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 The Internet of Things (IoT) is a network of connected physical objects that 

collect and share data over the Internet. However, routing attacks can disrupt 

data exchange, especially multi-node sinkhole attacks in low power and lossy 

IoT networks (LLNs). To support communication in LLN IoT, the IPv6-based 

routing protocol for LLNs (RPL) is used. Despite having several advantages, 

RPL also faces challenges like being vulnerable to attacks, having limited 

resources, compatibility, and scalability issues. Additionally, traditional 

security methods often do not work well for LLN-IoT devices because they 

lack the necessary computing power. To overcome these challenges, we have 

proposed a novel ledger-based framework called network and packet ledger to 

ascertain malicious devices using routing protocol for LLN (NAPLAM-RPL). 

This framework can effectively detect and mitigate multi-node sinkhole attacks 

in IoT networks. This paper also compares NAPLAM-RPL with similar 

protocols using the NetSim Simulator. The experimental analysis shows that 

NAPLAM-RPL improves network performance and outperforms existing 

methods like RF-trust, SoS-RPL, INTI, C-TRUST, and heartbeat algorithm in 

crucial areas, including packet delivery rate (PDR), throughput, End-to-End 

(E2E) delay, energy consumed, and detection accuracy. 

Keywords: 

Internet of Things (IoT) 

Low power and lossy networks 

(LLNs) 

Network and packet ledger to 

ascertain malicious 

devices/nodes (NAPLAM) 

Routing protocol for low power 

and lossy networks (RPL) 

Sinkhole attack 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Akshaya Dhingra 

Department of Electronics and Communication Engineering, University Institute of Engineering and 

Technology, Maharshi Dayanand University 

Rohtak, Haryana, India 

Email: akshaya.rs.uiet@mdurohtak.ac.in 

 

 

1. INTRODUCTION 

The Internet of Things (IoT) technology integrates networking, sensing, data processing, and 

machine learning technologies to solve problems [1], [2]. The term IoT combines “Internet,” meaning 

worldwide connection of computer networks, and “things,” which can be any uniquely identified objects 

interconnected to this global network. Overall, IoT is an IPv6-based network that integrates software/hardware 

to exchange data over the internet [3]. Today, IoT is being deployed in multiple applications like transport, 

health, industry, agriculture, homes, and military, to make our lives easier and better.  

Despite having significant benefits, IoT also has some severe challenges. Here are a few 

considerable difficulties in IoT. The devices used in IoT environments are public and utilize wireless 

communication technology, making systems more susceptible to routing attacks. Secondly, IoT connects 

many embedded mobile devices and systems that need help with scaling, dynamic flexibility, and 
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compatibility concerns [4]. The critical aspect of the IoT is that most attacks have occurred through the 

Internet. The IoT devices are resource-constrained and have little memory, limited computing resources, and 

power. Additionally, more challenges arise in IoT due to the mobile nature of devices and systems [5].  

IoT devices cannot be secured using traditional methods because these techniques require more 

computation and processing capabilities. Apart from these issues, many devices are being used in IoT that 

can create a new problem called scalability in IoT. Therefore, a reliable algorithm or detection technique is 

required to efficiently address these issues and detect and mitigate internal and external routing attacks in 

low-power and lossy network (LLN) IoT networks [6]. Our proposed scheme, namely NAPLAM-RPL 

(network and packet ledger to ascertain malicious devices using routing protocol for LLN), is a ledger-based 

technique that stores the node’s information (receiver ID, App ID, and number of Packet Received attributes 

when the data packets are in transit) in the form of intricate sets whenever the IoT network is created and 

initialized. To detect malicious nodes or attackers in the network, all the data packets are tracked, and the 

throughput of each node is calculated. Secondly, it calculates the real-time packet drop rate based on the pre-

set threshold value. If the packet drop rate of a node/device is more than the threshold value, it marks it as a 

malicious or intruder node. Lastly, it removes the intruder from the network and actively projects the worst 

rank possible to prevent the node from entering the network again. 

The overview of previous literature related to insider and outsider routing attacks occurring in IoT 

networks and their detection methods are explained in Table 1 (in Appendix) [6]–[13], [14]–[23]. 

This research aims to describe a ledger-based secured protocol (NAPLAM) that protects RPL-based 

IoT networks against Multi-Node Sinkhole attacks. The primary contributions of NAPLAM-RPL are: 

a. Ledger-based HashMap is joined with the RPL protocol for efficient data exchange and control packets 

between nodes. 

b. The NAPLAM is embedded in the RPL protocol source code using C++ language in Netsim Simulator. 

c. This scheme can detect and mitigate sinkhole attacks occurring in RPL IoT using parameters like packet 

delivery rate (PDR), throughput, end-to-end (E2E) delay, energy consumed (EC), and detection accuracy, 

respectively. 

d. The proposed algorithm NAPLAM-RPL efficiency is evaluated by comparing its results with existing 

security schemes. 

 

 

2. PROPOSED ALGORITHM 

This section gives an overview of the proposed algorithm NAPLAM-RPL, which we have designed 

based on the ledger data structure. This algorithm detects and mitigates Sinkhole attacks in RPL-IoT networks 

using HashMap [24] and HashSet [25] structure codes to safely store the data packet information and detect 

malicious nodes once the network is created. The steps involved in the algorithm are described in Figure 1. 

a. Step 1: Ledger creation, initialization  

In Sinkhole attacks, the intruder node acts as the genuine node and advertises false rank in the 

network using control messages. Whenever a new IoT network is initialized and configured, an event will 

occur in the network. So, as soon as an event happens in the network, a ledger is created and initialized to 

store information about all the lost packets using the TrackPacketsInit() function of the Track_Packet.c file.  

b. Step 2: Structure of the ledger 

In this step, a ledger is created to store the node’s information (Receiver ID, App ID, and number of 

Packet Received attributes when the data packets are in transit) in the form of nested HashMap and HashSet, 

namely PacketTrackerMap and Malicious Nodes. 

PacketTrackerMap: It is a nested HashMap that stores the ReceiverId of the packet as its key and 

stores other related information using multiple layers of objects. The detailed structure of this map is shown 

in Figure 2. The HashMap, namely “PacketTrackerMap,” was first created. Each object/entity/entry to this 

HashMap is called a “Packet Tracker” object. This HashMap has two fields. The first is the ReceiverId, 

which stores the receiver node number as a Key Value. This HashMap’s second field is a pointer pointing to 

the next HashMap, “ReceivedPacketMap,” only when it has the correct key value. Similarly, 

ReceivedPacketMap has two fields, namely AppID in the form of key-value and Packet Record pointer, 

which points to a pair object. Each entity stored in ReceivedPacketMap is called a “ReceivedPacket” object. 

The pair object Packet Record contains only two fields, i.e., no. of packets received and packet set. The field 

packet set points to a hash set that stores the packetID of packets successfully transmitted but not yet 

retransmitted by the receiving node. By having this hash set record, we can track packets between hops. 

Malicious Nodes: It is a kind of blacklist for suspicious nodes. This HashSet stores the ID of the 

already identified malicious nodes by the algorithm so that sinkhole attacks can be mitigated by reducing the 

priority of these nodes in the destination oriented directed acyclic graph (DODAG). The structure of this 

HashSet is shown in Figure 3. The ledger uses HashMaps and HashSets to minimize the time and energy 

needed to store, update, and access ledger information. 
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Figure 1. NAPLAM-RPL algorithm flowchart 
 

 

 
 

Figure 2. Structure of PacketTrackerMap in NAPLAM 
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Figure 3. Structure of malicious node set 

 

 

c. Step 3: Creation of DODAG 

Initially, the algorithm allows all the nodes to exchange DAO and DIO messages freely to form a 

DODAG to send application data. During this time, malicious nodes act the same way as other nodes in the 

network and project an excellent rank to lure their neighbors so that other nodes choose it as their preferred 

parent because it is not possible to know if the node really has a good rank (due to its location and network 

strength) or is falsely projecting a good rank (due to its malicious nature).   

d. Step 4: Tracking of application data packets 

As soon as any event involving the transmission and reception of a packet occurs, the ledger stores 

the record of successfully transmitted packets and removes the record of packets successfully received. 

However, during this process, it still records the total packets a node gets to calculate throughput. 

e. Step 5: Calculation of packet drop rate 

After every event, the ledger is updated, and a real-time packet drop rate is also calculated using the 

ledger data. 

f. Step 6: Detecting a malicious node 

That node is identified as malicious if the packet drop rate is higher than a certain threshold 

percentage (say 80%), along with other criteria. Specific provisions are made if the number of packets sent 

till now is tiny and for packets that might be in transit to minimize false positive detection of malicious 

nodes. 

g. Step 7: Marking a node as malicious 

Once detected, we add such a node to the malicious node HashSet (which is a blacklist) to mark it as 

a malicious node. 

h. Step 8: Removing the malicious nodes from the DODAG 

As soon as malicious nodes are detected, NAPLAM IDS changes the preferred parent of all the 

child nodes of the malicious node to some other parent and removes the malicious one from the network. 

i. Step 9: Preventing malicious nodes from re-entering the network 

Now, using our Malicious Nodes hash set, NAPLAM IDS actively projects the worst rank possible 

for the malicious nodes against their try to project a fake good rank to enter the network. This prevents 

malicious nodes from entering the network again. 

j. Step 10: Printing of detected malicious nodes 

All the nodes that are detected as malicious ones (or blacklisted) by NAPLAM are printed with the 

number of packets that successfully reach the destination. 

k. Step 11: Freeing of Memory 

Memory is freed at the IoT network's closing or the simulation end. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Performance evaluation 

This section estimates the performance of the proposed NAPLAM-IDS using the NetSim v13.3 

simulator and visual studio. A simulation model consisting of 100 sensor nodes, a 6LoWPAN, a router, and a 

wired node (acting as receiver) is created in the NetSim simulator to evaluate NAPLAM-RPL, as shown in 

Figure 4. The simulation is performed by increasing the number of sinkhole nodes from 10 to 50 in each 

round to assess the performance of the proposed scheme. Table 2 shows the simulation parameters selected 

for the performance evaluation of the proposed scheme. The performance of the proposed NAPLAM-RPL 

scheme is compared with that of existing schemes RF-Trust [6], SoS-RPL [7], INTI [20], C-TRUST [17] and 

Heartbeat algorithm [9] against multi-node sinkhole attacks. The results of the network are evaluated based 

on five performance parameters explained below. 

PDR is an essential metric for evaluating the reliability and efficiency of a network. It represents the 

ratio of packets successfully delivered to their intended destination versus the total number of packets 

transmitted and given by (1). 
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𝑃𝑎𝑐𝑘𝑒𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 (𝑖𝑛 𝐾𝑏𝑝𝑠) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑇𝑟𝑎𝑛𝑎𝑚𝑖𝑡𝑡𝑒𝑑
                                  (1) 

 

Throughput measures the data or information processed and transmitted by an application within a 

specific time frame. It indicates the capability of an application to handle a particular no. of transactions or 

requests per unit of time. The application throughput can be calculated using (2). 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑖𝑛 𝐾𝑏𝑝𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑖𝑛 𝐵𝑦𝑡𝑒𝑠)×8×1000

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑖𝑛 𝜇𝑠𝑒𝑐)
               (2)  

 

 

 
 

Figure 4. Simulation setup 

 

 

Table 2. Simulation parameters 
Simulation parameters Values 

Simulator Netsim v13.3 

Network coverage area 500m * 500m 
Network protocol RPL 

Number of nodes 100 

Node type Wireless Sensor 
Number of malicious nodes 10, 20, 30, 40, 50 

Simulation time 3600 seconds 

MAC_layer protocol IEEE 802.15.4 
Transport protocol UDP 

Traffic Sensor App 

Data rate 3072 bps 
Packet size 64 Bytes 

Inter-arrival time 166666 µseconds 
Transmission range  50 m 

 

 

Average E2E delay measures the time it takes for data to be transmitted from a source to a 

destination across a network, including all delays incurred along the way. In NetSim, the average E2E delay 

is the time packets take between ApplicationOut and ApplicationIn time and is given (3). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸2𝐸 𝑑𝑒𝑙𝑎𝑦 (𝑖𝑛 𝑚𝑠) =
(𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑂𝑢𝑡− 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛)×1000

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
                                          (3) 
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Energy consumed (EC) refers to the ratio of energy consumed by an individual wireless node to the 

total number of nodes in the network. It is measured in milli-joules (mJ). The average power consumed in a 

network depends on various factors, such as the network topology, the number of nodes, the type of sensors 

used, the application, and the communication protocol used, and is given by (4). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (𝑖𝑛 𝑚𝐽) =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑊𝑆𝑁𝑛

0

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑆𝑁𝑠
   (4) 

 

Detection Accuracy is the ratio of the number of nodes correctly identified as illegitimate or 

malicious nodes to the total number of malicious nodes in the network. It can be calculated using (5). 

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑖𝑙𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑟 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
 (5) 

 

3.2.  Comparative analysis 

This section performs a comparative analysis of simulation results for proposed NAPLAM-RPL, 

RF-Trust, and SoS-RPL schemes. This evaluation of results is done based on performance metrics, i.e., PDR, 

throughput, E2E delay, energy consumption, and detection accuracy. 

Figure 5 depicts the packet delivery rate (PDR) for NAPLAM-RPL, RF-Trust, SoS-RPL, C-Trust, 

INTI, and heartbeat algorithm at varying malicious nodes from 10 to 50. It is observed that the maximum 

PDR for the proposed NAPLAM-RPL scheme is 96.69% in comparison with 93.2% in the case of RF-Trust, 

86.18% for SoS-RPL, 87.7% for C-Trust, 83.19% for INTI and 79.8% for Heartbeat algorithm respectively. 

The proposed approach blacklists the malicious nodes from the RPL-DODAG formation. Therefore, the 

average calculated PDR in the case of NAPLAM-RPL is 87.43%, while the average PDRs for RF-Trust, 

SoS-RPL, C-TRUST, INTI, and Heartbeat algorithm are 81.72%, 74.27%, 74.97%, 71.47% and 68.62%. 

Hence, NAPLAM-RPL delivers 5.71%, 13.16%, 12.46%, 15.96 and 18.81% more average packets in 

comparison to RF-Trust, SoS-RPL, C-Trust, INTI, and Heartbeat algorithm, respectively. 
 
 

 
 

Figure 5. PDR v/s number of malicious nodes 
 

 

Figure 6 depicts the throughput (in Kbps) w.r.t. number of malicious nodes for the proposed 

scheme, RF-Trust, SoS-RPL, INTI, C-TRUST, and Heartbeat algorithm. It is observed from the figure that 

throughput for all the scenarios decreases gradually with an increase in the number of malicious nodes. As 

NAPLAM-RPL uses a rank-based prediction scheme to detect sinkhole nodes, this scheme can achieve a 

maximum throughput of 3032 Kbps for a network with ten sinkhole nodes. Meanwhile, the RF-Trust SoS-

RPL, C-TRUST, INTI and heartbeat algorithm lags behind, having throughput rates of 2877, 2520, 2608, 

2376, 2103 Kbps, respectively. Therefore, the proposed scheme delivers a maximum payload to the 

destination compared to other schemes. 
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The impact of the average E2E delay (in microseconds) w.r.t number of malicious nodes is 

illustrated in Figure 7. It is observed that the proposed scheme has the lowest delay as it can detect and 

blacklist sinkhole nodes earlier than other models. The average delay for the NAPLAM-RPL lies in the range 

of (1729.5 to 2809 µsec) in comparison with (2647 to 3120 µsec) for RF-Trust, (2789-3261 µsec) for SoS-

RPL, (2879-3261 µsec) for INTI, (3012-3464 µsec) for C-TRUST and (3204 to 3550 µsec) for Heartbeat 

algorithm. Therefore, the proposed algorithm takes less time to detect sinkhole nodes than other schemes. 

 

 

 
 

Figure 6. Throughput v/s number of malicious nodes 

 

 

 
 

Figure 7. Average E2E delay v/s number of malicious nodes 

 

 

The energy consumed by all the schemes w.r.t. and the number of malicious nodes is illustrated in 

Figure 8. The figure shows that the energy consumed (in millijoules(mJ)) by the sensor nodes in each scheme 

increases proportionally with the number of malicious nodes from 10 to 50. The proposed NAPLAM-RPL 



IAES Int J Rob & Autom ISSN: 2722-2586  

 

 NAPLAM: a novel ledger-based algorithm for detection and mitigation … (Akshaya Dhingra) 

255 

algorithm is energy-efficient as it uses energy in the range of 44.2 to 53.85 mJ, in comparison with RF-Trust, 

SoS-RPL, INTI, C-Trust and Heartbeat algorithm which consumes energy ranging from (63.57 to 76.99 mJ), 

(66.36 to 85.8 mJ), (122.65 to 126.85 mJ), (131.54 to 161.39 mJ) and (135.25 to 181.22mJ). The average 

energy consumed by sensor nodes for NAPLAM-RPL is (48.41 mJ), RF-Trust is (69.27 mJ), SoS-RPL is 

(73.57 mJ), INTI is (124.77 mJ), C-TRUST is (145.88 mJ) and Heartbeat algorithm is (154.636 mJ) 

respectively. Therefore, it is observed that the proposed NAPLAM-RPL consumes 30%, 34.85%, 61.2%, 

66.8% and 68.69% less energy than RF-Trust, SoS-RPL, INTI, C-Trust and Heartbeat algorithms. 

Figure 9 shows the detection accuracy (%) of all the algorithms, i.e., proposed NAPLAM-RPL, RF-

Trust, SoS-RPL, INTI, C-Trust, and Heartbeat algorithm w.r.t. the number of malicious nodes. The graph 

shows that detection accuracy reduces proportionally with the increase in sinkhole nodes. The maximum 

detection accuracy of the proposed NAPLAM-RPL is 98.5% in a network with ten malicious nodes. 

Meanwhile, the other schemes, i.e., RF-Trust, SoS-RPL, INTI, C-Trust, and Heartbeat algorithm, were 

97.2%, 96.5%, 95.35%, 92.9%, and 86.32%, respectively. Therefore, the overall detection accuracy of the 

proposed scheme is higher than that of the other schemes.  
 

 

 
 

Figure 8. Energy consumption v/s number of malicious nodes 
 

 

 
 

Figure 9. Detection accuracy v/s number of malicious nodes 
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The experimental results show that the proposed NAPLAM-RPL framework outperforms other 

schemes, i.e., RF-Trust, SoS-RPL, INTI, C-Trust, and Heartbeat algorithm regarding PDR when the number 

of malicious nodes is varied between 10 and 50. The NAPLAM-RPL framework achieved a maximum PDR 

of 96.69%, which is higher than the PDRs of RF-Trust (93.2%), SoS-RPL (86.18%), C-Trust (87.7%), INTI 

(83.19%) and Heartbeat algorithm (79.8%) respectively. In addition, the proposed framework also showed 

higher throughput, lower end-to-end delay, and lower energy consumption compared to the other schemes. 

The detection accuracy of NAPLAM-RPL was also higher than other schemes, which indicates its 

effectiveness in identifying and blacklisting malicious sinkhole nodes from RPL-DODAG formation. The 

experimental results prove that the NAPLAM-RPL framework is a promising solution for providing secure 

and reliable communications in IoT networks. 

 

 

4. CONCLUSION 

This article presents a novel NAPLAM-RPL framework for detecting and mitigating multi-node 

sinkhole attacks in resource-constrained IoT networks. The proposed framework is based on ledger creation 

and provides a trust-based mechanism to identify and blacklist malicious nodes from the RPL-DODAG 

formation. The results show that the proposed NAPLAM-RPL framework provides the highest detection 

accuracy (98.5%), PDR (95.83%), and throughput (3032 Kbps) in comparison with the existing schemes, i.e., 

RF-Trust, SoS-RPL, INTI, C-Trust and heartbeat algorithm. The article also provides valuable insights into 

the current state-of-the-art sinkhole attack detection and mitigation in IoT networks and contributes 

significantly to advancing security in IoT networks. The NAPLAM-RPL framework is a promising solution 

for providing secure and reliable communications in IoT networks vulnerable to sinkhole attacks. As a future 

extension of this work, we will further enhance the robustness and applicability of the NAPLAM-RPL 

algorithm in diverse IoT environments, ultimately leading to better protection against a broader range of 

security threats. 
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APPENDIX 
 
 

Table 1. Previous literature related to IoT 
Ref. Issue Addressed Technique 

used 

Detection 

Scheme 

Protection 

against 
attack 

Validation 

Scheme/Software 

Enhanced QoS 

parameters 

Research Gap 

[6] To detect attacks 

in Scalable and 

Dynamic IoT 
environment 

 

RF 

(Random 

Forest) 
Trust 

Trust based Sinkhole Cooja-Contiki 3.0 Accuracy, 

FNR, EC, 

Delay, 
Throughput 

Can only detect 

sinkhole attacks 

[7] Protection of 
RPL protocol 

based on rating 

and ranking 
 

SoS-RPL 
algorithm 

Specification 
Based 

Sinkhole NS-3 DF, FNR, FPR, 
DR, Maximum 

Throughput, 

PDR. 

IDS is designed 
assuming that the 

ICMPv6 message 

is safe. 

[8] Authentication 

of smart 

infrastructure 
IoT 

ABA-IDS Anomaly Based DoS, 

Flooding, 

Replay, 
Man-in-

the-Middle 

Arduino and 

Raspberry PI 3 

DF, FNR and 

Accuracy 

Behavioral drift 

can affect the 

working of ABA-
IDS 

[9] An IDS for an 
RPL-based IoT 

network 

Heartbeat 
Algorithm 

Hybrid IDS 
(threshold, 

signature, 

heart-beat 
messages) 

DoS Attack 
and types 

Contiki-NG CPU usage, 
EC, Overheads 

Rank attack 
detection is not 

included 

[10] Light-weight 

algorithm for 
detection and 

isolation of rank 

attacks 
 

RAD 

algorithm 

Cryptographic 

hash algorithm 

Rank Cooja PDR, Delay, 

Accuracy 96% 

Random Sampling 

is used to detect 
errors 

[11] Detection of 

wormhole attack 

and attacker 

Real-Time 

IDS 

Centralized 

Approach 

Wormhole Contiki-Cooja RSSI 

(Received 

Signal Strength 
Indicator) 

The analysis is 

done based on DF 

only. 

[12] Detection of 
topology attack 

in RPL IoT 

SAPT Specification-
based IDS 

Topology Contiki 2.6 EC, DF The proposed IDS 
cannot be used for 

performance-type 

internal threats 
 

[13] Address rank 

and blackhole 

attack in static 
and mobile RPL-

IoT 

SM-Trust Trust based 

IDS 

Rank and 

blackhole 

Instant Contiki 

2.7/ Cooja 

Improved 

stability PDR, 

Throughput, 
and EC 

EC by the model 

is more. Testbed 

implementation 
was not feasible 

for colliding 

attacks. 
 

[14] Detection of 
Malicious Nodes 

in IoT 

CBFL 
Approach 

Fuzzy-Trust 
based IDS 

ON-OFF Cooja-Contiki DF, Number of 
attacks, Trust 

Score, 
Contradictory 

Attacks 

The model is not 
compared with 

others 

[15] Prevention of 
insider and 

outsider attacks 

ALBRD 
technique 

Threshold-
based 

DIS-
Flooding 

Cooja PDR, Delay, 
EC, 

Throughput, 

Control 
Overheads 

 

Can only detect 
DIS-Flooding 

attacks 

[16] Protect integrity, 

confidentiality, 

and 
authentication 

against 

intrusions. 
 

PASR Clustering 

Technique 

Active 

Sinkhole 

NS-2 Simulator PDR, EC, DF, 

Routing 

overheads 

Can only predict 

sinkhole attacks 

[17] Detection of 

internal attacks 

C-Trust Hierarchical 

Trust-based 

Blackhole Cooja 2.7 M-2-P 

traffic 

DF, PDR, EC, 

No. of 
malicious 

nodes, residual 

energy 

Mechanism can 

only work on 
control-layer 

[18] Resistance 

against attacks 

INDReS Specification-

based 

Sinkhole NS-2 PDR, 

Throughput, 

Overheads 

Designed only to 

overcome 

SVELTE and 
INTI 

shortcomings 
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Table 1. Previous literature related to IoT (continued) 
Ref. Issue 

Addressed 
Technique 

used 
Detection 
Scheme 

Protection 
against 

attack 

Validation 
Scheme/Software 

Enhanced QoS 
parameters 

Research Gap 

[19] Target Routing 

Attacks 

USER IDS Profile-based 

clustering 
mechanism 

Sinkhole Cooja-Contiki TPR, TNR, EC, 

Minimum 
Memory 

(RAM/ROM) 

Can only recognize 

sinkhole attacks 

[20] Detecting 
Attacks in 

Mobile and 

Static RPL-IoT 

INTI Watchdog 
Timer + 

Trust-based 

Sinkhole Cooja FNR, FPR, DF Cannot detect 
other attacks 

[21] To detect 

multi-sink node 

attacks 

SDMSI Trust based Rank and 

Sinkhole 

Cooja-Contiki 

MAC layer 

DF, EC, FPR, 

TPR, PDR 

Inefficient as it 

takes more 

overhead for 
detection of multi-

path attacks 

[22] Secure network 

from forcing 

attacks 

SecTrust-

RPL 

Trust based Sybil and 

Rank 

Cooja-Contiki 3.0 

XM 1000 motes 

DF, PDR It can detect 

attacks based on 

power consumed 

by selfish node 
[23] Protect the 

network from 
internal and 

external cyber-

attacks 

SAMP-

RPL 

Hash 

function 

Multi-path 

routing 

Cooja-Contiki PDR. DF, EC, 

loss rate 

The idea relies on 

heterogenous RPL-
IoT 
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