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Cardiovascular disease (CVD) is a disorder of the heart and blood vessels
that causes significant morbidity and mortality. They also represent a global
public health burden and the primary cause of death worldwide. In this
research, a novel deep learning-based multi-model image (DL-MMI) has
been proposed for detecting CVD. Initially, the input Kaggle datasets images
like magnetic resonance imaging (MRI), computed tomography (CT),
positron emission tomography (PET), and chest X-ray are fed into wavelet
transform-based Multiscale Retinex in the pre-processing phase to enhance
the quality of the images. Then the enhanced images are given to GLCM for
extracting features in the images. Finally, the dilated convolutional neural
network (D-CNN) is used to classify healthy and CVD images. The
experimental findings use the specific measures of accuracy, recall,
precision, specificity, and F1-score to demonstrate the durability of the DL-
MMI approach. Using the Kaggle dataset the proposed DL-MMI method
achieves an accuracy rate of 98.89%. The proposed DL-MMI model
increases the overall accuracy by 28.62%, 7.51%, and 17.57% than the
existing methods such as convolutional auto encoder, CNN, and deep
learning, respectively.
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1. INTRODUCTION

Heart disease is a group of conditions that affect the heart and blood vessels, often leading to serious
health issues like heart attacks and strokes. Blood supply to the heart, brain, and body may be restricted when
fat deposits form a blood clot inside an artery, causing the vessel to tighten and constrict [1]. According to
predictions, Worldwide, cardiovascular diseases (CVDs) represented 17.9 million deaths in 2019, or 32% of
all fatalities [2]. CVDs are the leading cause of mortality worldwide, with 85% of cases attributed to heart
attacks and strokes, primarily occurring in low- and middle-income countries [3], [4]. Controlling risk factors
can help prevent the majority of cardiovascular diseases related to behavior including obesity, eating
disorders, smoking, inactivity, and excessive alcohol consumption [5], [6]. Radiologists can image internal
body structures with the aid of diagnostic radiography to identify the origin of symptoms, check for illnesses,
and gauge a patient's reaction to treatment [7], [8]. X-rays, Positron emission tomography, ultrasonography,
Imaging, basic computed tomography, and magnetic resonance imaging (MRI) are the radiological
treatments that are most frequently performed [9], [10]. The fundamental drawback of all gamma-ray and x-
ray imaging techniques is the chance that patients will be exposed to radiation [11], [12].
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Ultrasonic imaging is helpful since it doesn't radiologists to radiation, or expose patients but the
images can be difficult to interpret because it doesn't penetrate well through bone or air [13]. Anatomical
changes in tissues can be seen on MRI and computed tomography (CT) scans, while biochemical and
physiological changes which frequently take place before morphological changes can be seen on positron
emission tomography (PET) scans [14]. Advancements in technology such as surgical robots are
revolutionizing the field of diagnostics and treatment [15]. Surgical robots offer precision and control during
procedures to enhance the ability to perform complex surgeries with minimal invasiveness. These robots can
be integrated with diagnostic imaging tools to provide real-time feedback and assist in the precise targeting of
affected areas, thereby improving outcomes for CVD patients [16]. The integration of surgical robots into
treatment plans represents a significant advancement in managing cardiovascular diseases, complementing
traditional imaging and diagnostic methods [17].

Several studies have explored innovative approaches to cardiovascular disease (CVD) diagnosis and
classification. Kumar and Ramana [18] developed a novel method using MRI and severity analysis,
establishing the cat fuzzy neural approach for diagnosing conditions including heart attacks, angina, strokes,
coronary heart disease, and arrhythmias. Their HAC-ABO technique effectively analyzed damage and
segmented affected regions from MRI, achieving an accuracy of 99.3% compared to earlier methods.
Ammar et al. [19] created an ensemble of classifiers and a deep learning (DL) network for categorizing heart
diseases and segmenting cardiac anatomy in cine MRI short-axis images. Their U-Net variant with fewer
trainable parameters attained an accuracy of 0.92 for disease categorization and demonstrated good
agreement with clinical indices. Velzen et al. [20] suggested a technique utilizing chest CT images for lung
screening to forecast cardiovascular death, emphasizing the importance of structures like the aorta and
coronary arteries in predicting CVD mortality.

Liu et al. [21] enhanced low-resolution greyscale PET images with an upgraded Grab Cut
segmentation method and improved technique, along with a convolutional neural network, to accurately
position and crop the heart in cardiac CT images. Chen et al. [22] suggested a DL system for classifying and
locating myocardial infarction using a two-stage architecture with stacked denoising autoencoders and an
SVM model, focusing on intensity and motion properties in 2D cardiac MRI sequences. Wolterink et al. [23]
introduced a fully automatic CNN-based technique for segmenting MR images of the myocardial, right
ventricle, and left ventricle, achieving 91% multi-class accuracy and 92% accuracy in disease classification.
Matsumoto et al. [24] suggested a DL algorithm for identifying heart failure from chest X-ray images, which,
through data augmentation and transfer learning, achieved 82% accuracy, aiding general practitioners in
diagnosing heart failure. Existing methods use a single image to detect CVD disease, but our proposed
method uses multiple images to detect CVD disease, and disease severity analysis and classification are
critical. The suggested method resolves these problems and correctly categorizes the CVD.

This study proposed DL-MMI has been proposed for detecting CVD. Initially, the input Kaggle
datasets images like MRI, CT, PET, and chest X-ray are fed into Wavelet transform-based Multiscale
Retinex in the pre-processing phase to enhance the image quality. Then the enhanced images are given to the
GLCM for extracting features in the images. Finally, the dilated convolutional neural network is used to
categorize healthy and CVD images.

The rest of the paper is structured as follows. In section 2, the proposed methodology is described.
Additionally, section 3 gives the findings and analysis of the proposed study. Section 4 explains the work's
conclusion.

2. PROPOSED METHODOLOGY

In this section, a novel DL-MMI has been proposed for detecting CVD. The multi-modal images
like MRI, CT, PET, and chest X-ray are collected from datasets that are openly accessible. The gathered
images undergo pre-processing using Wavelet transform-based Multiscale Retinex to enhance the quality of
the images. Then the enhanced images are given to GLCM for extracting features in the images. Finally, the
dilated convolutional neural network is utilized to classify healthy and CVD images. The overall workflow of
the suggested methodology is shown in Figure 1.

2.1. Pre-processing

The input images are pre-processed utilizing the Wavelet transformer-based Multiscale Retinex to
enhance the quality of the images. It is an advanced technique of image enhancement that effectively
enhances image details while preserving natural color balance by combining the advantages of wavelet
transform with Multiscale Retinex. The illumination reflectance model, on which the wavelet transform
method is based, calculates an image's intensity as (1).
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Figure 1. Schematic representation of the proposed DL-MMI framework

f(c,d) = u(c,d)v(c,d) @

Here, f (c,d) stands for the given image, u (c,d) for illumination, and v (c,d) for reflectance. The
illumination element is the primary target for elimination. The component of the assembly at the image's
edge serves as an explanation for this. There will be high components of the image and low-frequency.

log[f(c,d)] = loglu(c,d)] + log[v(c,d)] )

A data stream is passed through several filters as part of the discrete wavelet transform to produce a set of
discrete wavelet coefficients. Convolution is performed by applying filters to apply low-pass and high-pass to
the input signal. Several layers of high-frequency coefficients are produced together with a single set of low-
frequency coefficients. The Scale Retinex is used to create the Multiscale Retinex as (3),

V(a,b) = log U(a,b) — log[F(a,b) *U(a,b)] 3

where V (a, b) is the output of Retinex, F (a, b) is the surround function of Gaussian and v (a, b) is the input
picture. * Indicates a convolution. Given by, is the Gaussian surround function.

F(a,b) = G.e~(@*"pH/z* (4)

where the Gaussian-shaped surrounding constant is denoted by z. The value of z, which is dictated by G and
is connected to the visual angle, is selected in such a way that,
[ F(a,b)dadb = 1 ®)

Rusri = Ym=1 @Wm Rm; (6)

where M is the scale's number R,,;and is the various scales for the Retinex Scale. Each Multiscale Retinex
weighs a w;,.

2.2. Feature extraction

A popular method for extracting features from images is the GLCM which analyses the distances
between the brightness of each pixel in a picture to extract textural data. The lesion's textural structures are
extracted using the GLCM. A greyscale Nearby values' histogram over an image at a specific offset is called
a grey-level cooccurrence matrix. Using the GLCM approach, the distance between pixels was used to
calculate the angles between them. Entropy gauges the image's overall content,
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ENtropy = — X, X @y 108 2 ty ¥
The distance between pixels is defined and described by correlation as, based on how similar the pixels are.

Correlation = fwyz’* Yo —o) (v—o0y)a,,) (8)
The definition of inertia, which is used to measure the image contrast is,

Inertia =Y., ¥, (u — v)? Dy, 9)
The energy-based calculations and visualization of the grey-level distributions are as (10):

Energy = Xy (D2 (10)

The definition of the image's homogeneity, when the inverse difference is calculated, is (11).

Inverse difference =Y, Y, |5uZ| (11)

When compared to other DWT Methods, while using the GLCM process to extract an image feature can
greatly reduce the image compression time, DWT remains a flexible method for compressing whole films.

2.3. Classification

The input images are classified into CVD and normal instances using the dilated convolutional
neural network. A CVD MRI, CT, PET, and chest X-ray volume voxels were each given a class label using a
purely convolutional CNN that was trained on the categorization of three orthogonal patches with the voxel
as their center. The dilated CNN offer broad receptive fields with a minimal set of trainable parameters. The
D-CNN architecture is shown in Figure 2.

Healthy

Input  copy |
Con
Maxpool 1 Maxpool- Conv3 Maxpool 3 CVvD

FC2

Figure 2. Architecture of D-CNN

CNNs are composed of several convolutional layers that combine at layer | + 1, a kernel k and an
image F_(I+1) is generated from a layer I’s image Fl. These convolutions are expanded into dilated
convolutions, which increase the distance between the kernel's k elements so that adjacent voxels are taken
into account while calculating a voxel's value in F,, ;. Dilated convolution CNNs have a number of benefits
over non-dilated, or conventional, convolution CNNs. A one-dimensional D-CNN that convolves the signal
“F” and both of its receptive field sizes (“r”) and its dilation (“I’). This can be slightly prolonged to the two-
dimensional dilated convolution as (12),

(F *di k)t = Z‘r kTFt—di T (12)

where *,4; stands for a dilated convolution of di. Three dilated convolutional layers make up a model, and
each layer's dilution factor increases dramatically. The three dilated convolution layers that use the respective
dilation convolution (1, 2, 3, 4) and have a particular feature map expressed as (F,, F,, F5,F,). For each
element in F;, ,, the size of the field of receptivity can be viewed as (2:*2 — 1).
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3. RESULT AND DISCUSSION

This section analyzes the proposed DL-MMI and discusses performance in terms of several
assessment criteria. Using libraries and the Python programming language, the recommended structure is
created and evaluated on a Windows computer with an Intel Core i7 processor and 16GB of RAM. The
efficacy of the proposed approach is assessed using Kaggle datasets [25]. The standards of evaluation
employed in this work to examine the efficacy of the proposed strategy include the F1-score, recall, accuracy,
precision, and specificity.

The categorization of the proposed DL-MMI approach is illustrated in Figure 3. Column 1 consists
of the input images of MRI, CT, PET, and chest X-ray images of CVD. Column 2 shows the enhanced
images of CVD. The feature-extracted images of the CVD images are displayed in column 3. Then the
classification result of the CVD images is shown in column 4. Finally, the output of the proposed DL-MMI
model is displayed in column 5.

Input Input images Pre-proceszing Feature extraction Classification Qutput
Reszult

MRI

PET

Chest

S-ray

Figure 3. Classification of two classes in the cardiovascular disease detection (CVD)

3.1. Performance analysis

The following statistical measures are used to evaluate the effectiveness of the classification
method: F1 score, accuracy, precision, recall, and specificity. The symbols FP, TP, TF, and FN stand for
false-positive, true-positive, true-negative, and false-negative, respectively.

TP+TN

Accuracy = ———
y TP+TN+FP+FN

(16)

Precision = (7

TP+FP
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Recall = —~ (18)
TP+TN
Specificity = T;fpp (19)
Precision*Recall
F1 score =2 (m) (20)

Table 1 demonstrates the performance analysis of the DL-MMI method for detecting CVD. It
achieves high accuracy with 98.58% for Healthy and 99.21% for CVD. Precision is 96.09% for Healthy and
93.82% for CVD, while specificity is 89.63% and 92.95%, respectively. The recall rates are 96.98% for
Healthy and 89.91% for CVD, with F1 scores of 88.99% and 94.29%, respectively. These results indicate
that the method effectively distinguishes between healthy individuals and those with CVD.

Table 1. Performance analysis of the suggested method

Classes  Accuracy  Precision  Specificity Recall F1 score

Healthy 98.58 96.09 89.63 96.98 88.99
CVvD 99.21 93.82 92.95 89.91 94.29

Figure 4 illustrates the performance metrics for two classes, such as healthy and CVD. The
suggested technique achieved higher accuracy of 98.58, and 99.21 for healthy and cardiovascular disease.
The DL-MMI approach obtains a greater accuracy of 98.89% for the dataset when measured using TPR and
FPR parameters. Figure 5(a) shows that the suggested method has realized high accuracy in both validation
and training accuracy, and shows loss in Figure 5(b). The suggested model's accuracy of 98.89% meets the
performance criteria of accuracy, specificity, and precision.
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Figure 4. Performance metrics for two classes
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Figure 5. Training and validation (a) accuracy and (b) loss of suggested method
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3.2. Comparative analysis

The DL-MMI model is also compared with conventional deep learning networks in this part. This
solution performs more productively than existing methodologies when performance is compared. Each of
these metrics is used to assess performance: accuracy, precision, and specificity. The proposed method is
evaluated with three current DL algorithms in this comparative analysis.

The comparison of various DL networks is shown in Table 2. The suggested D-CNN achieves
96.34% accuracy than Alex Net, DenseNet, and ResNet which obtains 91.09%, 90.21%and 89.90%. Figure 6
illustrates the performance of DL networks Alex Net, Dense Net, and Resnet which attain accuracy of
91.09%, 90.21% and 89.90%, respectively. The D-CNN attains a better accuracy rate than the models that are
already in use. A range of criteria were used to estimate each network's performance, including specificity,
recall, precision, accuracy, and F1 score.

Table 2. Comparison between traditional DL networks
Networks  Accuracy  Specificity Precision  Recall  F1 Score
AlexNet 91.09% 93.27% 90.18%  93.58%  93.25%
DenseNet 90.21% 89.18% 92.87% 89.25%  89.37%

ResNet 89.90% 91.76% 90.39%  92.78%  88.91%
D-CNN 96.34% 92.95% 94.14% 94.18%  94.59%

98.00%

96.00%

94.00%

92.00%

90.00%

88.00%

86.00%

Performance

84.00%
Accuracy Specificity Precision Recall F1 Score

Techniques

AlexNet HDenseNet BResNet D-CNN

Figure 6. Comparison of traditional DL models

Table 3 shows that the proposed DL-MMI model outperforms convolutional autoencoder, CNN, and
deep learning, respectively, in terms of overall accuracy, increasing it by 28.62%, 7.51%, and 17.57%. From
the above comparison, the proposed DL-MMI model yields higher accuracy than the existing models.

Table 3. Comparison between the suggested and the existing models

Authors Approaches Accuracy
Velzen et al. [20] Convolutional autoencoder 71%
Wolterink et al. [23] CNN 92%
Matsumoto et al. [24] Deep learning 82%
Proposed DL-MMI 99.48%

3.3. Discussion

In this work, the goal is to detect and categorize the CVD as healthy and CVD using multi-model
images. For the experimental analysis, the DL-MMI framework utilizes the Kaggle dataset for the detection
of CVD. The results were assessed using accuracy, recall, specificity, precision, and F1-score. Table 1
provides a detailed performance analysis of the proposed method for classifying CVD. The table includes
metrics such as precision, specificity, recall, F1 score, and accuracy, for both “Healthy” and “CVD” classes.
The method achieves high accuracy, with 98.58% for the Healthy class and 99.21% for the CVD class,
indicating robust overall performance. The overall performance metrics of the proposed method such as
precision, sensitivity, recall, and flscore attain 94.95%, 91.25%, 93.44%, and 911.64%, respectively.
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Figure 5(a) illustrates that the suggested method has attained high accuracy in both training and validation
accuracy, and shows low loss in Figure 5(b). The suggested model's accuracy of 98.89% meets the
performance criteria of accuracy, specificity, and precision. The comparison of various DL networks is
shown in Table 2. The suggested D-CNN achieves 96.34% accuracy than Alex Net, DenseNet, and ResNet
which obtains 91.09%, 90.21%and 89.90%. Table 3 shows that the DL-MMI model outperforms the
convolutional autoencoder, CNN, and deep learning, respectively, in terms of overall accuracy, increasing it
by 28.62%, 7.51%, and 17.57%. The wavelet-based Multiscale Retinex method significantly enhances
multimodal medical images by improving contrast and detail preservation, crucial for cardiovascular disease
diagnosis. The proposed DL-MMI system achieves a 98.89% accuracy in classifying cardiovascular diseases,
outperforming convolutional autoencoder, CNN, and other models by 28.62%, 7.51%, and 17.57%,
respectively. Additionally, the D-CNN model demonstrates superior accuracy (96.34%), precision, recall,
specificity, and F1-score compared to traditional networks like AlexNet, DenseNet, and ResNet, making it
more reliable for cardiovascular disease classification. From this analysis, the DL-MMI approach attains high
accuracy with low complexity for detecting CVD in the early stages.

4.  CONCLUSION

In this paper, a novel deep learning based multi-model images (DL-MMI) has been proposed for
detecting CVD. Initially, the input Kaggle datasets images like MRI, CT, PET and chest X-ray are fed into
wavelet transform-based Multiscale Retinex in the pre-processing phase to enhance the quality of the images.
Then the enhanced images are fed into GLCM for extracting features in the images. Finally, the D-CNN is
utilized to classify healthy and CVD images. The experimental findings use the specific measures of
precision, recall, specificity accuracy, and F1-score to demonstrate the durability of the proposed approach.
The evidence provided in support of the conclusion is based on a comprehensive evaluation of the proposed
system using a range of performance metrics based on the Kaggle dataset. The DL-MMI approach achieves a
significantly higher accuracy rate of 98.89% in detecting and classifying cardiovascular disease,
outperforming existing methods by 28.62%, 7.51%, and 17.57% compared to Convolutional Autoencoder,
CNN, and other deep learning models, respectively. For future work, while our current dataset size is
moderate, we plan to expand it to include additional data, which will further enhance the model's accuracy.
Additionally, we aim to integrate a surgical robot into our system to provide real-time diagnostic support and
assist in the decision-making process during surgical interventions.
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