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 Proportional-integral-derivative (PID) controllers are established in 

manufacturing due to their simple design, robustness, and wide-ranging 

industrial applications. However, traditional PID controllers often struggle 

with the complexity and nonlinearity behaviors inherent in many control 

systems. As a result, ongoing and future research is focused on developing 

more stable PID controllers that function efficiently without heavily depending 

on exact mathematical models, by fine-tuning controller parameters. This 

study explores several PID-based controllers, including non-linear PID (N-

PID), multi-rate non-linear PID (MN-PID), and self-regulating nonlinear PID 

(SN-PID), assessing and contrasting their performance. The efficacy and 

robustness of these control mechanisms are substantiated through comparative 

analyses with the sliding mode control technique, employing experimental data 

from a pneumatic actuator system to assess performance across varying load 

scenarios. SN-PID outperforms sliding mode controller (SMC) by 90.97% and 

PID by 89.90%, followed by MN-PID (85.58% over SMC, 83.86% over PID) 

and N-PID (78.08% over SMC, 75.49% over PID), while PID offers only 

10.63% improvement over SMC. These findings provide valuable insights and 

recommendations for enhancing controller performance. These insights aim to 

guide control engineers in selecting the most appropriate N-PID design 

strategy for specific applications, ultimately improving system performance 

and operational efficiency in industrial environments. 
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1. INTRODUCTION 

In the field of industrial control systems, proportional-integral-derivative (PID) controllers have 

long been recognized for their stability and efficiency, consistently proving reliable across numerous 

industrial sectors [1]–[8]. Their popularity in industrial use is owed to their simplicity and effectiveness. 

However, traditional ways of designing PIDs may not always deliver the best outputs, especially when a 

complex non-linear system is involved [9]–[14]. PID controllers need improvement to sustain their 

robustness under dynamic conditions as industrial automation advances rapidly. This was highlighted by the 

research works of [15]–[21] As indicated in [22]–[24], recent studies have shown how important PI-based 

controllers are in dealing with disturbances, parameter uncertainties, and inherent nonlinearities encountered 

in a wide range of industrial processes, thus enhancing their efficiency and reliability. 

https://creativecommons.org/licenses/by-sa/4.0/
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Adaptive practices are now a reality in PID controllers. Developments in control theory have 

facilitated the incorporation of adaptability in PID controllers and improved their resilience and flexibility 

within complex industrial settings [25], [26]. They provide for adapting their parameters in real-time based 

on the available data to enhance performance across various operating conditions and disturbances. The use 

of such advanced techniques is yet another proof of the continued efforts being made to enhance industrial 

processes through better PID control. These attempts still underline how significant PID controllers remain in 

contemporary industrial processes. Different research works [27], [28] also proposed a new design approach 

for PID controllers by incorporating non-linear functions with more sophisticated optimization algorithms to 

improve disturbance response performance. They proposed a nonlinear PID (N-PID) controller with variable 

gains as well as a filter within a parallel linear framework having one single nonlinear function simplifying 

tuning for P and D actions. The integral of time-weighted absolute error was used to minimize the parameters 

tuning in the real-coded genetic algorithm (RCGA), including population initialization, fitness evaluation, 

reproduction, crossover, and mutation. This controller demonstrated better disturbance handling and 

performance stability compared to traditional controllers like Rao-DS, Sk-DS, and Luyben-SA when tested 

on pure integrating process with time delay (PIPTD) and integrating first order process with time delay 

IFOPTD processes. Moreover, a basic nonlinear function adjusting online gains and a lead-lag compensator 

with noise suppression capacity were included in the N-PID controller to improve its robustness under 

dynamic situations. 

Advancements in machine learning techniques have also played a major role in recent 

improvements to PID controllers. This evolution of PID controllers’ abilities to adjust themselves and self-

regulate led to their overall efficiency improving across various operational scenarios [29]–[37]. By 

employing different machine learning techniques such as artificial neural networks and reinforcement 

learning algorithms, PID controllers can now be self-tuned using real-time data inputs, making them more 

robust against disturbances and uncertainties experienced in industries. With the integration of these machine 

learning principles into control systems, the design philosophy has shifted from traditional ways that sought 

high efficiency and adaptability toward dynamic industrial landscapes. 

In other research, it has been pointed out that there were possibilities to improve the performance of 

PID controllers through advanced tuning methods, as shown in [38]–[41]. The researchers have included 

techniques such as model predictive control (MPC) and intelligent optimization algorithms for enhancing the 

robustness and adaptability of PID controllers in various industrial applications. In these approaches, 

computational advances are exploited alongside real-time data analytics to fine-tune controller parameters 

contributing to efficient and effective industrial automation. A recent study introduced a novel nonlinear PID 

(NLPID) control algorithm that improved simultaneous set-point tracking and disturbance rejection for 

controlling nonlinear systems [42]. MATLAB/Simulink was used to compare the NLPID controller’s 

performance with established controllers like conventional PID, two-degree-of-freedom PID, and Smith 

Predictor PID controllers for a FOPTD system with different uncertainties and disturbances. It is evident 

from the findings that the NLPID controller has faster settling time/Rise time compared to conventional PID, 

two degrees of freedom PID, and Smith predictor PID; better disturbance rejection and robust stability/speed; 

shows resilience against parametric/additive/multiplicative uncertainty. 

In a different application discussed in [43], improvements in control methodologies for grid-

connected photovoltaic (PV) systems have underscored the efficacy of the N-PID controller, which is based 

on Popov's stability criterion. This new concept introduces a nonlinear gain, thus leading to the creation of a 

nonlinear relationship with the error signal, which enhances reference tracking accuracy as well as simplifies 

the often difficult calibration process of standard PID controllers. The N-PID controller is very good at 

regulating the duty cycle of the DC-AC converter to extract maximum power and prevent harmonic 

distortion while at unity power factor, maintaining system efficiency within the 96% to 99% range. 

Simulations have repeatedly shown that the N-PID controller outperforms conventional PID controllers in 

maximum power point tracking (MPPT) by reducing oscillations, achieving quicker convergence, and 

keeping total harmonic distortion (THD) below 0.5%. In other previous research conducted by Muthukumari 

et al. [44], a smart-tuned PID controller based on the single-ended primary inductor converter (SEPIC) was 

proposed for detecting the MPPT in a wind energy conversion system (WECS). This study aimed to manage 

voltage and frequency variations from a permanent magnet synchronous generator (PMSG) due to changes in 

wind speed, using the smart SEPIC to maintain a stable DC link voltage. A variable-speed 1.5 MW WECS 

with an AC-DC-AC converter was developed using MATLAB/Simulink and tested with the DSP processor 

MSP430F5529. Results from both simulations and experiments demonstrated that this method outperforms 

conventional PID controllers in terms of power quality, confirming the performance improvement of the 

smart tuning approach. 

Additionally, the N-PID controller has undergone extensive study in its application in highly 

nonlinear systems, as evidenced by research investigations in [24] and [45]–[50]. This implies that 
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developing PID-based control strategies further and incorporating adaptive functions for parameter variations 

of the main controller may result in great advantages. In this journal paper, several approaches based on this 

idea have been reviewed and compared to determine their efficiency and benefits. To look into possible 

improvements of these control methods, a similar plant, that is a pneumatic actuator, is used for evaluation 

purposes, with standard experiments and analyses being performed on each technique. 

This article is arranged as follows: It begins with an Introduction outlining the research objectives. 

The Method section describes the refinement of the PID controller, followed by the development of advanced 

controllers: N-PID, multi-rate nonlinear PID (MN-PID), and self-regulation nonlinear PID (SN-PID). The 

Results and Discussion evaluate the controllers' performance, including a quantitative performance 

comparison and an analysis of their robustness under varying load conditions. The findings highlight the 

effectiveness of the proposed methods in improving system control. Finally, the conclusion summarizes the 

key insights and provides recommendations for enhancing industrial control strategies. 

 

 

2. METHOD 

This section presents a method for enhancing the performance of the PID controller, beginning with 

the improvement of the conventional PID controller as the baseline. Next, the N-PID controller is introduced 

to handle nonlinearity, followed by the MN-PID controller, designed to manage systems with varying gain 

values. Finally, the SN-PID controller is developed to adjust its parameters automatically for better 

adaptability.  

 
2.1. Refinement of PID controller 

The classical PID controller is widely recognized for its straightforward design, enabling efficient 

management of position and motion control. However, it often struggles to achieve optimal performance in 

challenging position control applications, particularly those involving significant nonlinearities. To address 

these limitations, enhanced versions of the PID controller that incorporate nonlinear gain can be investigated. 

This study examines previous research on the integration of nonlinear gain with PID-based controllers, 

specifically applied to industrial pneumatic actuators. The analysis includes a comparative evaluation of 

various PID-based strategies, namely N-PID, MN-PID, and SN-PID controllers. The performance of these 

strategies is assessed to determine which modifications offer substantial improvements in both transient and 

steady-state performance. Furthermore, the robustness of these controllers is evaluated by comparing their 

performance with that of the sliding mode controller (SMC), providing a comprehensive assessment of their 

effectiveness. 

 

2.2. N-PID controller 

The N-PID controller in this study is structured such that it incorporates a sector-bounded nonlinear 

gain, 𝑘(𝑒), which operates in cascade with a PID controller. The automatic gain, 𝑘(𝑒), functions as a 

nonlinear dependency on the error, 𝑒(𝑡), confined within the sector 0 ≤  𝑘(𝑒) ≤  𝑘𝑚𝑎𝑥 as defined in (1) and 

(2). These equations outline the permissible range for the nonlinear gain, 𝑘(𝑒). The parameter 𝛼 represents 

the variation rate of the nonlinear gain, while 𝑒𝑚𝑎𝑥 defines its range of variation. The selection of parameters 

𝛼 and 𝑒𝑚𝑎𝑥  depends on the maximum allowable value of the nonlinear gain 𝑘(𝑒), which is determined based 

on the gain range required for stability. The resulting output from this nonlinear function is termed the scaled 

error and is represented in (3), while the complete equation for the N-PID controller is provided in (4). 

 

𝑘(𝑒) =
exp(𝛼𝑒)+exp(−𝛼𝑒)

2
 (1) 

𝑒 = {
                  𝑒                  

𝑒𝑚𝑎𝑥𝑠𝑖𝑔𝑛(𝑒)
|𝑒|≤𝑒𝑚𝑎𝑥
|𝑒|>𝑒𝑚𝑎𝑥

  

 

 

 

𝑘(𝑒𝑚𝑎𝑥) = −
1

|𝐺(𝑗𝜔)|
 (2) 

 
𝑓(𝑒) = 𝑘(𝑒). 𝑒(𝑡) (3) 

 

𝑓(𝑒). 𝑢𝑃𝐼𝐷 = 𝑘𝑃[𝑘(𝑒). 𝑒(𝑡)] +
𝑘𝑝

𝑇𝐼
∫ [𝑘(𝑒). 𝑒(𝑡)]

𝑡

0
𝑑𝑡 + 𝑘𝑝𝑇𝑑

𝑑

𝑑𝑡
[𝑘(𝑒). 𝑒(𝑡)] (4) 

 

2.3. MN-PID controller 

The MN-PID controller is an approach designed to enhance the NPID controller. This controller 

incorporates several sector-bounded nonlinear gains, 𝑘(𝑒, 𝛼𝑥), designed to tune the parameter α to create 

multiple gain sectors, known as the multi-rate function, as illustrated in Figure 1. These bounded sectors are 
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automatically chosen to enhance the controller's adaptability, allowing for a broad spectrum of gain tuning. 

The implementation hinges on selecting 𝛼𝑥, influenced by factors such as friction, load variations, and the 

discrepancy between the reference and actual values of the controlled variable. The selection of 𝛼𝑥 generates 

various ranges for the nonlinear gain, 𝑘(𝑒, 𝛼𝑥). For each initial movement, a higher value of nonlinear gain, 

𝑘(𝑒, 𝛼𝑥) should be selected to provide sufficient force for friction compensation. 

 

 

 
 

Figure 1. System with MN-PID controller 

 

 

The multi-rate nonlinear function's behavior is contingent upon the characteristics of the nonlinear 

gain as α varies, as shown in Figure 2. It is observed that for any value of α, the nonlinear gain 𝑘𝑥(𝑒) equals 

one when the error 𝑒 =  0. In this situation, the MN-PID controller effectively operates as a conventional 

PID controller.  

Let 𝜃 = [𝐾𝑃 , 𝐾𝑖 , 𝐾] and 𝜉(𝑡) = [𝑒(𝑡), ∫ 𝑒(𝜏)𝑑𝜏,
𝑑

𝑑𝑡
𝑒(𝑡)

𝑡

0
]

𝑇

. Thus, the MN-PID equation is (5). 

 

𝑢𝑀𝑁−𝑃𝐼𝐷(𝜃, 𝑒) = 𝐾𝑥(𝑒, 𝛼𝑥). 𝜃𝜉(𝑡) (5) 

 

 

 
 

Figure 2. Nonlinear gain profiles as a function of α 

 

 
As depicted in Figure 2, the value of 𝛼 produced by the fuzzy logic technique may either  

increase the parameters 𝜃 or remain unchanged. The nonlinear gain 𝑘𝑥(𝑒, 𝛼𝑥) is defined as a multi-rate 

nonlinear function of error, where the specific rule is determined by the selection of 𝛼𝑥 within the range  

1 ≤ 𝑘𝑥(𝑒, 𝛼𝑥) ≤ 𝑘𝑥(𝑒𝑚𝑎𝑥 , 𝛼𝑥). The surface plot of the nonlinear gain variation rate according to the fuzzy 

logic tuning rules is shown in Figure 3. The final output of the fuzzy system is provided in (6).  

 

𝛼𝑥(𝑧) =
∑ 𝜇𝑗(𝑧)𝛼𝑗

𝑁
𝑗=1

∑ 𝜇𝑗(𝑧)𝑁
𝑗=1

 (6) 

 

The rules governing the nonlinear function of the MN-PID controller are as: 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

 Comparative insights into nonlinear PID-based controller design approaches …  (Syed Najib Syed Salim) 

195 

𝐼𝐹|𝑒(𝑘𝑇)| 𝑖𝑠 < 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 𝑙𝑎𝑏𝑒𝑙 > 𝐴𝑁𝐷 Δ|𝑒(𝑘𝑇)| < 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 𝑙𝑎𝑏𝑒𝑙 > 𝑇𝐻𝐸𝑁 𝛼𝑥  
 

 

 
 

Figure. 3. Surface plot of nonlinear gain variation rate 

 

 

2.4. SN-PID controller  

This technique enhances the N-PID controller by aligning its design objective with that of the MN-

PID controller but without utilizing fuzzy logic to determine the rate variation, α, of the nonlinear gain. 

Instead, it addresses the challenge of identifying suitable rules for the fuzzy tuning mechanism in the MN-

PID by directly generating the value of α through a predefined function; see (6). This approach results in a 

more adaptable controller. The self-regulation nonlinear function (SNF) stands out for its simplicity and 

minimal need for additional computation time. Due to its rapid execution time and effectiveness in achieving 

performance levels unattainable by both conventional PID and nonlinear PID controllers, this technique is 

well-suited for industrial applications. Determining the optimal value of α for superior performance in terms 

of speed and chattering avoidance is challenging. This method enables the value of α to be generated 

dynamically in real-time to enhance the controller's flexibility. Figure 4 illustrates the block diagram of this 

method. The nonlinear gain 𝑘𝑥(𝑒) is automatically adjusted based on the value of 𝛼𝑖, which is directly 

generated using the SNF equation as defined in (7). 

 
𝛼𝑖(𝑠)

𝑒(𝑠)
=

𝑑

𝑑𝑠
|

𝛿

𝛽𝑠+1
| (7) 

 

 

 
 

Figure 4. Block diagram of SN-PID controller 

 

 

To automatically generate α, the relationship between 𝛿 and 𝛽 is determined in advance. A particle 

swarm optimization (PSO) technique is employed to identify this relationship. This technique begins with a set 

of randomly generated solutions (particles) and seeks optimal solutions by iteratively updating generations. 

Each particle, representing a candidate solution in the initial stages, is assigned a specific fitness value. The 

particles move with a velocity influenced by their own experiences and those of others. Throughout this 

process, the velocity and position of each particle are updated based on two key values: The Personal Best 

(𝑃𝑏𝑒𝑠𝑡) and the global best (𝐺𝑏𝑒𝑠𝑡) solutions. The velocity and position of each particle can be calculated using 

the current velocity and the distance from 𝑃𝑏𝑒𝑠𝑡 to 𝐺𝑏𝑒𝑠𝑡 , as detailed in (8) and (9), respectively. 
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𝑉𝑖
𝑡+1 = 𝑤. 𝑉𝑖

𝑡 + 𝑐1. 𝑟𝑎𝑛𝑑1(. ). (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖
𝑡) + 𝑐2. 𝑟𝑎𝑛𝑑2(. ). (𝐺𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖

𝑡) (8) 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (9) 

 

The value of 𝑤 is set by (8) as  

 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑟 (10) 

 

where 

𝑤 : inertia weight function 

𝑐1 & 𝑐2 : learning factor 

𝑟𝑎𝑛𝑑1 & 𝑟𝑎𝑛𝑑2 : random numbers in range [0,1] 
𝑖𝑡𝑟𝑚𝑎𝑥  : maximum number of iterations 

𝑖𝑡𝑟 : current iteration 

𝑖 = 1,2,3,4, … … , 𝑁𝑠𝑤𝑎𝑟𝑚 

The performance criterion in the time domain as described in (11) is employed for this optimization. 

This criterion is employed to compute the cost function for evaluating the parameters of the SNF. It considers 

various output response constraints, such as overshoot, rise time, settling time, and steady-state error. The 

cost function 𝑓 is defined as the reciprocal of the performance criterion W(K), as outlined in (12). 

 

𝑊(𝐾) = (𝑀𝑃 + 𝑒𝑠𝑠). (1 − 𝑒−𝜎) + (𝑡𝑆 − 𝑡𝑟). 𝑒−𝜎 (11) 

 

𝑓 =
1

𝑊(𝐾)
 (12) 

 

Here, 𝐾 is [,  ] and  is the weighting factor. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Performance comparison of various control methods 

Figure 5 shows the closed-loop responses of the system under different controllers. Qualitative 

analysis indicates that the MN-PID and SN-PID controllers achieve the best performance. The transient 

response of the system controlled by the SMC is similar to these methods. However, in steady-state 

conditions, as shown in the zoomed-in view, the SN-PID controller outperforms the others. The N-PID 

controller exhibits the poorest performance in terms of speed. Nonetheless, its steady-state performance is 

comparable to that of the SN-PID controller. The conventional PID controller provides a fast response. 

However, this rapid response is accompanied by a significant overshoot, where the system output exceeds the 

desired setpoint before stabilizing. This overshoot indicates a lack of robustness in the system, as it may lead 

to instability or undesirable oscillations. The presence of overshoot and the subsequent settling time needed 

to stabilize the system diminishes the overall performance of the conventional PID controller compared to the 

advanced methods. 

 

 

 
 

 

Figure 5. Dynamic performance comparison of different control strategies 
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3.1.1 Quantitative performance evaluation 

The integrated absolute error (IAE), as defined in (13), is employed to quantitatively evaluate the 

performance of the different controllers. The IAE is a widely used performance metric in control systems, 

representing the accumulated absolute error over time. Lower IAE values indicate better performance as they 

reflect smaller deviations from the desired setpoint. Each control method is tested on a system operating for 4 

seconds with a target distance of 250 mm. This setup provides a consistent and controlled environment for 

assessing the accuracy and effectiveness of each controller over a significant duration. 

 

𝐼𝐴𝐸 = ∫ |𝑟(𝑡) − 𝑦(𝑡)|𝑑𝑡
∞

0
 (13) 

 

Figure 6 presents the performance results based on the IAE metric, from which several key 

observations can be made. The SN-PID and MN-PID controllers exhibit the lowest IAE values, clearly 

outperforming the other techniques. These controllers effectively minimize the absolute error over the testing 

period, demonstrating their superior ability to maintain the system at the desired setpoint with high precision. 

The N-PID controller also shows good performance, with relatively low IAE compared to the conventional 

PID and SMC. Despite its sluggish transient response, which indicates a slower reaction to changes, the N-

PID controller manages to achieve a steady-state performance close to the SN-PID controller. This suggests 

that the nonlinear function incorporated into the PID controller plays a crucial role in enhancing the overall 

accuracy of the system, particularly in maintaining a stable and precise output over time. In contrast, the 

conventional PID controller, despite delivering a rapid initial response, exhibits a higher IAE due to 

overshoot and the resulting oscillations before reaching steady state. This significant overshoot leads to larger 

deviations from the setpoint, thereby increasing the total absolute error. Meanwhile, the SMC offers solid 

performance, though it falls short of the accuracy achieved by the SN-PID and MN-PID controllers. 

 

 

 
 

Figure 6. IAE Performance index for the system with different controllers 

 

 

The findings indicate that the SN-PID and MN-PID controllers are developed with a strong 

emphasis on achieving both rapid response and high accuracy. Initially, the PID parameters are set with 

minimal emphasis on piston speed, allowing the system to operate effectively under various conditions. Once 

stable performance without overshoot is achieved, the response speed is enhanced by introducing a nonlinear 

gain, which improves transient performance. While increasing the nonlinear gain typically reduces system 

performance due to a lower gain margin, the SN-PID and MN-PID controllers maintain their effectiveness 

because the nonlinear gain dynamically adjusts based on the error and returns to its initial value once the 

desired input is achieved. The quantitative relationship between nonlinear gain for the damped frequency and 

peak time can be plotted in Figure 7. The results regarding the relationship between these three parameters 

confirm that the piston's velocity notably spikes at the beginning, as indicated by the short peak time (𝑡𝑝). 

This spike leads to a brief overshoot in the system’s response, driven by the rise in the damped frequency 

(𝜔𝑑). However, the impact of this overshoot is minimized by the reduction in the nonlinear amplification 

factor over time. 
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Figure 7. Relationship between nonlinear gain, 𝑘(𝑒), damping frequency (𝜔𝑑) and peak time (𝑡𝑝) 

 

 

3.2. Robustness performance 

Robustness can be defined as the ability of a control system to remain insensitive to variations in 

plant parameters. This characteristic is crucial for ensuring consistent performance and reliability in real-

world applications, where system parameters can change due to various factors such as environmental 

conditions, disturbances, and load variations. To thoroughly assess the system's robustness, a series of 

investigations were conducted, focusing primarily on the controller's ability to manage motion under varying 

load conditions. This aspect is critical because, in practical situations, the system may need to handle loads 

that differ significantly from the nominal design specifications. 

In the first set of experiments, different masses were connected to the end of the stroke to simulate 

varying load conditions. The masses used in these experiments ranged up to 36.5 kg. By subjecting the 

system to these varying loads, the tests aimed to evaluate how well the controller could maintain stability and 

performance despite the changes in load. Additionally, experiments were conducted with different nominal 

loads to further understand the system's robustness. These tests involved altering the baseline load conditions 

and observing the controller's performance in maintaining the desired motion and stability. The ability to 

handle different nominal loads without significant degradation in performance is a key indicator of the 

controller's robustness. Overall, these investigations provide valuable insights into the robustness of the 

control system, highlighting its ability to adapt and perform reliably under varying operational conditions. 

 

3.2.1. Performance analysis on the variation of load 

This study investigates the results from a series of experiments conducted with varying loads. The 

system is tested using a step response with a displacement of 200 mm. The moving mass of the horizontal 

cylinder is attached to loads of 3.1 𝑘𝑔, 8.4 𝑘𝑔, 13.5 𝑘𝑔, 18.7 𝑘𝑔, 23.9 𝑘𝑔, 29.2 𝑘𝑔, and 36.5 𝑘𝑔. The 

controllers under investigation are benchmarked against each method, including conventional PID, Nonlinear 

PID, SN-PID, MD-PID, and SMC, using the same test rig. The performance details of the system under 

various controllers are summarized in Table 1. 

 

 

Table 1. Performance results of control techniques under various load 
Mass (kg) Conventional PID N-PID MN-PID SN-PID SMC 

Load 𝑡𝑠(𝑠) %𝑂𝑆 𝑒𝑠𝑠 𝑡𝑠(𝑠) %𝑂𝑆 𝑒𝑠𝑠 𝑡𝑠(𝑠) %𝑂𝑆 𝑒𝑠𝑠 𝑡𝑠(𝑠) %𝑂𝑆 𝑒𝑠𝑠 𝑡𝑠(𝑠) %𝑂𝑆 𝑒𝑠𝑠 

3.1 1.61 0.3 0.3 1.56 - 0.02 0.63 - 0.02 0.63 - 0.01 1.12 - 0.12 
8.4 3.12 24 0.3 1.56 - 0.02 0.71 - 0.02 0.72 - 0.01 1.11 - 0.13 

13.5 

unstable 

1.55 5.68 0.01 0.77 - 0.02 0.78 - 0.01 1.11 - 0.12 

18.7 1.58 5.7 0.02 0.79 - 0.02 0.78 - 0.01 1.13 1.40 0.13 
23.9 1.84 5.69 0.05 0.86 - 0.02 0.83 - 0.02 1.43 6.50 0.13 

29.2 1.86 6.97 0.07 0.93 1.21 0.02 0.83 - 0.02 1.62 11.10 0.14 

36.5 1.89 8.89 0.09 1.64 10.2 0.02 0.87 - 0.02 1.98 13.90 0.13 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

 Comparative insights into nonlinear PID-based controller design approaches …  (Syed Najib Syed Salim) 

199 

The results suggest that the SN-PID controller surpasses alternative techniques, as depicted in 

Figure 8, wherein the system employing this controller displays no overshoot even with a mass augmentation 

of 36.5 𝑘𝑔. Correspondingly, the MN-PID controller eradicates overshoot for payloads below 24 𝑘𝑔. 

Nevertheless, systems regulated by N-PID and SMC encounter unavoidable overshoot when the load 

surpasses 13.5 𝑘𝑔 and 18.7 𝑘𝑔, respectively. On the contrary, the traditional PID controller exhibits the 

poorest performance, incapably sustaining stability beyond a mass of 8.4 kg. The SN-PID controller 

consistently exhibits superior efficacy in comparison to other methodologies. As illustrated in Figure 9, the 

settling time for the system utilizing the SN-PID controller remains minimal, remaining under 0.2 seconds. 

This emphasizes that the SN-PID approach significantly bolsters system robustness. The steady-state error 

stays within acceptable limits, showing only a slight increase when the mass reaches 36.5 𝑘𝑔. Conversely, 

the settling time of the MN-PID controller deteriorates once the mass exceeds 29 𝑘𝑔 due to oscillations that 

impair system performance. 

 

 

 
 

Figure 8. System overshoot vs different loads 

 

 

 
 

Figure 9. Settling time vs different loads 

 

 

These findings potentially offer various practical implications for diverse engineering applications. 

By showing that MN-PID and SN-PID controllers offer lower overshoot rates and quicker settling times, this 

study underscores their role in improving system accuracy and stability. In practical applications, such as 

those in manufacturing, robotics, and others, incorporating these techniques can enhance performance, reduce 

errors, and improve product quality. This leads to greater operational efficiency and less downtime. 
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Additionally, their ability to rapidly stabilize systems under varying loads enhances the reliability and safety 

of critical operations, resulting in more robust and efficient engineering solutions. 

 

 

4. CONCLUSION  

In the performance comparison of various control methods, the SN-PID and MN-PID controllers 

demonstrate superior performance. Both controllers achieve the lowest integrated absolute error (IAE) 

values, effectively minimizing deviations from the desired setpoint over the testing period. The SN-PID 

controller, in particular, exhibits the best steady-state performance and remains robust under varying load 

conditions up to 36.5 kg, showing minimal overshoot and consistent settling times. The N-PID controller 

shows good performance with relatively low IAE and steady-state performance comparable to the SN-PID 

controller, although it has a slower transient response. The conventional PID controller, while providing a 

fast-initial response, suffers from significant overshoot and higher IAE, indicating lower robustness and less 

effective management of system dynamics. The SMC, although robust, does not match the precision of the 

SN-PID and MN-PID controllers, showing moderate effectiveness in minimizing error. Overall, the SN-PID 

controller is the most effective in maintaining system stability and performance across various conditions, 

followed closely by the MN-PID controller. This control strategy offers better handling of system dynamics 

and disturbances, resulting in improved accuracy and robustness. 
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