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 This paper presents an adaptive approximation method for detecting 

anomalous patterns in extensive data streams gathered by mobile robots 

operating in rough terrain. Detecting anomalies in such dynamic 

environments poses a significant challenge, as it requires continuous 

monitoring and adjustment of robot movement, which can be resource 

intensive. To address this, a cost-effective solution is proposed that 

incorporates a threshold mechanism to track transitions between different 

regions of the data stream. The approach utilizes stochastic differential 

approximation (SDA) and optimistic optimization of Brownian motion to 

determine optimal parameter values and thresholds, ensuring efficient 

anomaly detection. This method focuses on minimizing the movement cost 

of the robots while maintaining accuracy in anomaly identification. By 

applying this technique, robots can dynamically adjust their movements in 

response to changes in the data stream, reducing operational expenses. 

Moreover, the temporal performance of the data stream is prioritized, a key 

factor often overlooked by conventional search engines. This paper 

demonstrates how the approach enhances the precision of anomaly detection 

in resource-constrained environments, making it particularly beneficial for 

real-time applications in rugged terrains. 
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1. INTRODUCTION 

The primary signal and sensor processing issue is anomaly identification during the data stream [1]. 

This research's primary focus is identifying anomalies within data streams, particularly emphasizing the 

element of time. The objective is to enhance the efficiency of representing a specific subset of temporal data 

streams through a sequential design of experiments, facilitating accurate and rapid anomaly detection [2], [3]. 

A significant challenge in time-based anomaly identification, especially in the context of mobile robots used 

in rough terrain rescue missions, is the associated cost of transitioning the data stream from one geographical 

region to another [4]. This cost primarily arises from the movement of robots. Various approximation 

algorithms have been developed to address this issue, with the Brownian motion algorithm being a prominent 

choice due to its experience in managing time and cost-effective model construction [5]. However, the 

standard Brownian motion algorithm faces challenges, including handling vast datasets, memory limitations, 

and the inability to adapt to a behavior-based system with infinite variance [6], [7]. To address the challenges 

https://creativecommons.org/licenses/by-sa/4.0/
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of real-time anomaly detection in dynamic, resource-constrained environments like rugged terrains, the 

authors propose a novel approach leveraging stochastic differential approximation (SDA) and optimistic 

optimization of Brownian motion [8]. This method approximates the shortest path characterized by Brownian 

motion within a defined time interval, achieving greater accuracy by minimizing path length. The study aims 

to provide a cost-effective, adaptive solution that balances energy efficiency, operational cost, and real-time 

response while optimizing robot movement for precise anomaly detection.  

Brownian motion is defined as the variation in the path length measurement, characterized by its 

continuous and natural nature and adaptability to showcase differentiation in erratic motions [9], [10]. In 

presenting the minimum Brownian motion using stochastic differential approximation and optimistic 

optimization, the path is depicted in time intervals, each further divided into sub-intervals [11]. The critical 

objective is to determine how each sub-interval should be represented within the entire time interval. This 

involves the selection of a mathematical model, in this case, stochastic differential equations (SDE), and an 

optimization technique, specifically an optimistic optimization algorithm [12]. In summary, this paper 

introduces an innovative approach to tackle the challenges associated with time-based anomaly identification, 

particularly in mobile robots, by presenting the stochastic differential approximation and optimistic 

optimization of Brownian motion as a more effective alternative to the traditional Brownian motion 

algorithm [13]. The proposed approach provides several key contributions to enhance cost efficiency and 

improve anomaly detection accuracy in robotic systems. One of its primary advantages is the significant 

reduction in expenses related to the movement of mobile robots, particularly during the process of detecting 

anomalies in data streams [14]. By employing a mathematical model that approximates the minimal 

Brownian motion path, the method effectively minimizes unnecessary robot movements, thereby conserving 

both energy and resources.  

Brownian motion, often associated with random movement patterns, is streamlined here to limit 

robot movement, focusing on pathways with minimal deviation. This targeted movement strategy not only 

saves operational costs but also extends the operational lifespan of robotic components by reducing wear and 

tear on the machinery [15]. In addition to cost savings, the approach employs an advanced mathematical 

framework based on stochastic differential equations (SDEs) to refine the precision of the minimal path 

approximation. By leveraging SDEs, the system can dynamically adjust to unpredictable factors that impact 

robot movement and data collection [16]. This added layer of mathematical rigor enhances the accuracy of 

the Brownian motion model, ensuring that the robots follow a path close to the minimal distance required to 

detect anomalies effectively. The use of SDEs ensures that the approach adapts well to fluctuating conditions, 

which are common in real-world applications where robotic systems encounter varied terrains and obstacles 

[17]–[20]. This results in a robust system where the accuracy of anomaly detection remains high, even under 

challenging conditions. 

To improve the approach, an optimistic optimization technique is incorporated to effectively tackle 

continuous optimization challenges associated with Brownian motion [16]. This framework plays a vital role 

in identifying the optimal paths for robots, striking a balance between minimizing path length and 

maximizing the probability of anomaly detection. By focusing on optimizing the robot's path, the method 

significantly increases the chances of accurately identifying anomalies without necessitating extensive 

movement. This optimization process does not solely focus on identifying anomalies but also emphasizes 

efficient resource allocation, minimizing computational power, and ultimately reducing the time and cost 

involved in anomaly detection. An additional aspect of this methodology is its emphasis on accurately 

pinpointing the most likely minimum path of Brownian motion within a specific time frame, a feature that 

significantly enhances the effectiveness of anomaly detection [21]. The proposed approach effectively 

narrows down the set of probable paths, focusing on accurately identifying the minimum path that exhibits 

Brownian motion characteristics. This ensures that anomalies in extensive data streams are detected promptly 

and with minimal resource consumption, reducing unnecessary robotic movements. The time-bound nature of 

this identification process further enhances the system's responsiveness, enabling real-time detection of 

irregularities. By maintaining high precision in anomaly detection while operating under resource constraints, 

the approach becomes highly suitable for applications where both accuracy and operational efficiency are 

critical, such as autonomous navigation, disaster response, and environmental monitoring in challenging 

terrains. 

 

 

2. METHOD 

Consider the data stream 𝑓 = { 1,2,3……𝑛} where f creates the series of random variables are 

𝐴1
𝑓
, 𝐴2
𝑓
, 𝐴3
𝑓
…… 𝐴𝑛

𝑓
 occurs with the data sample space A. Each data stream is dependent on either one of the 

hypotheses such as 𝐻0 𝑜𝑟 𝐻1. The observations made by two different probability distribution functions on 
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data sample space A of data stream are 𝐷1 𝑎𝑛𝑑 𝐷2. Taken 𝐻0 for 𝐷1where 𝐻0  → 𝐴𝑛
𝑓

 is true for 𝐻0. Similarly, 

𝐻1 for 𝐷2 where 𝐻1  →  𝐴𝑛
𝑓
 is true for 𝐻1 where n denotes the set of integers. 𝐻0 is positive when the specific 

data stream defines the movement of data stream is normal and 𝐻1 is positive when the movement of data 

stream is target. Suppose for the taken data stream, 𝐻1 is true and its probability is 𝜌 and 𝐻0 is true with its 

probability (1 − 𝜌) where 𝜌 ∈ (0,1). When these criteria are not satisfied for 𝜌, it shows that target data 

stream happens to be too rare case. During the expectation of hypothesis 𝑃𝑖 . The general structure of 

Brownian motion is shown in Figure 1. 

 

 

 
 

Figure 1. Structure of Brownian motion [21] 

 

 

To reduce the movement cost of the mobile robot during the data stream from one point to another 

point, the problem observed and formulated during the data movements from stream 𝑊1to the next stream 

𝑊𝑛 + 1, so it exists with cost 𝜆𝑊 within distribution 𝐷 ∀ 𝑊(𝑖. 𝑒. )𝜆𝑊  ≥ 0 and €[𝜆𝑊] =  𝜆̃ is finite [22]. 

Assume that movement cost 𝜆𝑊 and the remarks 𝑂𝑇
𝑊′

are commonly independent ∀ W,𝑊′&𝑇. The movement 

cost is expensive due to the movement of the robot while the data stream is monitored during the new data 

stream [23]. If the observations are not taken, then it is said to be zero time and if the observations are 

monitored and the time are recorded then it shows the observation for movement cost. This can also be 

related to energy.  

Problem 1: Consider the Brownian motion (𝐵𝑟(𝑡))𝑡≥0 with a Hurst value Hu > 1/2. Stochastic 

linear equations of this type are investigated in the format in (1). 

 

𝑑𝐴(𝑡) = 𝑆(𝐴(𝑡), 𝑡)𝑑𝑡 + 𝑇(𝐴(𝑡), 𝑡)𝑑𝐵𝑟(𝑡), (1) 

 

𝐴(𝑡0) =  𝐴0, Whereas 𝑡0 ∈ (0, 𝑇), 𝐴0 is an Unpredictable vector in ℚ𝑛  and the subsequent criteria 

hold true with likelihood 1 for the randomly generated functions S and T in (2), 

 

𝑆 𝜖 𝐸(ℚ𝑛 ∗ (0, 𝑇), ℚ𝑛 ), 𝑇𝜖 𝐸1(ℚ𝑛 ∗ (0, 𝑇), ℚ𝑛 ) (2) 

 

for every 𝑡 ∈ (0, 𝑇) the functions 𝑆(∙, 𝑡),
𝜕𝑇(∙,𝑡)

𝜕𝑥𝑖
,
𝜕𝑇(∙,𝑡)

𝜕𝑡
 for all i in [1, 2..., n] are localized Lipschitz. 

Consider the supplementary partial differential (3) along the route on ℚ𝑛 ∗ ℚ ∗ (0, 𝑇), 
 
𝜕𝐿

𝜕𝑦
(𝑥, 𝑦, 𝑡) =  𝑇(𝐿(𝑥, 𝑦, 𝑡), 𝑡) (3) 

 

𝐿(𝑋0, 𝑌0, 𝑡0) =  𝐴0 Wherein 𝑋0is an array of random elements in some set ℚ𝑛  and 𝑌0 is an independent 

variable in some set ℚ. It derives from differentiated equation theory that in the neighbourhood N of 

(𝑋0, 𝑌0, 𝑡0) a local solution 𝐿 ∈  𝐸1(ℚ𝑛 ∗ ℚ ∗ (0, 𝑇), ℚ𝑛 )with Lipschitz limited variations in the parameter x 

occurs with likelihood 1 in (4). 

 

det (
𝜕𝐿𝑖

𝜕𝑥𝑗
(𝑥, 𝑦, 𝑡)) ≠ 0 (4) 

 

For (𝑦, 𝑧, 𝑡) ∈ 𝑁 
𝜕2𝐿

𝜕𝑦2
(𝑦, 𝑧, 𝑡) = ∑

𝜕𝑇

𝜕𝑦𝑗
(𝐿(𝑥, 𝑦, 𝑡), 𝑡)𝑇𝑗(𝐿(𝑥, 𝑦, 𝑡), 𝑡)𝑛

𝑗=1  (5) 
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From (5), on [0, T], additionally consider the path wise differential equation (in matrix form) as in (6). 

 

𝑑𝐶(𝑡) = (
𝜕𝐿 

𝜕𝑥 
𝐶(𝑡), 𝐵𝑟(𝑡), 𝑡)

−1

[𝑆(𝐿(𝐶(𝑡), 𝐵𝑟(𝑡), 𝑡), 𝑡) −
𝜕𝐿 

𝜕𝑡  
𝐶(𝑡), 𝐵𝑟(𝑡), 𝑡] 𝑑𝑡, (6) 

 

𝐶(𝑡0) = 𝐶0 (7) 

 

From (7), a maximum range, has a distinct local solution as (𝑡0
1, 𝑡0

2) ⊆ (0, 𝑡) with 𝑡0𝜖(𝑡0
1, 𝑡0

2). Here, a use of 

stochastic application of the formula to the randomized function 𝑄(𝑧, 𝑡)  =  𝐿(𝐶 (𝑡), 𝑦, 𝑡) and the Brownian 

motion Br in (8), 

 

𝐿(𝐶 (𝑡), 𝐵𝑟(𝑡), 𝑡) − 𝐿(𝐶 (𝑡0), 𝐵𝑟(𝑡0), 𝑡0) (8) 

 

=  ∑ ∫(
𝜕𝐿 

𝜕𝑥𝑗
 (𝐶(𝑠), 𝐵𝑟(𝑠), 𝑠)) 𝑑𝑌𝑗(𝑠) + ∫(

𝜕𝐿 

𝜕𝑥   
(𝐶(𝑠), 𝐵𝑟(𝑠), 𝑠))𝑑𝐵𝑟 (𝑠)

𝑡

𝑡0

𝑡

𝑡0

𝑛

𝑗=0

+ ∫(
𝜕𝐿 

𝜕𝑡   
(𝐶(𝑠), 𝐵𝑟(𝑠), 𝑠)) 𝑑𝑠

𝑡

𝑡0

  

= ∫ 𝑆(𝐿(𝐶(𝑠), 𝐵𝑟(𝑠), 𝑠), 𝑠)𝑑𝑠 + ∫ 𝑆(𝐿(𝐶(𝑠), 𝐵𝑟(𝑠), 𝑠), 𝑠)𝑑𝐵𝑟(𝑠)
𝑡

𝑡0
.

𝑡

𝑡0
 (9) 

 

Hence, 𝐴(𝑡) ≔ 𝐿(𝐶(𝑡), 𝐵𝑟(𝑡), 𝑡) proves. 

 

𝐴(𝑡) = 𝐴0 + ∫ 𝑆(𝐴(𝑠), 𝑠)𝑑𝑠 + ∫ 𝑇(𝐴(𝑠), 𝑠)𝑑𝐵𝑟(𝑠).
𝑡

𝑡0

𝑡

𝑡0
 (10) 

 

For each 𝑍 ∈ ℤ,a treat the path wise differential equation of (6) (represented as a matrix) as an approximation 

𝐵𝑟𝑍(t) of the original process 𝐵𝑟(𝑡) and the (11), 

 

𝑑𝐶𝑧(𝑡) = (
𝜕𝐿 

𝜕𝑥  
𝐶𝑧(𝑡), 𝐵𝑟𝑍(𝑡), 𝑡)

−1

[
𝑆(𝐿(𝐶𝑧(𝑡), 𝐵𝑟𝑍(𝑡), 𝑡), 𝑡)

−
𝜕𝐿 

𝜕𝑡  
𝐶𝑧(𝑡), 𝐵𝑟𝑍(𝑡), 𝑡

] 𝑑𝑡 

 

𝐶𝑧(𝑡0) =  𝐶0 (11) 

 

A distinct localized equilibrium 𝐶𝑁on the maximum period of presence (𝑡1, 𝑡2)  ⊆ (𝑡0
1, 𝑡𝑜

2). Using the 

stochastic formula, 𝑄(𝑧, 𝑡)  =  𝐿(𝐶 (𝑡), 𝑦, 𝑡) for the random function 𝑄(𝑧, 𝑡) and the procedure BN as in (12), 

 

𝐿(𝐶𝑍(𝑡), 𝐵𝑟𝑍(𝑡), 𝑡) − 𝐿(𝐶𝑍(𝑡0), 𝐵𝑟𝑍(𝑡0), 𝑡0)               (12) 

=  ∑ ∫(
𝜕𝐿 

𝜕𝑥𝑗
 (𝐶𝑍(𝑠), 𝐵𝑟𝑍(𝑠), 𝑠)) 𝑑𝐶𝑍

𝑗(𝑠) + ∫(
𝜕𝐿 

𝜕𝑥   
(𝐶𝑍(𝑠), 𝐵𝑟𝑍(𝑠), 𝑠))𝑑𝐵𝑟𝑍 (𝑠)

𝑡

𝑡0

𝑡

𝑡0

𝑛

𝑗=0

+ ∫(
𝜕𝐿 

𝜕𝑡   
(𝐶𝑍(𝑠), 𝐵𝑟𝑍(𝑠), 𝑠)) 𝑑𝑠

𝑡

𝑡0

 

= ∫ 𝑆(𝐿(𝐶𝑍(𝑠), 𝐵𝑟𝑍(𝑠), 𝑠), 𝑠)𝑑𝑠 + ∫ 𝑆(𝐿(𝐶𝑍(𝑠), 𝐵𝑟𝑍(𝑠), 𝑠), 𝑠)𝑑𝐵𝑟𝑍(𝑠)
𝑡

𝑡0
.

𝑡

𝑡0
  

 

Hence, 𝐴𝑍(𝑡) ≔ 𝐿(𝐶𝑍(𝑡), 𝐵𝑟𝑍(𝑡), 𝑡) proves in (13), 

 

𝐴𝑍(𝑡) = 𝐴0 + ∫ 𝑆(𝐴𝑍(𝑠), 𝑠)𝑑𝑠 + ∫ 𝑇(𝐴𝑍(𝑠), 𝑠)𝑑𝐵𝑟𝑍(𝑠)
𝑡

𝑡0

𝑡

𝑡0
 (13) 

 

The subsequent path wise condition arises from the proposed theorem 

 

lim
𝑍→∞

sup‖𝐶𝑍 (𝑡) − 𝐶(𝑡)‖ = 0 

 

since L follows that 

 

lim
𝑍→∞

𝑠𝑢𝑝‖𝐴𝑍 (𝑡) − 𝐴(𝑡)‖ = 0 
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This study effectively demonstrates the connection between the outcomes and approximations 

obtained from the provided stochastic differential equation and their association with the path wise 

differential equation, as referenced in sources [4]–[7]. More specifically, it showcases how the solution C for 

the path wise differential (7) can be inferred from the response A corresponding to the stochastic equation 

(1). It's crucial to emphasize that this statement is made under the assumption that equation 6 possesses a 

unique global solution, thereby guaranteeing the uniqueness of the local solution for equation 1. 

This paper establishes a clear link between the solutions and estimations of stochastic and path wise 

differential equations [24], [25]. Additionally, it underscores the significance of unique conditions, 

particularly in the context of (6) and its implications for equation 1. Let L represent the solution to (2). It is 

well established that the solution is invertible in the neighborhood N of (𝑋0, 𝑌0, 𝑡0). 

 

(𝑥, 𝑦, 𝑡) ∈ 𝑁,⟼ 𝐿((𝑥, 𝑦, 𝑡), 𝑦, 𝑡)has the opposite. 

 

K stands for the mapping that provides 

 

𝐾(𝐿(𝑥, 𝑦, 𝑡), 𝑦, 𝑡) = 𝑥 and 𝐿(𝐾(𝑥, 𝑦, 𝑡), 𝑦, 𝑡) = 𝑦 

 

In area 𝑁 around us, the matrix equivalence holds in (14). 

 
𝜕𝐾

𝜕𝑦
(𝑦, 𝑧, 𝑡) = (

𝜕𝐿

𝜕𝑥
(𝐾(𝑦, 𝑧, 𝑡), 𝑦, 𝑡))

−1

                                        (14) 

 

By using (2), the obtain (15) and (16). 

 
𝜕𝐿

𝜕𝑦
(𝑧, 𝑦, 𝑡) =  −∑

𝜕𝐾

𝜕𝑧𝑖
(𝑧, 𝑦, 𝑡)𝑇𝑖𝑛

𝑖=0 (𝑧, 𝑡)                                (15) 

 
𝜕𝐿

𝜕𝑡
(𝑧, 𝑦, 𝑡) = −∑

𝜕𝐾

𝜕𝑧𝑖
(𝑧, 𝑦, 𝑡)

𝜕𝐿𝑖

𝜕𝑡  
(𝐾(𝑧, 𝑦, 𝑡), 𝑦, 𝑡)   𝑛

𝑖=0       (16)  

 

By plugging the parameters of the 𝕊𝑛+1-valued procedure (𝐴(𝑡), 𝐵𝑟(𝑡)) into the stochastic equation for an 

expression K (z, y, t), get (17), 

 

𝐾(𝐴(𝑡), 𝐵𝑟(𝑡), 𝑡) − 𝐾(𝐴(𝑡0), 𝐵𝑟(𝑡0), 𝑡0) (17) 

= ∑ ∫ (
𝜕𝐾 

𝜕𝑧𝑗
 (𝐴(𝑠), 𝐵𝑟(𝑠), 𝑠)) 𝑑𝑍𝑗(𝑠) + ∫ (

𝜕𝐾

𝜕𝑧   
(𝐴(𝑠), 𝐵𝑟(𝑠), 𝑠)) 𝑑𝐵𝑟 (𝑠)

𝑡

𝑡0

𝑡

𝑡0

𝑛
𝑗=0 +

∫ (
𝜕𝐾 

𝜕𝑡   
(𝐴(𝑠), 𝐵𝑟(𝑠), 𝑠)) 𝑑𝑠

𝑡

𝑡0
  

=  ∑ ∫(
𝜕𝐾  

𝜕𝑧𝑗
 (𝐴(𝑠), 𝐵𝑟(𝑠), 𝑠))𝐹(𝐴(𝑠), 𝑠)𝑑𝑠

𝑡

𝑡0

𝑛

𝑗=0

−∑ ∫
𝜕𝐾  

𝜕𝑧𝑗
 (𝐴(𝑠), 𝐵𝑟(𝑠), 𝑡)

𝑡

𝑡0

𝑛

𝑗=0

𝜕𝐿𝑗

𝜕𝑡
(𝐾(𝐴(𝑠), 𝐵𝑟(𝑠), 𝑠), 𝐵𝑟(𝑠), 𝑠)𝑑𝑠 

 

But 𝐴(𝑠) = 𝐿(𝐾(𝐴(𝑠), 𝐵𝑟(𝑠), 𝑠), 𝐵𝑟(𝑠), 𝑠) and (14) holds, hence 

 

𝐶(𝑡) ≔ 𝐾(𝐴(𝑡), 𝐵𝑟(𝑡), 𝑡) (18) 

 

satisfies the path-wise (6) on an individual scale. Similarly, it may establish that 𝐴𝑍(𝑡) ≔ 𝐿(𝐶𝑍(𝑡), 𝐵𝑟𝑍(𝑡), 𝑡) 
satisfies the path-wise (11) on a particular scale. Let Br approximate a proportionate Brownian motion Bz. 

Let 𝑆, 𝑇: 𝕊𝑛 ∗ (0, 𝑡) be predetermined in (19) and (20), 

 

𝐴(𝑡) = 𝐴0 + ∫ 𝑆(𝐴(𝑠), 𝑠)𝑑𝑠 + ∫ 𝑇(𝐴(𝑠), 𝑠)𝑑𝐵𝑟(𝑠).
𝑡

𝑡0

𝑡

𝑡0
   (19) 

 

𝐴𝑍(𝑡) = 𝐴0 + ∫ 𝑆(𝐴𝑍(𝑠), 𝑠)𝑑𝑠 + ∫ 𝑇(𝐴𝑍(𝑠), 𝑠)𝑑𝐵𝑟𝑍(𝑠).
𝑡

𝑡0

𝑡

𝑡0
 (20) 

where 𝑍 ∈ ℤ, accepts, with high probability, a single local solution on the same interval (t1, t2) (where t0 is 

outside of Z but still part of the interval). In addition, the following approximate result has been obtained in 

(21). 
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𝐴𝑝𝑝𝑟𝑜𝑥. ( lim
𝑍→∞

sup‖𝐴𝑍
 (𝑡) − 𝐴(𝑡)‖ = 0) = 1 (21) 

 

Problem 2 Find the nearer location from the source point where the data stream W begins and 

define optimal path for the data stream W moves from one point to another point. 

Proof (a) The anticipated quantity of near-optimal locations for any b is constrained in (22), 

 

ℚ[𝒩𝑏(𝜂 )] ≤ 6𝜂
22𝑏                                        (22) 

 

It fixes the value of 𝜂𝑏 ≜ 𝜂𝜀 (
1

2𝑏
). The speed of growth of 𝒩𝑏(𝜂𝑏), the quantity of 𝜂𝑏-near-optimal locations 

in [0, 1] of the form 𝑘/2𝑏, is measured by the near-optimality dimension in dimension one with the pseudo-

distance𝑙(𝑚, 𝑛) = 𝜂𝜀(|𝑛 − 𝑚|).It shows that, in general, this quantity grows at a constant rate regarding b. 

This implies that there exists a metric where the Brownian is Lipschitz with likelihood at least 1 − 𝜀 and has 

a near-optimality aspect = 0 with 𝐸 =  𝒪(𝑙𝑜𝑔(1/𝜀)). 
The 𝒪(𝑙𝑜𝑔(1/𝜀)) term, originating from the standard DOO error for deterministic function 

optimisation, and a different 𝒪(𝑙𝑜𝑔(1/𝜀)) term, originating from the need to adjust our pseudo-distance 

ℒ 𝑡𝑜 𝜀 such that the Brownian is ℒ -Lipschitz with likelihood 1- 𝜀, together represent the finalised study 

difficulty bound. Combining these two bounds yields an upper limit on sample complexity of 𝒪(𝑙𝑜𝑔2(1/𝜀)).  
Proof (b) A Brownian motion whose optimum O is reached for the initial time at the location 

described as is denoted by U and the Brownian meander 𝑇0
+can be defined as in (23),  

 

𝑇0
+ ≜

𝑂−𝑊(𝑡1−𝑡.𝑡1)

√𝑡1
 (23) 

 

𝑇1
+ ≜

𝑂−𝑊(𝑡 1+𝑡(1−𝑡1))

√1−𝑡1
 (24) 

 

Then the theorem 1 declares that 𝑇+ ≦ 𝑇0
+ ≦ 𝑇1

+ and t1 changes regardless of both 𝑇0
+ 𝑎𝑛𝑑 𝑇1

+. 
For each positive integer, it establishes a maximum constraint on the predicted amount of 𝜂-near-

optimal positions b>0 and any values of 𝜂 > 0. 
 

ℚ[𝒩𝑏(𝜂 )] =  ℚ [∑ 1 {𝑊 (
𝑎

2𝑏
) > 𝑂 − 𝜂}2𝑏

𝑎=0 ] =  ∑ ℚ [1 {𝑊 (
𝑎

2𝑏
) > 𝑂 − 𝜂}]2𝑏

𝑎=0   

= ∑ ℚ [1 {{𝑊 (
𝑎

2𝑏
) > 𝑂 − 𝜂 ∩

𝑎

2𝑏
≤ 𝑡1} ∪ {𝑊 (

𝑎

2𝑏
) > 𝑂 − 𝜂 ∩

𝑎

2𝑏
> 𝑡1}}]2𝑏

𝑎=0   

= ∑ℚ[1 {𝑇0
+ (1 −

𝑘

𝑡12𝑏
) <

𝜂

√𝑡1
∩
𝑎

2𝑏
≤ 𝑡1}]

2𝑏

𝑎=0

+∑ℚ[1{𝑇1
+(

𝑎
2𝑏
– 𝑡1

1 − 𝑡1
) <

𝜂

√1 − 𝑡1
∩
𝑎

2𝑏
> 𝑡1}]

2𝑏

𝑎=0

 

 

Since t1 changes regardless of 𝑇0
+ 𝑎𝑛𝑑 𝑇1

+, utilizing the above equation with C= (𝑇0
+, 𝑇1

+), D=t1 and function 

in (25), 

 

𝑓𝑢𝑛: (𝑐0, 𝑐1), 𝑑 → ∑ ([1 {𝑐0
 (1 −

𝑘

𝑡12𝑏
) <

𝜂

√𝑑
∩

𝑎

2𝑏
≤ 𝑑}] +  1 {𝑐1

 (

𝑎

2𝑏
–𝑡1

1−𝑑
) <

𝜂

√1−𝑑
∩

𝑎

2𝑏
> 𝑑})2𝑏

𝑎=0 (25) 

 

it has sufficient evidence to assert that. 

 

ℚ[𝒩𝑏(𝜂 )] =  ℚ[𝑓(𝐶, 𝐷)] ≤ supℚ[𝑓(𝐶, 𝑣)] 

≤ sup {∑ℚ[1 {𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
∩
𝑎

2𝑏
≤ 𝑣}]

2𝑏

𝑎=0

} + sup {∑ℚ[1{𝑇1
+ (

𝑎
2𝑏
– 𝑣

1 − 𝑣
) <

𝜂

√1 − 𝑣
∩
𝑎

2𝑏
> 𝑣}]

2𝑏

𝑎=0

} 

= sup {∑ ℝ{𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
}

⌊𝑣2
𝑏
⌋

𝑎=0 } + sup {∑ ℝ{𝑇1
+ (

𝑎

2𝑏
–𝑣

1−𝑣
) <

𝜂

√1−𝑣
}2𝑏

𝑎=⌊𝑣2
𝑏
⌋

}  

= 2 sup {∑ ℝ{𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
}

⌊𝑣2
𝑏
⌋

𝑎=0 }  

 = 2 sup{𝛽1 + 𝛽2 + 𝛽3 + 𝛽4}                         (26) 

 

where (26) is expanded as 
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𝛽1 = ∑ ℝ [𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
]

⌊2𝑏𝜂2⌋

𝑎=0 ,  𝛽2 = ∑ ℝ [𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
]

⌊
𝑣2𝑏

2
⌋

𝑎=⌈2𝑏𝜂2⌉
,  

 

𝛽3 = ∑ ℝ [𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
],   

⌊𝑣2𝑏⌋−⌈2𝑏𝜂2⌉

𝑎=⌈
𝑣2𝑏

2
⌉

𝛽4 = ∑ ℝ [𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
]

⌊𝑣2𝑏⌋

𝑎=⌊𝑣2𝑏⌋−⌈2𝑏𝜂2⌉
 .  

 

Given that 1 is the highest possible likelihood, it may simply place a limit on 𝛽1𝑎𝑛𝑑 𝛽4 as 2𝑏𝜂2, to 

obtain that 𝛽1 + 𝛽4 ≤ 2(2
𝑏𝜂2). By accumulating across the Brownian meander distribution parameters, it can 

now place upper and lower bounds on the rest of the possibilities occurring in the aforementioned formula. 

 

ℝ[𝑇0
+(𝑡) < 𝑐] = 2√2𝜋∫

𝑑 exp (−
𝑑2

2𝑡
)

𝑡√𝑡 ∗ 2𝜋

𝑐

0

∫
exp (−

𝑑2

2(1 − 𝑡)
)

𝑡√(1 − 𝑡) ∗ 2𝜋
𝑑𝑑 𝑑𝑐

𝑑

0

≤
2

𝑡√(1 − 𝑡)(𝑡. 2𝜋)
∫ 𝑑2
𝑐

0

exp (−
𝑑2

2𝑡
) 𝑑𝑑

≤
2𝑐3

3𝑡√(1 − 𝑡)(𝑡. 2𝜋)
≤

2𝑐3

3𝑡(1 − 𝑡)√(1 − 𝑡)(𝑡. 2𝜋)
 =

2

3√2𝜋
(

𝑐

√𝑡(1 − 𝑡)
)

3

 

 

The limit is then applied to the sum of 𝛽2𝑎𝑛𝑑 𝛽3. 

 

 𝛽2 + 𝛽3 = ∑ ℝ [𝑇0
+ (1 −

𝑘

𝑣2𝑏
) <

𝜂

√𝑣
]

⌊
𝑣2𝑏

2
⌋

𝑎=⌈2𝑏𝜂2⌉
+ ∑ ℝ [𝑇0

+ (1 −
𝑘

𝑣2𝑏
) <

𝜂

√𝑣
]

⌊𝑣2𝑏⌋−⌈2𝑏𝜂2⌉

𝑎=⌈
𝑣2𝑏

2
⌉

  

≤ ∑
2

3√2𝜋

(

 
 
 

𝜂

√𝑣

√(1 −
𝑎
𝑣2𝑏

√
𝑎
𝑣2𝑏

)
)

 
 
 

3

+

⌊
𝑣2𝑏

2
⌋

𝑎=⌈2𝑏𝜂2⌉

∑
2

3√2𝜋

(

 
 
 

𝜂

√𝑣

√(1 −
𝑎
𝑣2𝑏

√
𝑎
𝑣2𝑏

)
)

 
 
 

3

⌊𝑣2𝑏⌋−⌈2𝑏𝜂2⌉

𝑎=⌈
𝑣2𝑏

2
⌉

 

  

≤ ∑
1

6√𝜋

(

 
 
 

𝜂

√𝑣

√√
𝑎
𝑣2𝑏)

 
 
 

3

+

⌊
𝑣2𝑏

2
⌋

𝑎=⌈2𝑏𝜂2⌉

∑
1

6√𝜋
(

 

𝜂

√𝑣

√1 −
𝑎
𝑣2𝑏)

 

3

≤

⌊𝑣2𝑏⌋−⌈2𝑏𝜂2⌉

𝑎=⌈
𝑣2𝑏

2
⌉

 

  

∑
1

6√𝜋

(

 
 
 

𝜂

√𝑣

√√
𝑎
𝑣2𝑏)

 
 
 

3

+

⌊
𝑣2𝑏

2
⌋

𝑎=⌈2𝑏𝜂2⌉

∑
1

6√𝜋
(

 

𝜂

√𝑣

√
⌊2𝑏𝑣⌋
𝑣2𝑏

+
𝑎
𝑣2𝑏)

 

3⌊𝑣2𝑏⌋−⌈
2𝑏𝑣
2
⌉

𝑎=⌈2𝑏𝜂2⌉

 

  
 

Swapping out the indexing as 𝑔 =  −𝑔′ + ⌊𝑣2𝑏⌋, discover the following, 

 

 𝛽2 + 𝛽3 ≤
(2𝑏𝜂2)3/2

6√𝜋

(

 
 

∑
1

𝑔3/2

⌊
𝑣2𝑏

2
⌋

𝑎=⌈2𝑏𝜂2⌉

+ ∑
1

𝑔3/2

⌊𝑣2𝑏⌋−⌈
2𝑏𝑣
2
⌉

𝑎=⌈2𝑏𝜂2⌉

)

 
 

 

  

≤
(2𝑏𝜂2)

3
2

3√𝜋
∑

1

𝑔
3
2

∝

𝑎=⌈2𝑏𝜂2⌉

 

≤
(2𝑏𝜂2)

3
2

3√𝜋

3

√⌈2𝑏𝜂2⌉
 ≤  

1

√𝜋
2𝑏𝜂2  ≤ 2𝑏𝜂2, 

  
where it was utilized for anything in the previous row 𝑔0 > 0, 
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∑
1

𝑔
3
2

∝

𝑔=𝑔0

≤
1

𝑔0
3
2

+ ∑ ∫
1

𝑣
3
2

 𝑑𝑣 =
𝑔

𝑔−1

∝

𝑔=𝑔0+1

1

𝑔0
3
2

+∫
1

𝑣
3
2

 𝑑𝑣 =
∝

𝑔0

1

𝑔0
3
2

+
2

√𝑔0
≤

3

√𝑔0
 

 

At long last, the obtained (27), 

 

∀𝑣, 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 ≤ 32
𝑏𝜂2                       (27) 

 

Hence, ℚ[𝒩𝑏(𝜂 )] ≤ 6𝜂
22𝑏 

 

 

3. RESULTS AND DISCUSSION 

In the MATLAB implementation, a series of numerical tests were conducted to assess the 

performance of a technique for evaluating the movement cost of data streams. This process involved 

assigning specific cost values to the movement of data streams. One key parameter, denoted as 𝜆̂ , was set to 

0, simplifying the calculation by negating the contribution of λ to the cost function. The system utilized a 

probability distribution where π = 0 and followed a standard normal distribution of n (0,1), which was 

essential for detecting data stream movements within a defined range. The experiment aimed to evaluate the 

effectiveness of the proposed technique by simulating a series of data streams and measuring the associated 

movement costs. However, a notable limitation arises when λ is set to 0, as it becomes impossible to 

calculate the optimal movement cost under such conditions. Despite this, the experiment proceeded by 

generating target data stream values with a probability of 0.1 and following a normal distribution of mean 0 

and variance 1, n (0,1). This probabilistic generation allowed for a controlled yet basic environment in which 

the technique could be evaluated. For the simulation, the standard data stream was modeled using a 

distribution with a mean of 0 and a higher variance of 1.7, allowing the system to compare the performance 

between the generated target data stream and the standard one. This difference in distribution enabled the 

method to assess how well it could detect and evaluate movements across varied data patterns. According to 

the results, the proposed method produced a 15% probability for detecting the values 𝑊0  and 𝑊1 , marking 

these as key points of interest within the data stream's movement. 

Despite the insights gained, there were observable shortcomings. Specifically, the movement cost 

for 𝑊0  reached its maximum, along with its associated error rate. This indicates that while the method may 

offer some benefits, such as detecting movements in data streams, its efforts to provide optimal results under 

certain conditions, particularly when λ is set to 0. To enhance the experiment, it would be beneficial to 

introduce a more complex scenario with varied parameter values and conditions to fully assess the 

technique's effectiveness and limitations. Figure 2 presents a comparative visualization of three distinct data 

samples, labeled as sample 1, sample 2, and sample 3, each delineated by a unique color—black, red, and 

blue, respectively. Sample 1 exhibits a small KL divergence 𝐶(𝑊0 ||𝑊1) and 𝐶(𝑊1||𝑊0), indicating a 

predicted overshoot approaching zero. Sample 2 has a small error proportion where 𝑃(𝑠𝑛 = 𝑠0), and for a 

larger proportion, it shows a large value, denoted by (1-β)/α, which leads to data stream termination. In the 

case of sample 3, which has a large value, the primary goal of the analysis is to reduce the number of 

algorithm changes before correctly identifying the target data stream.  

 

 

 
 

Figure 2. Samples with KL divergences 
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All three samples follow a similar trend with their own peculiar characteristics. Sample 1 (black) 

exhibits a steady, almost linear decline until it flattens out towards the end of the domain. Sample 2 (red) is 

characterized by a significant oscillation before sharply dropping, indicating a variable response or 

measurement before reaching a similar level as sample 1 towards the end. Sample 3 (blue) mirrors the 

oscillation seen in sample 2, but with a less pronounced initial drop and a deeper final descent. This 

comparison allows for an easy assessment of the similarities and differences in behavior, or responses 

captured by the three samples across the range of 'n' values. Figure 3 presents a time-series linear 

approximation of Brownian motion, reflecting data stream flow dynamics within a unit interval. The 

visualization begins at zero and rapidly reaches a maximum at T=0.2, after which it moderately recedes to a 

plateau of 0.8, sustained until T=0.6. Subsequently, the series undergoes a pronounced drop to 0.6, stabilizes 

momentarily, then descends precipitously to 0.2, culminating in a final downturn back to zero as T 

approaches 1. This portrayal suggests a piecewise linear process with distinct, sustained levels before 

transitioning, indicative of a system exhibiting stepwise stability before entering new phases. Figures 4 to 6 

offer insights into the behavior of data stream movements and their relationship with the parameter λ. 

Figure 4 demonstrates a minimum Brownian path with characteristic rise-and-fall patterns over 

time, displaying the inherent randomness of the motion through peaks and troughs between T=0 and T=1. In 

contrast, Figure 5 shows a decreasing trend in the number of movements starting from 40 at λ=0 and 

diminishing as λ increases, suggesting an inverse relationship. Meanwhile, Figure 6 contrasts this by 

depicting a direct, linear correlation between λ and the total number of observations, which increases 

proportionally from 110 to 145 as λ grows from 0 to 5. This comparison highlights the significance in which 

λ values change data stream behavior, with the rise in observations possibly pointing to increased data 

collection or detection capabilities as λ grows, despite the decrease in movement frequency. Together, these 

figures aid in identifying anomalies between different data stream paths by evaluating the movement cost 

over time. 

 

 

 
 

Figure 3. Stochastic differential equation with linear approximation for Brownian motion 

 

 

 
 

Figure 4. Brownian path with time 
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Figure 5. Data stream movements based on observations 

 

 

 
 

Figure 6. Total of number of observation w.r.t λ value 

 

 

4. CONCLUSION 

Anomaly detection is achieved by repositioning a data stream from one location to another, with 

movement costs evaluated through Brownian motion. The process involves applying a mathematical model 

based on the stochastic differential equation of Brownian motion. By optimizing the Brownian motion over 

time, the nearest position to the anomaly is identified. The model developed and validated in this work 

effectively approximates the minimum path required to detect anomalies. Its strength lies in its ability to 

accomplish the task within a relatively short crossing time, while accurately identifying anomalies through 

the observation of movement costs. This approach proves to be a valuable tool for efficiently detecting 

anomalies, offering both speed and accuracy in the process. 
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