix 

of any dimension starts from 0: H0
1 =0. Another mechanism for recursively constructing a recoding matrix 

uses computational history: Hi
1 = Hi−1 ; Hi

2 = 2n– 1–Hi
1; Hi

3 = Hi
2; Hi

4 = Hi
1. The computational 

complexity of both mechanisms for constructing a recoding matrix for a logical function from n-variables is 

equal to 2n+1. The data structures reflecting the recursive generation of the matrix are shown in Figure 2.  

 

 

 
 

Figure 2. Synthesis of H-matrix recoding 

 

 

The practical use of this H-matrix is the rapid construction of a deductive vector by recoding the 

coordinates of the logic vector on the decimal codes of a string with a number determined by the test input 

set. An example of a deductive vector construction uses logic vector 0111, n=2, test set 10. Consider the 

matrix of two variables on a string number 2 (T=10), which is equal to 2301. Recoding the coordinates of a 

logical vector gives a deductive vector: D=LHT=2= 01112301 = 1011. Using an H-matrix recoding to 

synthesize deductive vectors speeds up logic circuit fault simulations by 30%. One recoding matrix for an 

element with the maximum number of variables is needed to synthesize deductive vectors of a logical circuit. 

 

 

3. DATA STRUCTURES FOR LOGIC ELEMENT AND CIRCUIT FAULT SIMULATION  

Vector-logical design and test computing is a processor-free in-memory SoC IP-core testing 

mechanism based on read-write transactions on logical vectors and their derivatives. A mechanism is a 

communicating relationship between the redundancy of data structures and the computational complexity of 

algorithms for their processing when an increase in one of them leads to a decrease in the other and vice 

versa. Mechanisms for modeling, simulation, and testing digital projects are proposed. The object of the 

study is to design and test computing based on vector-logic mechanisms located in memory to save energy 



                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 13, No. 4, December 2024: 452-468 

456 

and design time. The subject of the research is vector-logical in-memory computing for solving the problems 

of modeling, testing, and verification of digital projects based on vector-logical models of the IP-core SoC in 

Figure 3. Here, all computing components are completely new and focus on the EDA market of cost-effective 

engineering solutions. There's no potent CPU here, not even RISC-V. Only read-write transactions and one 

vector XOR operation are easily converted to transactions. 

 

 

 
 

Figure 3. Vector logic design and test computing in memory 

 

 

The vector-logic computing equation T⊕ L⊕ F = 0 is used to solve all testing problems. It defines 

the relationships between the same component formats (test, logic, faults) to determine any of them by the 

other two. Such formats can be logical vectors, truth tables, and logical matrices. All these components form 

smart data structures interconnected to get a result without an algorithm. The problem of modeling data 

structures is solved by superpositioning those explicit components that provide solutions without an algorithm. 

This trend is expected in the IT market, which aims to create and train a structure of smart data for intelligent 

solutions to all problems in cyber-physical space without programming algorithms. All verification 

technologies use the convolution equation of the relations between L⊕T⊕F=0 specification L, 

implementation T, and errors F (faults). Verification is the process of determining the correspondence between 

the specification and the synthesized device. This correspondence is then used to eliminate design errors 

T⊕L=F by introducing logical-time redundancy. Test verification involves identifying faults F=T⊕L and 

designing based on a synthesized test (project redundancy) for a given class of faults. Suitable design 

standards, such as IEEE 11.49, 1500, and 1687, allow you to reduce the length of the test of IP components of 

a project and improve its quality by using boundary scan registers [21]. Formal verification is the process of 

achieving the quality of a project T⊕L=F based on logical-temporal redundancy (temporal logic) and a library 

of valid circuit solutions. Disassembling a model is the process of obtaining a digital device model based on 

the XOR interaction of a test and a given class of faults L=T⊕F. Fault diagnosis is the process of determining 

the cause, location, and type of defects in a digital circuit. Next, all the components of smart data structures are 

defined to solve the problems of testing using the characteristic equation and based on the XOR operation. 

Components of smart data structures are introduced to develop simulation algorithms. These 

structures' metrics use the dimensionality of a logical vector determined by the number of input variables. A 

logical element is any binary functionality of n variables, with an indeterminate internal structure, given by a 

logical vector, dimension 2𝑛. Logical vector L is an explicit form of defining functionality using an ordered 

sequence of 2𝑛 bits, where each bit has its binary address in the metric n variables. A logical vector and an 

ordered set of explicitly specified binary addresses form a truth table. A logical vector has all the properties 

of a truth table, while it is more compact and technologically advanced for solving design and test in-memory 

problems. Input binary test set x is an input test sequence of n binary bits, considered the address of a 

deductive vector that provides transportation of a combination of an element's input faults to its output. The 

output state of element Y is a binary value that results from feeding a test binary set x to an element specified 

by the logical vector L. Test vector refers to concatenation of binary input set x and output state Y, using the 

functions T=(xY). Active truth table A=T⨁L is an unordered form of specifying all combinations of input 

faults by a set of 1-coordinates predetermined by n inverse values of the bits of the input binary set. Fault 

truth table F is an explicit form of specifying all combinations of input faults by a set of unit coordinates that 

are additionally determined by n inverse values of the bits of the input binary set. The truth table of the T-

tests is an explicit form of defining all 2𝑛 combinations of input binary test cases for a logical element. A 

functional coverage truth table is an explicit form of specifying all combinations of input binary test sets and 

the 2𝑛 state of logical element outputs. A functional coverage is essentially a logical vector of an element. 

Deductive D-vector, dimension 2𝑛, points with its single bits to the columns with the faults to be detected at 
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the 1-coordinates of the fault truth table. Deductive matrix, dimensionality 2𝑛 × 2𝑛 is a gene of logical 

functionality that contains complete information about all faults of a functional element detected on a test set. 

Smart data structure (for fault simulation) is the explicit data structures (logical vectors, truth tables, 

deductive matrices) interconnected by the unified metric of the logical vector space 2𝑛. Smart data structure 

does not require conditional processing. The truth table, as a smart data structure, helps to exclude 

conditional IF statements from the program code. Since the truth table is the complete set of conditional if 

statements (in each variable metric) translated into the table of ordered addresses of the bits of the logical 

vector. Circuit description (circuit input set data) contains information about the relationships between the 

schematic elements (the number of inputs of each element and their numerical identifiers) and logical and 

deductive vectors for performing the circuit fault simulation. Simulation matrix (matrix of circuit fault 

simulation on input set) refers to quadratic matrix of the schematic structure for stuck-at-faults simulation of 

input, internal, and output lines, dimension, of the number of lines of the circuit, determined by 1-values of 

the coordinates of the main diagonal. It is designed to model circuit faults as addresses by using deductive 

vectors of logic elements to obtain a vector of faults to be detected on the input set. End-to-end numbering of 

schematic lines makes tracing structural features (reconvergence fanouts) easy in fault analysis based on a 

simulation N-squared matrix. The table for test–detected circuit faults contains integral information about the 

faults detected on each input set and an assessment of the quality of the input set and the test. It is used to 

validate the test and find faults in the digital device. The formula for simulating stuck-at-faults of circuit lines 

is as follows: from the input set on the external inputs and numbered N-lines of the circuit is synthesized N2  

simulation matrix filled with 1-coordinates diagonally to obtain a vector of detected faults on the N-lines of 

the circuit by constructing a matrix of deductive vectors from the m-number of functional elements of the 

circuit, based on logical vectors and binary sets at the inputs of the elements, after which each output of the 

schematic element is simulated by the sequential processing of the combination of lines of the simulation 

matrix at the element inputs as addresses of the cells corresponding to the corresponding deductive vectors, 

after which a disjunction operation is performed on those lines of the simulation matrix that belong to the 

external interface outputs of the circuit, in order to obtain an integral ∨-vector of the simulation, the 1-

coordinates of which are further determined by the inverse values of the lines of the vector of the good 

simulation to obtain the vector of tested faults on the input binary set. Faults-as-addresses simulation is a 

technique that leverages input fault combinations as the addresses of deductive vector bits, which forms the 

output vector of the detected input faults in a logic element. The model of detected line fault is represented by 

a 1-signal in the simulation matrix, and the fault that was not detected is noted by a 0-signal. 

 

 

4. INPUT DATA MODELS FOR LOGICAL ANALYSIS 

Input data models for logical processing can be represented in Figure 4. Number 1 is the set of 

compact unstructured data requiring complex and sequential input processing [42]. Number 2 is the binary 

vector of unitary-encoded data that uses complex processor register variables to process pairs of input vectors 

in parallel. Number 3 is the addresses formed by the columns of the input matrix of unitary-encoded data to 

perform read-write in-memory transactions on the bits of the logical vector (without traditional processor 

logic) with parallel analysis on the columns of data as addresses. Here, the vector L = 01101001 is an XOR 

function of three variables that form addresses from the data to be analyzed. The longer the logical vector 

length, the greater the degree of parallelism when processing big data as addresses. Logical vectors do not 

need to be reduced to the logic of the processor using rather complex synthesis. In-memory computing based 

on logic vectors is free from synthesis and traditional CPU logic, replaced by read-write transactions (600 ps 

latency), which are not inferior in speed to the arithmetic logic unit (ALU) [38]. At the same time, in-

memory computing has half the power consumption when processing big data compared to a processor [39]. 

Two data processing options represent fault-as-address simulation techniques as shown in Figure 5. 

− Technique 1. Use the columns of the S-matrix simulation along the input lines of the element as the 

addresses of the deductive vector bits, which form the coordinates of the vector of the faults to be 

detected on the output line Yi,j = Dxj 
. For this example, it would be 𝑌12 = 100001000100. Here, each 

1-unit is defined by address 100 in the truth table of the deductive vector, where D(100)=1. This 

technique is implemented in the FAAS engine for circuit fault simulation.  

− Technique 2. Distribute all columns of the S-matrix of the simulation with the input numbers of the 

circuit lines to the addresses of the deductive vector truth table, and then generate the 1-coordinates of 

the fault vector to be tested on the output line using the numbers of the lines equivalent to the columns, 

if the column of the truth table is covered by the 1-coordinate of the deductive vector. Both techniques 

for fault simulation of circuit lines as addresses have the same computational complexity Q=n×N 

(where n is the number of inputs of the element being processed and N is the number of lines of the 

circuit). The second technique has a valuable property: the faults equivalence of circuit lines by the 
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columns of the truth table, which is used to diagnose defects in the circuit. Another essential feature of 

the proposed techniques is that in the simulation matrix, the tested faults of both signs (stuck-at-1, 

stuck-at-0) are represented by a 1-coordinate, which is very convenient for generating addresses for 

their parallel processing on deductive vectors. 1-coordinates are further determined by specific faults, 

inverse to the good state of the lines, after the formation of the entire matrix of the circuit simulation. 

The first technique for fault simulation of elements as part of a circuit is focused on implementation in 

the EDA market using in-memory computing technology. This technique can also be effectively used 

for parallel processing of big data, such as addresses, to solve problems of determining similarity–

difference and equivalence of patterns. 

 

 

 
 

Figure 4. Input data models for logical analysis 

 

 

 
 

Figure 5. Techniques for fault simulation as addresses on a deductive vector 

 

 

The fault simulation matrix of circuit lines as addresses is the basis of the simulation engine in  

Figure 6. The circuit fault simulation matrix on the input test set has dimensions N× N=𝑁2, where N is the 

number of lines in the circuit. It is filled with one unit along the main diagonal, which, in the simulation 

process, turns into binary vectors of the faults to be detected for each output number of the element.  

The 1-coordinate of the matrix encodes the fault detection on the circuit line of both fault types 

(stuck-at-0, stuck-at-1). Vector Sum ∨ performs the function of logically concatenating those rows of the 

simulation table that are the external outputs of the circuit. In this example, there is one external circuit input, 

number 12. The Good vector shows the state of all circuit lines in the absence of faults. The faults vector 

identifies faults (stuck-at-0, stuck-at-1) that are detected on a test set using a simple rule: If (SumV)i =1, then 

(Faults)i=Goodi̅̅ ̅̅ ̅̅ ̅̅ . This expression can be implemented using the truth table shown at the bottom of Figure 6. 

The fault vectors form the result of the simulation, which is the table of test-detected circuit faults. To form 

the address of a deductive vector bit, the coordinates of those strings whose numbers form the element's 

inputs are used to form the address of the bit. Each deductive vector of element forms its output row of the 

simulation matrix using eventfulness rules, a set of empty cells or null addresses are not processed. To obtain 
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vector line 12 for the element shown in Figure 6, you need to concatenate the addresses by input numbers 

term (10,8,11): 101, 111, 011, 000, ... The computational complexity of processing the simulation matrix on 

the test set is determined by the complexity of address concatenation. It is equal to 
1

2
𝑁2, where N is the 

number of lines in the circuit. 

 

 

 
 

Figure 6. Matrix of fault simulation of circuit lines as addresses on the input set 

 

 

5. FAULTS AS ADDRESS SIMULATION IN THE LOGIC CIRCUIT 

The problem of transferring the von Neumann architecture to memory and replacing the powerful 

processor on read-write with transactions on logical and deductive vectors to reduce energy and time 

consumption when logic circuit simulation of any dimension is solved. The goal is to develop a FAAS 

mechanism for fault-as-address simulation for digital circuits of any dimension. The tasks as presented in 

Figure 7 are as follows. Task 1 is synthesis of deductive vectors for transporting input faults to the output of 

an element on an input test set. Task 2 is development of a quadratic matrix of the circuit structure to 

simulate stuck-at-faults of input, internal, and output lines. Task 3 is simulation of circuit faults-as-addresses 

using simulation matrix and deductive vectors of the logic element to obtain a vector of the detected faults. 

The end-to-end numbering of circuit lines makes tracing structural features (reconvergence fanouts) easy in 

fault analysis using a simulation matrix. Task 4 is formation of a table of detected faults to determine the 

quality of the input set and the test.  

 

 

 
 

Figure 7. Circuit fault simulation structure 
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Truth table synthesis of the H-matrix line for deductive vector creation in Figure 8. The coordinates 

of each row of the H-matrix [10] of bit recoding are represented by decimal address codes, which are 

obtained by XOR interaction of the input binary test set T and the columns of the truth table L:A=T⨁L of 

any functionality from the n-variables. This is the theoretical essence of the synthesis of the bit-recoding 

matrix. The results of the XOR interaction of the input binary test vectors (T=0000, 0111) and 2𝑛=16 

columns of the truth table form the 0 and 7 rows of the bit-recoding matrix to generate a deductive vector. 

Each table shows the result of the XOR summation of the test set T and the standard truth table L. The upper 

part of each table is represented by the recoding vector obtained to compile the H-matrix. The binary-decimal 

code of the test set forms the corresponding string of the recoding matrix. Knowing the recoding vector 

H0111 it is easy to obtain the deductive vector D by executing the formula: from the test set T=0111 as the bit 

address of the logical vector L0111 = 1, the state of the element's output is determined Y=1, XOR-summation 

of which with all the bits of the logical vector L=1110001111000111 gives a vector of activity 

A=Y⨁L=0001110000111000, to which the H-vector of the recoding of the bits on the test set T=0111 is 

applied to obtain the deductive vector D=AH= 0011100000001110 whose bits are already written to the 

binary-decimal addresses standard. The H-matrix of bit recoding is the key to constructing a matrix of 

deductive vectors of any logic.  

 

 

 
 

Figure 8. Truth table synthesis of the H-matrix line for deductive vector creation 

 

 

It is proposed to use a truth table to synthesize the deductive vector of a functional element in  

Figure 9 based on a logical vector and a given binary input set for its use in simulating stuck-at-faults in a 

digital circuit. The formula for deductive vector modeling is as follows. The input binary set, as the cell 

address of the logical vector, contains the output state of the element, the concatenation of which with the 

 

 
Figure 8. Truth table synthesis of the H-matrix line for deductive vector creation 

 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

Faults-as-address simulation (Vladimir Hahanov) 

461 

input binary forms an input-output state vector for XOR interaction with all the columns of the truth table to 

synthesize the activity table, to which the procedure of ordering the columns in ascending order of the binary 

addresses of the input variables is applied to obtain a deductive vector in the ordered activity table. 

 

 

 
 

Figure 9. Generation of the deductive vector for an element via a truth table 

 

 

Data structures for logic circuit fault simulation are represented by the following macro-

components: circuit description and simulation matrix. The fault detection table consists of i) identifiers of 

the input-output of the circuit and logic elements, which together make up the interface of the circuit; ii) a 

matrix of logical vectors that define the functionality of each element of the circuit; iii) a matrix of deductive 

vectors that form lists of input faults to be detected at the output of each element of the circuit; iv) vector of 

binary good behavior of all circuit lines in the format of input, internal and output lines; v) quadratic matrix 

(𝑁2 of the number of circuit lines) for simulation of circuit faults on an input binary test set, pre-populated 

with 1-values at diagonal coordinates, creating a stuck-at-fault circuit model; and vi) vector of faults detected 

on the binary test set, inverse concerning the state of the circuit lines of good behavior. Next, a circuit as in 

Figure 10 is proposed, for which data structures will be built to execute the fault simulation algorithm. Here 

is the circuit fault simulation formula: Simulation N2  matrix filled with unit coordinates diagonally is 

synthesized from the binary test set on the external inputs and numbered N-lines of the circuit to obtain a 

vector of detected faults on the N-lines of the circuit by constructing a matrix of deductive vectors based on 

the m-number of functional elements of the circuit, based on logical vectors and binary sets on the inputs of 

the elements, after which each output of the circuit element is simulated by sequential processing 

combination of the lines of the simulation matrix at the inputs of the element as addresses of the cells of the 

corresponding deductive vectors, after which the disjunction operation is performed on those lines of the 

simulation matrix that belong to the external interface outputs of the circuit, in order to obtain an integral  

∨ −vector of the simulation, the 1-coordinates of which are supplemented by the inverse values of the lines 

of the vector of the good simulation to obtain the vector of the detected faults on the input binary set. These 

can be seen in Figure 11. 

 

 

 
 

Figure 10. Circuit for simulation of faults 
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Figure 11. Data structure for circuit fault simulation on the input set 11001 

 

 

The circuit fault simulation metric consists of several key components and methodologies aimed at 

optimizing fault detection and diagnostics within a circuit system, as outlined in the following points. i) 

Smart and easy-to-implement structured data contains three macro components: circuit description, 

simulation matrix, and fault detection table. ii) A diagonal of 1 unit represents a simple fault model in a 

simulation matrix. iii) The simulation algorithm uses fault-as-addresses of the bits of deductive vectors 

composed from the input coordinates of the simulation table. iv) The algorithm for obtaining the deductive 

vector of an element uses only three operations on the logical vector and the binary input set. v) The 

simulation matrix structures the faults to be tested according to the external outputs of the circuit, which 

improves the quality of the test and provides additional opportunities to increase the depth of fault 

diagnostics during the operation of the device. vi) The structure of the simulation matrix makes it possible to 

handle faults of reconvergent fanouts as addresses without additional particular calculations. vii) Using the 

eventfulness principle in processing the simulation and deduction matrix makes it possible to increase the 

speed of fault analysis by 30%. Lastly, viii) when processing circuits with feedback, you must introduce 

pseudo-variables into the circuit model. When processing the simplest automata as elements, it is also 

necessary to enter pseudo-variables. Introducing pseudo-variables makes the fault simulation algorithm 

iterative when processing a binary test set. Figure 12 shows the interface for displaying information about the 

results of circuit fault simulations on the input binary test sets. 

The circuit fault simulation table column components are i) input set, which is input binary test sets;  

ii) Q, which is the quality of the current test vector, defined as the number of faults to be tested on the test 

vector divided by twice the number of circuit lines Q=F/2N, iii) Σ or the integral quality of the test vectors, 

which is a non-additive assessment of the counting of the faults to be detected by the lines of the circuit or 

the columns of the table; if the test T1…i,j in the column j in lines 1... i tables are present 0.1, then the integral 

quality score is increased by two Σ = Σ +2, If only 0 or 1 are present in the column, the integral score is 

increased by one Σ=Σ+1 and the formula for calculating integral quality Σ= Σ/2N; iv) 1…N, which are 

columns containing circuit line faults detected on test sets; and v) empty cells in the table that indicate the 

coordinates of the lines on which faults are not detected. The software implementation of the circuit fault 

simulation interface is shown in Figure 13. The output files of the circuit fault simulation interface are 

represented by three components (left to right). The first is the circuit fault simulation table on the whole test. 

If you click on a row in the table, a simulation matrix of the input set and data structure (logical and 

deductive vectors) appears. The second one is the schematic element simulation matrix on the input set. For 

visual verification of the simulation process, it is possible to track changes in data structures by generating 

fault vectors on each input binary set. Here are the last two lines: output (fault-free simulation vector) and 

(fault) fault detection vector. The third is deductive fault simulation vectors for circuit elements' input set and 

logic vectors. 
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Figure 12. Circuit line fault simulation table 

 

 

 
 

Figure 13. Circuit fault simulation table 
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The following is a simulation of switch circuit faults on a complete verification test as shown  

in Figure 14. Adding external outputs (for example, 7, 8, 9) to the circuit affects the quality of the test  

and each test set. Making all the internal lines observable can significantly reduce the length of the test 

while keeping it 100% quality to detect all defects in the digital circuit. The inferences are described as 

follows. i) Faults as addresses simulation technique is proposed for processing input, internal, and  

output lines of a circuit based on logical vectors of functional elements, which are used to construct 

deductive vectors for transporting input faults to the circuit outputs. ii) Faults are treated as addresses for 

selecting the appropriate bits of deductive vectors, which makes it possible to increase the parallelism of 

circuit fault vector processing by increasing the complexity of logic elements. iii) The input fault model of 

the circuit on the input set is initially represented by a quadratic matrix of the number of the circuit  

line, where 1-values are diagonally arranged. iv) In the simulation process, such a matrix makes it easy to 

handle elements' most complex structural relationships, including reconvergence fanouts. v) The technique 

does not require synthesis to reduce logical functionalities to a specific basis of elements. Conversely,  

the technique will work faster if longer vectors in memory represent the macro functionalities .  

vi) The technique is focused on implementation in any memory based on the execution of read-write 

transactions, which makes it free from a potent CPU instruction system and economical in terms of energy 

and time for fault simulation. vii) To process circuits with feedback, you need to introduce  

pseudo-variables and additional loops to process the input binary vectors to bring the simulation results to 

a stable form. viii) To process digital automata, it is necessary to perform a preliminary synthesis of  

the automaton model to reduce it to a vector form with pseudo-variables. Python is the most popular 

function-oriented programming language [40], [41] today, which can process big data with the help of 

Excel files, including the simulation of large digital projects with the preservation of the result of such 

processing. Python supports operations on big data structures, which is especially important for 

implementing procedures and algorithms focused on in-memory computing. Therefore, smart data 

structures and fault-as-address simulation are implemented in Python code. The complexity of the program 

code for implementing FAAS-technique is estimated at 900 lines. The smart data structure and  

algorithms were verified on several dozen logic circuits on which fault detection tables were built.  

 

 

 
 

Figure 14. Result of simulation of switch circuit faults 
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6. CONCLUSION 

The novelty of this is the future of the EDA market in implementing energy-saving in-memory 

design and test computing. FAAS is a technique that leverages input faults combination as the addresses of 

deductive vector bits that form the output vector of the detected input faults in the logic element. FAAS 

technique is proposed for digital circuit simulation, where logical vectors represent elements as a compact 

form of the truth table. The truth table is the longest-lived model of the computational process; it is more than 

100 years old, and today, it is practically not used for organizing computations. Underneath the simplicity of 

the form of the truth table, which is understandable to humans and machines, there is an undeciphered 

genome of emerging computing. The truth table is proposed as an ideal data structure for fault simulation of 

input and internal lines of logic circuits. The logical vector in the truth table and the input test set are used to 

construct a deductive vector that transports any combination of faults in the circuit lines to its external 

outputs. Algorithms and data structures are proposed for in-memory simulating faults as addresses, as well as 

logical schemes of any structural complexity. Smart data structures have three macro components: circuit 

description, simulation matrix, and fault detection table. The schematic fault simulation algorithm metric 

contains the following novelty points: i) synthesis of a deductive vector on an input binary set to transport 

input faults to the output of an element; ii) development of a quadratic matrix of the circuit structure to 

simulate constant faults of input, internal, and output lines, including converging branches reconvergent 

fanouts; iii) simulation of circuit faults-as-addresses using a simulation matrix and deductive vectors of logic 

elements to obtain a vector of defects tested on the input test set; and iv) formation of a table of detected 

defects to determine the quality of the input sets and the test. Fault simulation algorithms use read-write 

transactions on smart data structures in any SoC, FPGA, ASIC, or RISC-V memory and do not require 

processor instructions and pre-synthesis of the circuit to bring logical functionalities to a specific element 

basis. The market goal of the proposed FAAS-Technique is to solve IP-core verification problems based on 

in-memory computing using the IEEE 1500 SECT standard. The data structure metric is logical vector or 

truth table. The metric of the simulation algorithms is the XOR transformation of the truth table on the test 

set T⨁L with the subsequent ordering of columns by address. The in-memory simulation uses read-write 

transactions, which makes the FAAS technique free of the CPU instruction system and cost-effective in terms 

of energy and latency to simulate fault-as-address. 
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