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 The surface electromyography (SEMG) is extensively used in assessing 

injuries in the musculoskeletal parts of the body. Integrating intelligence in 

such applications impacted the development of intelligent medical devices. 

The conventional way of assessing hand injury level is manually and 

subjectively done by experts to identify the type of rehabilitation program 

recommended to the patient. This work uses SEMG data to classify hand 

injury levels through a fuzzy inference system (FIS). Three of the many 

features of the SEMG signal were selected based on its high distinction 

levels, namely, the root-mean-square, enhanced mean-absolute value, and 

the waveform length. Segmentation through a sliding window method is 

used for feature extraction. The FIS rules were designed based on the 

assessment guide of the experts. A Mamdani-type FIS classifier was used 

with membership functions which are a combination of trapezoidal and 

triangular types. A MATLAB Simulink model was also designed to test the 

FIS system. The setup effectively identified injury levels through tests with a 

healthy subject, wherein no muscle activation means an injury, while the full 

fist, as a full muscle activation or healthy. In between signal values vary 

with different injury levels. In the future, this setup will be tested on patients 

in a rehabilitation clinic for validation. 
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1. INTRODUCTION 

There are different ways on how to assess hand injuries. When a hand injury is diagnosed, it is 

necessary to determine the extent of the injury. Some of these assessment methods are the Minnesota manual 

dexterity test (MMDT), the Purdue pegboard test (PPT), and the use of a dynamometer for grip strength 

quantification. For peripheral nerve injury (PNI), the basic assessment method done by most rehabilitation 

doctors is the tendon gliding exercises. These exercises are used in assessing mobility, locating the pain or 

dysfunctional fingers, and the level of injury. Other experts use medical devices such as electromyography 

(EMG) to detect and measure muscle activities of the body. It comes in two different forms: the needle type 

and the surface EMG. Needle-type EMGs are invasive as the needle is injected down deep into the muscle of 

interest to get muscle data. The electronic signals produced by the EMG are analyzed and quantified. This 

device can also be used to assess damaged muscles. SEMGs, on the other hand, are noninvasive as they are 

only attached to the surface of the skin. However, it is much preferred to use needle EMG over SEMG for 

analytical type of assessment of the muscles. SEMGs can be used to determine and assess skeletal muscle 

activation. It can also be used for monitoring the progress of rehabilitation by tracking muscle activity 

changes. 

https://creativecommons.org/licenses/by-sa/4.0/
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EMG signals are found useful in identifying hand movements by works done in [1], [2] to both 

prosthesis and for assisting physiotherapists (PTs) and occupational therapists (OTs) in assessing patients in 

their progress during rehabilitation. In some assistive enforcement robots, EMG signal features are selected 

to classify movement intention necessary for rehabilitation [3]. Common parameters useful in classification 

are time domain (TD) features, such as moving average value (MAV), root-mean-square (RMS), slope sign 

change (SSC), waveform length (WL), and enhanced mean-absolute value (EMAV), while others are 

frequency domain (FRD) features, such as mean frequency (MF), fractal length (FL), and some are in time-

frequency domain (TFD). 

Hand rehabilitation is the most common least invasive approach in treating injuries of the hand. 

Carpal tunnel syndrome (CTS) is one of the most common hand injuries which is caused by median nerve 

compression due to long hours of repeated or complicated posture such as in car and motorcycle driving and 

in using computers. The common symptoms of CTS are numbness and tingling of fingers, weakness of the 

hand, and pain in the wrist down to the elbow. Neurodynamic mobilization and exercised-based physiotherapy 

are two of the common nonsurgical methods in treating carpal tunnel syndrome [4], [5]. It includes exercises 

moving the wrist, elbow, and head. A case has been presented effective using myofascial stretching to aid the 

CTS hand rehabilitation [6]. Exercise-based techniques such as tendon gliding and mobilization of the carpal 

bones and soft tissues have gained their spot as another effective means. The combination of neurodynamic 

and exercise-based physiotherapy such as tendon gliding exercises has been effectively used for pre-surgical 

or nonsurgical treatment of CTS. The nerve and tendon gliding exercises are found to be effective when 

combined with other device-specific therapies such as the laser and ultrasound [7].  

Tendon gliding exercises are often used as passive exercises for CTS and stroke patients in the 

rehabilitation of the hand. It includes the hand formations: straight, hook fist, full fist, straight fist, and 

tabletop. These exercises need different orientations of the fingers of the hand which increases its range of 

motion. Aside from the tendon gliding exercises, the activities of daily living (ADL) are also considered to 

help the hand to become functional. Some designed rehabilitative gloves have very promising results with 

measured outcomes in aiding hand rehabilitation for post stroke patients [8]. The assessment of the injury 

level is important in designing the extent of these exercises. 

Due to the pandemic, going to rehabilitation facilities has been the least option. In the absence of 

therapists, wearable rehabilitation devices are much needed. For some passive and active hand exercises, 

rehabilitation gloves can be useful. A family member can help by putting on wearable devices with the 

assistance of therapists and rehabilitation doctors online. 

Tendon gliding exercises are used by physicians for both assessment and rehabilitation. It has a 

varying formation of the hand in which the hand is tested for its mobility, flexion, and extension. The 

common tendon gliding exercises are listed and presented in Figure 1. Figure 1(a) is the relaxed position and 

Figure 1(b) is the straight position doing the extension. Other positions are the platform, straight fist, and full 

fist presented in Figures 1(c) to (e).  

 

 

     
(a) (b) (c) (d) (e) 

 

Figure 1. Tendon gliding exercises (a) relax position (b) straight (c) platform (d) straight fist and (e) full fist 

 

 

The hand muscles are very significant in assessing the hand as compared to the forearm in terms of 

dexterity based on the study conducted by [9]. The placement of the SEMG electrodes to a certain muscle 

group is necessary for assessing the hand condition and rehabilitation [10]. In flexor tendon injuries of the 

hand, the flexor pollicis (FP) and flexor digitorum (FD) are the tendons that affect the mobility of the hand 

[11]. The attachment of these muscles to the tendons was observed by [12], [13] which is significant in 

muscle group selection. The motor unit action potential (MUAP) was observed using EMG by [14] as the 

muscles move during finger movement which led to determining the muscular problems. EMG can be used 

for classifying hand movements and intentions as displayed by the work of [15], [16]. However, an 

intelligent system that could do hand injury level assessment is yet to be studied. These intelligent systems 

are necessary in the development of soft robotic gloves for rehabilitation [17], [18].  

In this work, SEMG signals were used to collect the musculoskeletal data of the hand. Three healthy 

subjects were tested and collected with SEMG signals. Different hand exercises are done by the subjects to 
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observe and record data. These signals are processed and selected features are extracted for classifying hand 

injury levels. A fuzzy inference system is designed and set up as the classification system used in this work. 

The hand injury level rules are based on the experts’ opinion. 

 

 

2. METHODOLOGY  

2.1.   EMG data processing 

The specific target muscles that will be used for the evaluation of hand injury are those that lie in the 

tendons FD, FP, and lumbrical. The signals transmitted through the electrodes are processed through the 

SEMG module which filters, amplifies, and conditions signals that are compatible with the Arduino 

microcontroller as shown in Figure 2. It is necessary to identify the regions of interest in processing SEMG 

signals [19]. The processed signal will be used for feature extraction. Using the sliding window method, the 

three identified features, namely, the RMS, WL, and EMAV are computed. These features will be used as 

inputs to the fuzzy inference system (FIS). The membership functions are defined based on the experts’ 

opinions. In this work, it is classified as levels 1-5. The intervention and rehabilitation exercises are described 

in Table 1 for flexor tendon injuries [20]–[27]. This will also be used for defining the membership functions 

for the fuzzy inference to be developed. 

 

 

 
 

Figure 2. SEMG data processing and classification 

 

 

Table 1. Flexor tendon injury assessment guide and intervention program 
Level Symptoms Rehabilitation/Intervention Program 

1 Mild pain, minor swelling, minimal 

loss of motion. 

Early Phase (0-4 weeks): Rest, ice, compression, and elevation (RICE). Splinting to 

prevent further injury. Gentle passive range of motion (PROM) exercises. 
2 Moderate pain, noticeable swelling, 

reduced motion, possible partial 

tendon tear. 

Intermediate Phase (4-8 weeks): Splinting continues, initiating gentle active range of 

motion (AROM) exercises. Begin tendon gliding exercises. Monitor for signs of 

adhesion formation. 
3 Severe pain, significant swelling, 

loss of motion, partial tendon tear 

confirmed by imaging. 

Late Phase (8-12 weeks): Progressive resistance exercises. Continue tendon gliding 

exercises. Functional activities to enhance tendon strength and flexibility. Monitor for 

complications such as rupture or excessive scarring. 
4 Extreme pain, substantial swelling, 

total loss of motion, complete 

tendon rupture confirmed. 

Post-Surgical Phase (0-6 weeks): Post-operative splinting in a flexed position. 

Controlled passive motion protocols. Close supervision by a hand therapist. Gentle 

PROM exercises within safe limits as advised by surgeon. 
5 Post-surgical recovery phase, 

adherence issues, secondary 

complications (e.g., infections). 

Rehabilitation Phase (6+ weeks): Intensive hand therapy focusing on restoring full range 

of motion, strength, and functionality. Scar management techniques (e.g., massage, 

silicone gel). Progressive strengthening and functional use of the hand. 

 

 

2.2.  SEMG experimental setup 

Three features were used in classifying the level of injury of the hand, namely, the RMS (1), WL 

(2), and EMAV (3) with their equations, respectively. The sliding window method is an effective way to 

extract features of an EMG signal. In this technique, the signals are subdivided with overlaps from each 

segment and are analyzed. 

 

𝑋𝑟𝑚𝑠 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 (1) 
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Using the sliding window technique, the parameters are set according to Table 2. The number of 

segments can be varied depending on the duration of the signal’s acquisitions. For a duration of 35 seconds 

of data acquisition, there were 12,669 data points in which three 5-second gripping (full fist) is done. The 

sampling frequency is set at 1000 Hz. The number of data points per segment is set to 120 with a half-

segment overlap of 60. 

 

 

Table 2. Sliding window parameters 
Parameter Value 

No. of Segments 210 

No. of points per segment 120 

Overlap (half-segment) 60 

No. of trials 3 

No of data points 12669 
Type of hand motion (formation) Full fist 

Sampling frequency 1000 Hz. 

 

 

The SEMG device used in this work is composed of filters and amplifiers as presented in Figure 3. 

Figure 3(a) shows the SEMG device with electrodes of different colors and the electrode patches. An AD8226 

instrumentation amplifier Figure 3(b) is built to the module with 0-1000 gain shown. The signal varies from 

50 µV to 30 mV and is rectified, amplified, and smoothed to be compatible with the Arduino microcontroller 

with 0-1053 digital signal. See Figure 3(c) for the pin configuration. The full setup is presented in Figure 4, 

where two 9-Vdc batteries are wired, and the signal and ground are connected to the microcontroller. 

 

 

   
(a) (b) (c) 

 

Figure 3. SEMG module (a) with electrodes and patches, (b) with instrumentation amplifier, and  

(c) pin configuration 

 

 

 
 

Figure 4. SEMG setup diagram consisting of microcontroller unit, the EMG module, electrodes, and two 9 V 

battery, which can have options for dual channel SEMG when there are multiple muscles of interest 
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3. RESULTS AND DISCUSSION  

3.1.   SEMG module development 

The SEMG module was built and developed with a 3D printed PLA casing with two channels of 

electrodes as presented in Figure 5. An inside look is presented in Figure 5(a) and the whole package in 

Figure 5(b). Sample placement of the SEMG in the hand is shown in Figure 5(c), where the red and green 

electrodes are placed in the muscle of interest, and the reference electrode in yellow is placed in the bony part 

of the wrist. 

 

 

   
(a) (b) (c) 

 

Figure 5. The developed SEMG module: (a) inside look consisting of the components, (b) 3D printed casing 

of SEMG module with two channels of electrodes, and (c) sample placement of electrodes 

 

 

3.2.  Feature extraction 

The SEMG data collection is done by doing 3 successive trials. The position was held for 5 seconds. 

The observed characteristic plot is plotted and presented in Figure 6. The raw SEMG data is plotted as full 

fist in the first graph. The whole duration of the data collection is around 36 seconds. The features plotted are 

the MAV, MF, EMAV, WL, SSC, and RMS. 

 

 

 
 

Figure 6. SEMG features plot for full fist hand movement in the of left column-down to the right 

column-down; MAV, EMAV, SSC, MFA, WL, and RMS 
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The collected data has to be trimmed where the region of interest is identified as shown in Figure 7. 

These data are compared to the data for the relaxed position from a healthy subject, assumed to be of no 

movement (or injury). These data are normalized accordingly using (4), (5), and (6): RMSnorm for the 

normalized RMS, WLnorm for the normalized WL, and EMAVnorm for the normalized EMAV so that it can be 

comparable to other subjects useful for the classification of the state of the hand. 

 

𝑅𝑀𝑆𝑛𝑜𝑟𝑚 =
𝑅𝑀𝑆𝑥 − 𝑅𝑀𝑆𝑚𝑖𝑛
𝑅𝑀𝑆𝑚𝑎𝑥 − 𝑅𝑀𝑆𝑚𝑖𝑛

 (4) 

 

𝑊𝐿𝑛𝑜𝑟𝑚 =
𝑊𝐿𝑥 −𝑊𝐿𝑚𝑖𝑛
𝑊𝐿𝑚𝑎𝑥 −𝑊𝐿𝑚𝑖𝑛

 (5) 

 

𝐸𝑀𝐴𝑉𝑛𝑜𝑟𝑚 =
𝐸𝑀𝐴𝑉𝑥 − 𝐸𝑀𝐴𝑉𝑚𝑖𝑛
𝐸𝑀𝐴𝑉𝑚𝑎𝑥 − 𝐸𝑀𝐴𝑉𝑚𝑖𝑛

 (6) 

 

𝑊𝐿𝑚𝑖𝑛  : waveform length of relaxed hand 

𝑊𝐿𝑚𝑎𝑥  : maximum waveform length in full-fist position 

𝑊𝐿𝑥 : waveform length of the actuated hand 

𝑅𝑀𝑆𝑥 : RMS of the actuated hand. 

𝑅𝑀𝑆𝑚𝑖𝑛  : RMS for the relax position  

𝑅𝑀𝑆𝑚𝑎𝑥  : RMS for the full-fist position of the hand 

𝐸𝑀𝐴𝑉𝑥 : EMAV for the actuated hand 

𝐸𝑀𝐴𝑉𝑚𝑖𝑛 : EMAV for the relax position  

𝐸𝑀𝐴𝑉𝑚𝑎𝑥  : EMAV of the full fist position of the hand 

 

 

 
 

Figure 7. Regions of interest boxed in red. These signals are taken with approximately 5 minutes interval 

 

 

3.3.  Feature selection 

The candidate features that can be used for the classification of SEMG signals are the following: 

MAD, SSC, EMAV, RMS, and WL. However, not all these features can be useful for classification. In this 

work, three features were selected that have high distinction in classifying the SEMG signals. The feature 

selection is based on the classification of signals from a healthy participant with a 5-second interval of 

muscle action. Figure 8 shows the 5 features with normalized segmented SEMG data. In these features, three 

were selected, the RMS, EMAV, and WL as these features are less likely to have ambiguities in classification. 

 

3.4.  Injury level classification – FIS system 

The injury level is classified based on the 3 features: RMS, WL, and EMAV. An FIS classifier 

system was created using the Mamdani model as presented in Figure 9. The output is the health status or the 

injury level of the hand. The FIS developed is modeled in MATLAB Simulink to facilitate visual simulation 

when the input is varied. It is built with a multiplexer and classifier as shown in Figure 10. 

The membership functions for the inputs are assigned according to the expert’s opinion which can 

go from levels 1-5. These levels of input are uniformly defined, where level 1 and level 5 are trapezoids, and 

levels 1-3 are triangular: Figure 11(a) RMS, Figure 11(b) WL, and Figure 11(c) EMAV. The output has 

member functions the same as that of the inputs as shown in Figure 11(d). The surface plot is presented in 

Figure 12, where two inputs are shown, the RMS and WL, to see their relationship to the out based on the 

rules defined which contribute to this shape. 

The rules are based on the “majority” principle with one step change increment. The set of rules are 

presented in Figure 13(a). When two out of the three rules are both in one membership function, the output 
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will be the dominant membership function. For example, the RMS and WL are level 2, and the EMAV is 

level 1, then the hand injury level is level 2. The rule view is also presented in Figure 13(b), where a centroid 

is used to identify the hand injury level at the output. This setup is also simulated in MATLAB Simulink and 

has a good performance result based on the expert’s opinion. 

 

 

 
 

Figure 8. Feature selection using the normalized data: RMS, EMAV, WL, SSC, MAD (the value of 1 in red 

dashed-lines signifies muscle actuation for a healthy subject, the value 0 signifies unactuated muscle assumed 

to be an injured state) 

 

 

 
 

Figure 9. The 3-parameter fuzzy inference system classifier for the SEMG data 
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Figure 10. Simulink block representation and simulation of the FIS 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 11. Inputs, outputs, and membership functions for the FIS system (a) RMS, (b) MAV, (c) WL, and  

(d) output-injury level 

 

 

 
 

Figure 12. Surface Plot of the FIS 
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(a) (b) 

 

Figure 13. FIS rules (a) FIS rules list (b) FIS rule viewer (the columns are in order as follows, RMS, WL, 

MAV, and the [output] hand injury level, and the decision weight is based on centroid) 

 

 

4. CONCLUSION  

The assessment of hand injury level is a subjective task that the experts are doing. The developed 

guides for assessment serve as standards for this task. However, this subjectivity can be translated into 

measurable data that can be standardized by normalizing the signals. SEMG with added intelligence can be 

automated using artificial technologies available today. In this work, a hand injury level classification 

through a FIS was successfully developed using the SEMG signals. An SEMG device module was set up to 

acquire signals from the muscles, in particular, the flexor pollicis and flexor digitorum, where most of the 

tendon gliding exercises can be used for both assessment and rehabilitation of the hand. The SEMG signals 

are processed by filtering and amplification. The three features selected for the classification of these signals 

are the RMS, WL, and EMAV because of their high distinctive range or level between an injured and a 

healthy hand musculoskeletal activation. These signals are normalized so that they can be comparable to 

other subjects for generality. The rules provided in the FIS are based on the expert’s opinion with predefined 

rehabilitation programs. The classification was verified through simulation in MATLAB Simulink. This work 

paves the way for developing advanced systems in rehabilitation medicine. This is significant for distant 

consultation where the patient with this device can be assessed by the expert for the recommendation of 

rehabilitation programs or exercises. In the future, the setup will be tested on both healthy and injured 

subjects in the rehabilitation clinic for evaluation. The module will further be developed into a useful product 

once proven successful. 
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