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 One of the significant challenges in model-based fault detection is achieving 

robustness against disturbances and model uncertainties while ensuring 

sensitivity to faults. This study proposes an optimized approach for 

designing fault detection filters for discrete-time linear systems with norm-

bounded model uncertainties. The design leverages the H-/H∞ optimization 

framework and is expressed through linear matrix inequality constraints. The 

filter is designed to produce a residual signal that balances two opposing 

objectives: minimizing the impact of disturbances and model uncertainties 

while maximizing fault sensitivity. The effectiveness of the proposed 

method is demonstrated through simulations involving sensor and actuator 

fault detection in the well-known three-tank system. Simulation results 

illustrate the method's ability to maintain robustness against disturbances and 

uncertainties while effectively detecting faults in the system. 
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1. INTRODUCTION 

Fault detection is essential in robotics and automation systems to ensure reliability, safety, 

environmental sustainability, and achieve desired performance levels [1]. It identifies issues early, minimizes 

downtime, prevents accidents, and maintains product quality. In the industry, it increases productivity, 

ensures operational continuity, and contributes to sustainability by preventing waste and inefficiencies. 

Robotics and automation systems frequently interact with humans or hazardous materials. Detecting faults 

early prevents accidents, protects workers, and minimizes risks. As industries adopt smart manufacturing, 

fault detection becomes integral to real-time monitoring, self-diagnosis, and autonomous decision-making, 

key principles of Industry 4.0. Meeting these requirements often increases both system complexity and cost. 

Faults or abnormal behaviors in such complex systems can degrade performance and potentially lead to 

hazardous situations, posing risks to human safety and financial loss. Thus, early detection and identification 

of abnormal system behaviors are essential to prevent these adverse outcomes [2]–[5]. Over the past two 

decades, numerous advancements in resilient fault detection (FD) system design have been made, broadly 

categorized into model-based and model-free approaches [6]–[9]. Among model-based methods, observer-

based techniques have gained popularity due to their simpler structure and relatively lower design complexity 

[10], [11]. These approaches utilize a fault detection filter (FDF) to generate a residual, defined as the 

difference between the system's measured outputs and the estimated outputs derived from its model. By 

comparing the residual against a predefined threshold, the occurrence of faults can be identified [12], [13]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The presence of external disturbances and model uncertainties complicates the residual generation 

process, often producing non-zero residuals even in fault-free scenarios. Ideally, a fault-free system should 

yield a zero-value residual, while faulty conditions should result in a non-zero residual. However, 

disturbances and uncertainties may lead to false alarms, undermining the FD process. Therefore, robust 

residual generation is critical for effective FD [14]–[17]. Addressing disturbances and model uncertainty in 

model-based FD systems presents a significant challenge. To this end, the H∞ norm optimization technique 

has been employed to enhance residual robustness against disturbances [18]. Conversely, the H- index, which 

reflects the minimum fault sensitivity of the residual, has been used to design fault-sensitive FDFs, enhancing 

their sensitivity to faults [19]–[21]. While H∞ optimization ensures robustness against disturbances, it also 

reduces fault sensitivity, and similarly, H- index-based FDFs, although fault-sensitive, may amplify the 

influence of disturbances [22]. Balancing these trade-offs is key to achieving optimal FD performance. 

An optimal FD system aims to minimize the impact of unknown disturbances (minimizing the H∞ 

norm) while maximizing fault sensitivity (maximizing the H- index), framing the design as a multi-objective 

optimization problem. A literature review indicates that most FD methods address robustness and sensitivity 

issues for continuous-time or discrete-time linear systems with external disturbances only [23]–[26]. 

However, model uncertainties in system matrices can introduce biases in the residual, necessitating careful 

handling to ensure robust residual generation. For uncertain continuous-time linear systems, an observer-

based FD system was proposed in [27], utilizing iterative linear matrix inequalities (LMIs) to generate robust 

residuals. This approach provided an optimal balance between robustness to disturbances and fault sensitivity 

for the multi-objective optimization problem. However, the method's complexity increased due to the need to 

first derive a theoretically optimal solution and subsequently design the observer. In contrast, an H∞ based 

FD residual generator for linear systems was developed in [28], demonstrating robustness against 

disturbances and model uncertainty. Nevertheless, this approach did not address fault sensitivity issues. For 

successful FD, it is crucial to simultaneously consider fault sensitivity and robustness. 

Motivated by the scarcity of solutions addressing the multi-objective optimization problem for 

discrete-time linear systems with norm-bounded model uncertainties, this study seeks to develop an optimal 

observer-based residual generator. The proposed method ensures observer stability while achieving 

robustness to disturbances, resilience against model uncertainties, and enhanced fault sensitivity. The 

existence of the proposed observer is established through sufficient conditions expressed as LMIs. The 

results obtained for the observer-based fault detection filter were illustrated through a simulation analysis of a 

three-tank system. The proposed approach can be applied to any discrete-time linear system with norm-

bounded model uncertainties and disturbances. The key contributions of this research are outlined as follows: 

a. Development of an H∞ observer-based filter to minimize the H∞ norm of Grd, the transfer function matrix 

representing the disturbance-to-residual relationship, within the linear matrix inequality (LMI) 

framework. 

b. Development of an H- observer-based filter aimed at maximizing the H- norm of Grf, the transfer function 

matrix from fault to residual, also using the LMI framework. 

c. Design of an observer-based filter utilizing the H-/H∞ optimization method, which concurrently 

minimizes the H∞ norm while maximizing the H- norm. This approach seeks to create an optimal 

observer-based residual generator that satisfies both H∞ and H- performance criteria. 

d. After constructing the proposed observer, the l2 norm is applied to assess and compare the generated 

residual against a defined threshold to detect faults. 

The structure of the paper is as follows. Section 2 introduces the problem formulation. Section 3 

details the core contribution of the research, including the derivation of the filter gain matrix. Section 4 

provides simulation results showcasing the filter's effectiveness, particularly in detecting sensor and actuator 

faults within a three-tank system. Finally, section 5 presents concluding remarks. 

 

 

2. PROBLEM FORMULATION 

The discrete-time linear system in (1) is adopted to formulate the problem being solved in this paper. 
 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐸𝑓𝑓(𝑘) + 𝐸𝑑𝑑(𝑘) + (𝐵 + 𝛥𝐵)𝑢(𝑘) + 𝛥𝐴𝑥(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐹𝑓𝑓(𝑘) + 𝐹𝑑𝑑(𝑘) + (𝐷 + 𝛥𝐷)𝑢(𝑘) + 𝛥𝐶𝑥(𝑘)  (1) 

 

Let x(k) ∈ Rn represent the state vector, u(k) ∈ Rp the control input vector, and y(k) ∈ Rm the measurement 

vector. The disturbance vector d(k) is l2 norm bounded, such that ∥d(k)∥2 ≤ δd, while f(k) is the l2 norm 

bounded fault vector to be detected. The matrices Ed, Fd, Ef, and Ff define the locations where the disturbance 

and fault vectors influence the system dynamics, respectively. The matrices A, B, C, and D are the nominal 

system matrices with compatible dimensions, and ΔA, ΔB, ΔC, and ΔD represent norm-bounded model 

uncertainties, given as (2). 
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[
∆𝐴 ∆𝐵
∆𝐶 ∆𝐷

] = [
𝐻1∑𝐺1 𝐻1∑𝐺2

𝐻2∑𝐺1 𝐻2∑𝐺2
]  (2) 

 

where ∑ is an unknown scalar constant holds the condition, i.e., ∑𝑇∑ ≤ 𝐼. The assumptions listed below are 

used consistently throughout this work [18]: 

A1: System (1) is observable; A2: [
𝐴 − 𝑒𝑗𝜃𝐼 𝐸𝑑

𝐶 𝐹𝑑
] has full row rank, while 𝜃 ∈ [0,2𝜋]; A3: (𝐴 + 𝛥𝐴) is 

stable 

As initially introduced, the model-based FD system comprises two subsystems: a residual generator 

and a residual evaluator with thresholding and decision logic. An observer-based FD filter is used for 

generating the residual, which is expressed as (3): 

 

𝑥̂(𝑘 + 1) = 𝐴𝑥̂(𝑘) + 𝐿(𝑦(𝑘) − 𝑦̂(𝑘)) + 𝐵𝑢(𝑘) 

  𝑟(𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘)    (3) 

 

(𝑦̂(𝑘) = 𝐶𝑥̂(𝑘) + 𝐷𝑢(𝑘)) ∈ 𝑅𝑚 and 𝑥̂(𝑘) ∈ 𝑅𝑛 represent the estimated output and the state estimation 

vectors, respectively. The residual signal is denoted by 𝑟(𝑘), and the filter gain 𝐿 serves as the design 

parameter for the proposed FD filter. The dynamics of the filter are described by the state estimation error 

vector, 𝑒(𝑘) = 𝑥(𝑘) − 𝑥̂(𝑘). The following equations represent the error dynamics and the residual: 
 

𝑒(𝑘 + 1) = (𝐴 − 𝐿𝐶)𝑒(𝑘) + (𝐸𝑓 − 𝐿𝐹𝑓) 𝑓(𝑘) + (𝐸𝑑 − 𝐿𝐹𝑑)𝑑(𝑘) + (𝛥𝐴 − 𝐿𝛥𝐶)𝑥(𝑘) + (𝛥𝐵 − 𝐿𝛥𝐷)𝑢(𝑘) (4) 
 

𝑟(𝑘) = 𝐶𝑒(𝑘) + 𝐹𝑓𝑓(𝑘) + 𝐹𝑑𝑑(𝑘) + 𝛥𝐶𝑥(𝑘) + 𝛥𝐷𝑢(𝑘)        (5) 

 

Undesired behavior in FD theory is caused by model uncertainty and disturbance, which influences 

the estimation process and makes the residual sensitive to faults, control input, and the system's state [29]. 

For the sake of simplicity, the dynamics of (4) are governed by two new vectors: 
 

𝑥̅(𝑘) = [
𝑒(𝑘)
𝑥(𝑘)

] and 𝑢̅(𝑘) = [
𝑢(𝑘)
𝑑(𝑘)

]  

 

Then, an augmented system is represented as (6), (7): 
 

𝑥̅(𝑘 + 1) = 𝐴̅𝑥̅(𝑘) + 𝐵̅𝑢̅(𝑘) + 𝐸̅𝑓𝑓(𝑘)  (6) 

 

𝑟(𝑘) = 𝐶̅𝑥̅(𝑘) + 𝐷̅𝑢̅(𝑘) + 𝐹𝑓𝑓(𝑘)  (7) 

 

where  

 

𝐴̅ = [
𝐴 − 𝐿𝐶 𝛥𝐴 − 𝐿𝛥𝐶

0 𝐴 + 𝛥𝐴
]; 𝐵̅ = [

𝛥𝐵 − 𝐿𝛥𝐷 𝐸𝑑 − 𝐿𝐹𝑑

𝐵 + 𝛥𝐵 𝐸𝑑
]; 𝐶̅ = [𝐶 𝛥𝐶]; 𝐷̅ = [𝛥𝐷 𝐹𝑑]; 𝐸̅𝑓 = [

𝐸𝑓 − 𝐿𝐹𝑓

𝐸𝑓
] 

 

The residual signal in (7) can be represented in the frequency domain. 

 

𝑟(𝑧) = 𝐺𝑟𝑢(𝑧)𝑢̅(𝑧) + 𝐺𝑟𝑓(𝑧)𝑓(𝑧)  (8) 

 

where 𝐺𝑟𝑢(𝑧) = 𝐶̅(𝑧𝐼 − 𝐴̅ + 𝐿𝐶̅)−1(𝐵̅ − 𝐿𝐷̅) + 𝐷̅ and 𝐺𝑟𝑓(𝑧) = 𝐶̅(𝑧𝐼 − 𝐴̅ + 𝐿𝐶̅)−1(𝐸̅𝑓 − 𝐿𝐹𝑓) + 𝐹𝑓 

𝐺𝑟𝑢(𝑧) and 𝐺𝑟𝑓(𝑧) are the transfer function matrices from 𝑢̅(𝑘) and 𝑓(𝑘) to 𝑟(𝑘), respectively. The influence 

of disturbance and model uncertainty on the residual is measured by 𝐻∞ norm and is represented as (9): 
 

𝐻∞ = ‖𝐺𝑟𝑢(𝑧)‖∞ =
sup

𝜃 ∈ [0,2𝜋]𝜎
(𝐺𝑟𝑢(𝑧)) =

sup

𝑢̅(𝑘) ∈ 𝑙2, ‖𝑢̅‖2 ≠ 0 {
∑ 𝑟𝑇(𝑘)𝑟(𝑘)∞

𝑘=0

∑ 𝑢𝑇(𝑘)𝑢(𝑘)∞
𝑘=0

}  (9) 

 

Robustness against disturbance and model uncertainty is expressed by (10) [30]. 
 

‖𝐺𝑟𝑢(𝑧)‖∞ < 𝛾;  𝛾 > 0  (10) 

 

𝛾 represents the maximum effect of model uncertainty and disturbance on the residual, and the value of  𝛾 

should be smaller. Likewise, the effect of fault on the residual is characterized by 𝐻−index [31]. 
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𝐻− = ‖𝐺𝑟𝑓(𝑒
𝑗𝜃)‖

−
=

inf
𝜃 ∈ [0,2𝜋]

𝜎[𝐺𝑟𝑓(𝑒
𝑗𝜃)]  (11) 

 

The residual's sensitivity to the fault is illustrated by (12). 

 

‖𝐺𝑟𝑓(𝑒
𝑗𝜃)‖

−
> 𝛽   ; 𝛽 > 0  (12) 

 

𝛽 denotes the worst-case fault sensitivity measurement of the residual signal. A larger value of 𝛽 shows that 

residual is more sensitive to a fault. 

The solution of an optimal FD filter design based on 
𝐻−

𝐻∞
 optimization for the nominal system 

(system uncertainty, 𝛥𝑠 = 0) can be easily obtained by solving a single Riccati equation [18]. Unfortunately, 

the Riccati equation cannot solve 
𝐻−

𝐻∞
 optimization problems for dynamic systems with model uncertainties 

(𝛥𝑠 ≠ 0). The multi-objective optimization problem for linear systems subject to disturbance and model 

uncertainty is addressed in this study using the LMI technique. Using 
𝐻−

𝐻∞
 optimization, the objective is to 

design an optimal FD filter by determining the filter gain matrix 𝐿 in a way that (a) makes the augmented 

system (6) asymptotically stable, (b) makes the residual (7) robust to disturbance and model uncertainties in 

the 𝐻∞ sense, and (c) makes the residual (7) fault-sensitive. 

 

 

3. SYNTHESIS OF OPTIMAL FD FILTER 

In this section, an optimal FD filter is designed for system (1) in the LMI framework. First, separate 

solutions of 𝐻∞ and 𝐻−index conditions in (10) and (12) are obtained, followed by an algorithm for solving 

mixed 
𝐻−

𝐻∞
 optimization problem. For onward discussion, the following lemmas help to derive the main 

results. 

Lemma 1 [18]: The observer error dynamics (4) is asymptotically stable and meets the condition (10) for the 

linear system (1) with zero model uncertainty in the system matrices if the following LMI is true for (𝑓(𝑘) =
0) then there exists a scalar 𝛾 ≥ 𝛾min, matrix 𝐿 and 𝑃 = 𝑃𝑇 > 0. 

 

[
 
 
 

−𝑃 𝑃(𝐴 − 𝐿𝐶) 𝑃(𝐸𝑑 − 𝐿𝐹𝑑) 0

(𝐴 − 𝐿𝐶)𝑇𝑃 −𝑃 0 𝐶𝑇

(𝐸𝑑 − 𝐿𝐹𝑑)𝑇𝑃 0 −𝛾𝐼 𝐹𝑑
𝑇

0 𝐶 𝐹𝑑 −𝛾𝐼]
 
 
 

< 0 

 

The above lemma provides the necessary and sufficient condition for (10) and ensures that ‖𝐺𝑟𝑢(𝑧)‖∞ < 𝛾. 

Lemma 2 [18]: The observer error dynamics (4) is asymptotically stable and meets the condition (12) for the 

linear system (1) with zero model uncertainty in the system matrices if the following LMI is true for (𝑢̅(𝑘) =
0), then there exists a scalar 𝛽 ≤ 𝛽max, matrix 𝐿 and 𝑃 = 𝑃𝑇 > 0. 

 

[
𝑃 − (𝐴 − 𝐿𝐶)𝑇𝑃(𝐴 − 𝐿𝐶) − 𝐶𝑇𝐶 𝐶𝑇𝐹𝑓 + (𝐴 − 𝐿𝐶)𝑇𝑃(𝐸𝑓 − 𝐿𝐹𝑓)

(𝐸𝑓 − 𝐿𝐹𝑓)
𝑇𝑃(𝐴 − 𝐿𝐶) + 𝐹𝑓

𝑇𝐶 𝛽2𝐼 − 𝐹𝑓
𝑇
𝐹𝑓 − (𝐸𝑓 − 𝐿𝐹𝑓)

𝑇𝑃(𝐸𝑓 − 𝐿𝐹𝑓)
] > 0 

 

The above lemma guarantees that the minimum fault sensitivity of the residual is greater than a constant, i.e., 

‖𝐺𝑟𝑓(𝑒
𝑗𝜃)‖

−
> 𝛽.  

Lemma 3 [30]: If there exists a symmetric positive definite matrix 𝑃, and an arbitrary positive scalar 𝜀 >  0 

that satisfy (𝜀𝐼 − 𝐻𝑇𝑃𝐻)−1 > 0 then 

 

(𝑊 + 𝐻∑𝐺)𝑇𝑃(𝑊 + 𝐻∑𝐺) ≤ 𝑊𝑇𝑃𝑊 + 𝑊𝑇𝑃𝐻(𝜀𝐼 − 𝐻𝑇𝑃𝐻)−1𝐻𝑇𝑃𝑊 + 𝜀𝐺𝑇𝐺 

 

Lemma 4 [32]: The following conditions are equivalent when the Schur complement principle is applied to 

several symmetric matrices 𝐴11, 𝐴12 and 𝐴22. 

 

If 𝐴11 < 0 then [
𝐴11 𝐴12

𝐴21 𝐴22
] < 0 if and only if  𝐴22 − 𝐴21(𝐴11)

−1𝐴12 < 0 

If 𝐴22 < 0 then [
𝐴11 𝐴12

𝐴21 𝐴22
] < 0 if and only if 𝐴11 − 𝐴12(𝐴22)

−1𝐴21 < 0 

 



                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 14, No. 2, June 2025: 214-226 

218 

Theorem 1: Consider system (1) with model uncertainties (∆𝐴, ∆𝐵, ∆𝐶, ∆𝐷 ≠ 0), under the assumptions A1 

and A2, if there exist scalars 𝛽 > 0, 𝛾 > 0, a filter gain matrix 𝐿, a symmetric matrix 𝑃 > 0 and a scalar 𝜀 >
 0 such that the augmented system (6) is asymptotically stable and the following matrix inequalities hold, 

then conditions (10) and (12) are satisfied.  

 

[

𝐻2
𝑇𝐻2 + 𝐻3

𝑇𝑃𝐻3 − 𝜀𝐼 𝐻2
𝑇𝐶0 + 𝐻3

𝑇𝑃𝐴0 𝐻2
𝑇𝐷0 + 𝐻3

𝑇𝑃𝐵0

𝐶0
𝑇𝐻2 + 𝐴0

𝑇𝑃𝐻3 𝐶0
𝑇𝐶0 + 𝐴0

𝑇𝑃𝐴0 + 𝜀𝐺1
𝑇𝐺1 − 𝑃 𝐶0

𝑇𝐷0 + 𝐴0
𝑇𝑃𝐵0 + 𝜀𝐺1

𝑇𝐺2

𝐷0
𝑇𝐻2 + 𝐵0

𝑇𝑃𝐻3 𝐷0
𝑇𝐶0 + 𝐵0

𝑇𝑃𝐴0 + 𝜀𝐺2
𝑇𝐺1 𝐷0

𝑇𝐷0 + 𝐵0
𝑇𝑃𝐵0 + 𝜀𝐺2

𝑇𝐺2 − 𝛾2𝐼

] < 0 (13) 

 

[

−𝐻2
𝑇𝐻2 − 𝐻3

𝑇𝑃𝐻3 + 𝜀𝐼 𝐻2
𝑇𝐶̅𝑜 + 𝐻3

𝑇𝑃𝐴̅𝑜 𝐻2
𝑇𝐹𝑓𝑜 + 𝐻3

𝑇𝑃𝐸̅𝑓𝑜

𝐶̅𝑜
𝑇
𝐻2 + 𝐴̅𝑜

𝑇
𝑃𝐻3 −𝐶̅𝑜

𝑇
𝐶̅𝑜 − 𝐴̅𝑜

𝑇
𝑃𝐴̅𝑜 − 𝜀𝐺1

𝑇𝐺1 + 𝑃 −𝐶̅𝑜
𝑇
𝐹𝑓𝑜 − 𝐴̅𝑜

𝑇
𝑃𝐸̅𝑓𝑜

𝐹𝑓𝑜
𝑇𝐻2 + 𝐸̅𝑓𝑜

𝑇
𝑃𝐻3 −𝐹𝑓𝑜

𝑇𝐶̅𝑜 − 𝐸̅𝑓𝑜
𝑇
𝑃𝐴̅𝑜 −𝐹𝑓𝑜

𝑇𝐹𝑓𝑜 − 𝐸̅𝑓𝑜
𝑇
𝑃𝐸̅𝑓𝑜 + 𝛽2𝐼

] > 0  (14) 

 

In addition to solving (13) and (14), optimal filter gain 𝐿, can be determined by solving the following 

optimization problem: 

 

max 𝐽 =
𝛽

𝛾
   (15) 

 

Proof of the Theorem 

For the augmented system (6) and (7), (10) can be expressed as (16): 

 

‖𝐺𝑟𝑢‖∞ < 𝛾 ↔ ∑ [𝑟𝑇(𝑘)𝑟(𝑘) − 𝛾2𝑢̅𝑇(𝑘)𝑢̅(𝑘)]∞
𝑘=0 < 𝛾;        𝑓(𝑘) = 0  (16) 

 

Defining a Lyapunov function, 𝑉(𝑥̅(𝑘)) = 𝑥̅𝑇(𝑘)𝑃𝑥̅(𝑘) > 0 where 𝑃 = diag[𝑃1, 𝑃2] > 0. Suppose 𝑃 > 0, 

the necessary stability condition listed below is ensured. 

 

∑ (𝑉(𝑥̅(𝑘 + 1)) − 𝑉(𝑥̅(𝑘)))∞
𝑘=0 < 0   (17) 

 

The control objective (10) and 𝐻∞ FD filter stability is ensured by combining (16) and (17), which will yield 

 

∑ [𝑟𝑇(𝑘)𝑟(𝑘) + 𝑉(𝑥̅(𝑘 + 1)) − 𝑉(𝑥̅(𝑘)) − 𝛾2𝑢̅𝑇(𝑘)𝑢̅(𝑘)]∞
𝑘=0 < 0  (18) 

 

From equation (6) and (7), it is easy to write 

 

[𝑥̅𝑇(𝑘) 𝑢̅𝑇(𝑘)] ([𝐴̅
𝑇

𝐵̅𝑇] 𝑃[𝐴̅ 𝐵̅] + [𝐶
̅𝑇

𝐷̅𝑇] [𝐶̅ 𝐷̅] + [
−𝑃 0
0 −𝛾2𝐼

]) [
𝑥̅(𝑘)
𝑢̅(𝑘)

] < 0     (19) 

 

The constant and uncertain system matrices are divided as follows to avoid any ambiguity: 

 

[𝐶
̅ 𝐷̅

𝐴̅ 𝐵̅
] = [

𝐶0 𝐷0

𝐴0 𝐵0
] + [∆𝐶̅ ∆𝐷̅

∆𝐴̅ ∆𝐵̅
]  (20) 

 

where  [
𝐶0 𝐷0

𝐴0 𝐵0
] = [

𝐶 0 0 𝐹𝑑

𝐴 − 𝐿𝐶 0 0 𝐸𝑑 − 𝐿𝐹𝑑

0 𝐴 𝐵 𝐸𝑑

];  

[∆𝐶̅ ∆𝐷̅
∆𝐴̅ ∆𝐵̅

] = [

𝐻2

𝐻1 − 𝐿𝐻2

𝐻1

] ∑[0 𝐺1 𝐺2 0] = [
𝐻2

𝐻3
]∑[𝐺1 𝐺2] = 𝐻 ∑ 𝐺 

 

Representing the above matrices as: 

 

𝐴𝑜 = [
𝐶0 𝐷0

𝐴0 𝐵0
]; 𝐴𝑜 = [

𝐴 − 𝐿𝐶 0
0 𝐴

]; 𝐵𝑜 = [
0 𝐸𝑑 − 𝐿𝐹𝑑

𝐵 𝐸𝑑
]; 𝐶𝑜 = [𝐶 0]; 𝐷𝑜 = [0 𝐹𝑑]; 𝐻 = [

𝐻2

𝐻3
]; 

𝐻3 = [
𝐻1 − 𝐿𝐻2

𝐻1
]; 𝐺 = [𝐺1 𝐺2]; 𝐺1 = [0 𝐺1]; 𝐺2 = [𝐺2 0]; 𝑃 = [

−𝑃 0
0 −𝛾2𝐼

]; 𝑃 = [
𝐼 0
0 𝑃

] 

 

Applying Lemma 3 on (19) using (20) turns to (21). 
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[𝑥̅𝑇(𝑘) 𝑢̅𝑇(𝑘)] ((𝐴𝑜 + 𝐻 ∑ 𝐺)
𝑇
𝑃(𝐴𝑜 + 𝐻 ∑ 𝐺) + 𝑃) [

𝑥̅(𝑘)

𝑢̅(𝑘)
]  (21) 

 

(𝐴𝑜 + 𝐻 ∑𝐺)
𝑇
𝑃(𝐴𝑜 + 𝐻 ∑𝐺) + 𝑃  ≤ 𝐴𝑜

𝑇𝑃𝐴𝑜 + 𝐴𝑜
𝑇𝑃𝐻(𝜀𝐼 − 𝐻𝑇𝑃𝐻)

−1
𝐻𝑇𝑃𝐴𝑜 + 𝜀𝐺𝑇𝐺 + 𝑃  (22) 

 

Applying Lemma 4 on (22) will yield (23). 
 

[
𝐻𝑇𝑃𝐻 − 𝜀𝐼 𝐻𝑇𝑃𝐴𝑜

𝐴𝑜
𝑇𝑃𝐻 𝐴𝑜

𝑇𝑃𝐴𝑜 + 𝜀𝐺𝑇𝐺 + 𝑃
] < 0  (23) 

 

Expanding (23), one can write as (24). 
 

[

𝐻2
𝑇𝐻2 + 𝐻3

𝑇𝑃𝐻3 − 𝜀𝐼 𝐻2
𝑇𝐶0 + 𝐻3

𝑇𝑃𝐴0 𝐻2
𝑇𝐷0 + 𝐻3

𝑇𝑃𝐵0

𝐶0
𝑇𝐻2 + 𝐴0

𝑇𝑃𝐻3 𝐶0
𝑇𝐶0 + 𝐴0

𝑇𝑃𝐴0 + 𝜀𝐺1
𝑇𝐺1 − 𝑃 𝐶0

𝑇𝐷0 + 𝐴0
𝑇𝑃𝐵0 + 𝜀𝐺1

𝑇𝐺2

𝐷0
𝑇𝐻2 + 𝐵0

𝑇𝑃𝐻3 𝐷0
𝑇𝐶0 + 𝐵0

𝑇𝑃𝐴0 + 𝜀𝐺2
𝑇𝐺1 𝐷0

𝑇𝐷0 + 𝐵0
𝑇𝑃𝐵0 + 𝜀𝐺2

𝑇𝐺2 − 𝛾2𝐼

] < 0 (24) 

 

Rewriting the above matrix inequality as (25). 
 

[

𝐻2
𝑇 𝐻3

𝑇 0

𝐶0
𝑇 𝐴0

𝑇 𝐺1
𝑇

𝐷0
𝑇 𝐵0

𝑇 𝐺2
𝑇

] [
𝐼 0 0
0 𝑃 0
0 0 𝜀𝐼

] [

𝐻2 𝐶0 𝐷0

𝐻3 𝐴0 𝐵0

0 𝐺1 𝐺2

] − [
𝜀𝐼 0 0
0 𝑃 0
0 0 𝛾2𝐼

] < 0   (25) 

 

Applying the Schur complement lemma given below, (25) can be represented as (26). 
 

[
 
 
 
 
 
 −𝜀𝐼 0 0

0 −𝑃 0
0 0 −𝛾2𝐼

𝐻2
𝑇 𝐻3

𝑇 0

𝐶0
𝑇 𝐴0

𝑇 𝐺1
𝑇

𝐷0
𝑇 𝐵0

𝑇 𝐺2
𝑇

𝐻2 𝐶0 𝐷0

𝐻3 𝐴0 𝐵0

0 𝐺1 𝐺2

−𝐼 0 0
0 −𝑃−1 0
0 0 −𝜀−1𝐼]

 
 
 
 
 
 

< 0  (26) 

 

The nonlinear inequality is transformed into linear inequality form by performing matrix equivalent 

transformation as (27). 
 

[
 
 
 
 
 
 −𝜀𝐼 0 0

0 −𝑃 0
0 0 −𝛾2𝐼

𝐻2
𝑇 𝐻3

𝑇𝑃 0

𝐶0
𝑇 𝐴0

𝑇𝑃 𝐺1
𝑇𝜀

𝐷0
𝑇 𝐵0

𝑇𝑃 𝐺2
𝑇𝜀

𝑃

𝐻2 𝐶0 𝐷0

𝐻3 𝑃𝐴0 𝑃𝐵0

0 𝜀𝐺1 𝜀𝐺2

−𝐼 0 0
0 −𝑃 0
0 0 −𝜀𝐼 ]

 
 
 
 
 
 

< 0  (27) 

 

By inserting the 𝐻3, 𝐴0, 𝐵0, 𝐶0, 𝐷0, 𝐺1, 𝐺2 and 𝑃 matrices in the above matrix, which completes the proof of 

the first part of Theorem 1. Similarly, 𝐻− index-based fault sensitivity condition (12) can be derived as (28). 
 

‖𝐺𝑟𝑓‖−
> 𝛽 ↔ ∑ [𝑟𝑇(𝑘)𝑟(𝑘) > 𝛽2𝑓𝑇(𝑘)𝑓(𝑘)]∞

𝑘=0    ;  𝑢̅(𝑘) = 0  (28) 

 

Considering the Lyapunov function defined earlier, 𝑉(𝑘) = 𝑥̅𝑇(𝑘)𝑃𝑥̅(𝑘) > 0, 𝑃 > 0. The control objective 

(12) and 𝐻− index filter stability is ensured by (29). 
 

∑ [𝑟𝑇(𝑘)𝑟(𝑘) − 𝑉(𝑥̅(𝑘 + 1)) + 𝑉(𝑥̅(𝑘)) − 𝛽2𝑓𝑇(𝑘)𝑓(𝑘)]∞
𝑘=0 > 0  (29) 

 

After mathematical simplification, one can write (29) as (30). 
 

∑ [𝑟𝑇(𝑘)𝑟(𝑘) − 𝛽2𝑓𝑇(𝑘)𝑓(𝑘) − 𝑉(𝑥̅(𝑘 + 1)) + 𝑉(𝑥̅(𝑘))]∞
𝑘=0 < 0  (30) 

 

Substituting matrices from (6) and (7) into (30) by taking 𝑢̅(𝑘) = 0, can be written in matrix form as (31) 

and (32). 
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[𝑥̅𝑇 𝑓𝑇] ([
𝐴̅𝑇

𝐸̅𝑓
𝑇] 𝑃[𝐴̅ 𝐸̅𝑓] + [

𝐶̅𝑇

𝐹𝑓
𝑇] [𝐶̅ 𝐹𝑓] + [

−𝑃 0
0 −𝛽2𝐼

]) [
𝑥̅
𝑓
] < 0          (31) 

 

[𝑥̅𝑇 𝑓𝑇] ([
𝐶̅𝑇 𝐴̅𝑇

𝐹𝑓
𝑇 𝐸̅𝑓

𝑇] [
𝐼 0
0 𝑃

] [
𝐶̅ 𝐹𝑓

𝐴̅ 𝐸̅𝑓

] + [
−𝑃 0
0 −𝛽2𝐼

]) [
𝑥̅
𝑓
] < 0           (32) 

 

The constant and uncertain matrices are separated as: 

 

[
𝐶̅ 𝐹𝑓

𝐴̅ 𝐸̅𝑓

] = [
𝐶𝑜̅ 𝐹𝑓𝑜

𝐴̅𝑜 𝐸̅𝑓𝑜

] + [
∆𝐶̅ ∆𝐹𝑓

∆𝐴̅ ∆𝐸̅𝑓

]  (33) 

 

where [
𝐶𝑜̅ 𝐹𝑓𝑜

𝐴̅𝑜 𝐸̅𝑓𝑜

] = [
𝐶 0

𝐴 − 𝐿𝐶 0
0 𝐴

𝐹𝑓

 𝐸𝑓 − 𝐿𝐹𝑓

𝐸𝑓

] and [
∆𝐶̅ ∆𝐹𝑓

∆𝐴̅ ∆𝐸̅𝑓

] = [

𝐻2

𝐻1 − 𝐿𝐻2

𝐻1

] ∑[0 𝐺1 0]  

 

Defining the new matrices: 

 

𝐴̿𝑜 = [
𝐶𝑜̅ 𝐹𝑓𝑜

𝐴̅𝑜 𝐸̅𝑓𝑜

]; 𝐴̅𝑜 = [
𝐴 − 𝐿𝐶 0

0 𝐴
]; 𝐸̅𝑓𝑜 = [

𝐸𝑓 − 𝐿𝐹𝑓

𝐸𝑓
]; 𝐹𝑓𝑜 = 𝐹𝑓; 𝐶𝑜̅ = [𝐶 0]; 𝐻 = [

𝐻2

𝐻3
]; 

𝐻3 = [
𝐻1 − 𝐿𝐻2

𝐻1
]; 𝐺 = [𝐺1 0]; 𝐺1 = [0 𝐺1]; 𝑃 = [

𝐼 0
0 𝑃

];  𝑃1 = [
−𝑃 0
0 −𝛽2𝐼

] 

 

It is simple to write (32) as follows using Lemma 3: 

 

[𝑥̅𝑇 𝑓𝑇] ((𝐴̿𝑜 + 𝐻 ∑𝐺)
𝑇
𝑃(𝐴̿𝑜 + 𝐻 ∑𝐺) + 𝑃1) [

𝑥̅
𝑓
] < 0           (34) 

 

𝐴̿𝑜

𝑇
𝑃𝐴̿𝑜 + 𝐴̿𝑜

𝑇
𝑃𝐻(𝜀𝐼 − 𝐻𝑇𝑃𝐻)

−1
𝐻𝑇𝑃𝐴̿𝑜 + 𝜀𝐺𝑇𝐺 + 𝑃1 < 0  (35) 

 

According to 𝐻−index criteria (‖𝐺𝑟𝑓(𝑒
𝑗𝜃)‖

−
> 0), the above inequality is written as: 

 

−𝐴̿𝑜

𝑇
𝑃1𝐴̿𝑜 − 𝐴̿𝑜

𝑇
𝑃1𝐻(𝜀𝐼 − 𝐻𝑇𝑃1𝐻)

−1
𝐻𝑇𝑃1𝐴̿𝑜 − 𝜀𝐺𝑇𝐺 − 𝑃1 > 0  (36) 

 

By applying Lemma 4, (36) becomes (37). 
 

[
𝜀𝐼 − 𝐻𝑇𝑃𝐻 𝐻𝑇𝑃𝐴̿𝑜

𝐴̿𝑜

𝑇
𝑃𝐻 −𝐴̿𝑜

𝑇
𝑃𝐴̿𝑜 − 𝜀𝐺𝑇𝐺 − 𝑃1

] > 0           (37) 

 

Expanding matrix inequality (37) 

 

[
 
 
 
−𝐻2

𝑇𝐻2 − 𝐻3
𝑇𝑃𝐻3 + 𝜀𝐼 𝐻2

𝑇𝐶𝑜̅ + 𝐻3
𝑇𝑃𝐴̅𝑜 𝐻2

𝑇𝐹𝑓𝑜 + 𝐻3
𝑇𝑃𝐸̅𝑓𝑜

𝐶𝑜̅
𝑇
𝐻2 + 𝐴̅𝑜

𝑇
𝑃𝐻3 −𝐶𝑜̅

𝑇
𝐶𝑜̅ − 𝐴̅𝑜

𝑇
𝑃𝐴̅𝑜 − 𝜀𝐺1

𝑇𝐺1 + 𝑃 −𝐶𝑜̅
𝑇
𝐹𝑓𝑜 − 𝐴̅𝑜

𝑇
𝑃𝐸̅𝑓𝑜

𝐹𝑓𝑜
𝑇𝐻2 + 𝐸̅𝑓𝑜

𝑇
𝑃𝐻3 −𝐹𝑓𝑜

𝑇𝐶𝑜̅ − 𝐸̅𝑓𝑜
𝑇
𝑃𝐴̅𝑜 −𝐹𝑓𝑜

𝑇𝐹𝑓𝑜 − 𝐸̅𝑓𝑜
𝑇
𝑃𝐸̅𝑓𝑜 + 𝛽2𝐼]

 
 
 
> 0 (38) 

 

This concludes the proof of Theorem 1's second part. FD filter gain can be calculated by solving the LMIs 

(27) and (38) for the optimization problem (15). 

 

𝐿 = 𝑃1
−1𝑋1           (39) 

 

3.1. Residual evaluation and threshold 

In the second step of the FD process, the generated residual is evaluated using 𝑙2 signal norm and 

further compared with the threshold,  𝐽𝑡ℎ > 0. The residual (3) that was generated using the proposed FD 

filter can be shown as (40): 

 

𝑟(𝑘) = 𝑟𝑑(𝑘) + 𝑟𝑢(𝑘) + 𝑟𝑓(𝑘)   (40) 
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In fault-free case, 𝑟𝑓(𝑘) = 0, then the residual evaluation function becomes 𝐽 = ‖𝑟𝑑(𝑘) + 𝑟𝑢(𝑘)‖2
2. Thus, the 

threshold can be computed as  𝐽𝑡ℎ = sup‖𝑟𝑑(𝑘) + 𝑟𝑢(𝑘)‖2
2. In the end, the evaluated residual (𝐽) is compared 

with the threshold (𝐽𝑡ℎ) and the fault alarm is released when the following condition is satisfied: 

 

𝐽 > 𝐽𝑡ℎ ; fault alarm 

𝐽 ≤ 𝐽𝑡ℎ ; fault-free 

 

 

4. APPLICATION TO A THREE-TANK SYSTEM 

A three-tank system application is used in this study. The system is often used to illustrate the 

principles of process control, system dynamics, and fault detection. In such a system, the liquid levels in the 

tanks and the flow rates between them are managed using sensors, actuators, and controllers. Automation 

plays a critical role in this setup by ensuring the precise regulation of these variables to achieve desired 

outcomes, such as maintaining specific liquid levels or flow rates. Using advanced automation technologies, 

such as programmable logic controllers (PLCs) and distributed control systems (DCS), the three-tank system 

can operate autonomously, adjusting valves and pumps based on real-time feedback from level and flow 

sensors. This level of automation improves accuracy, reduces manual intervention, and ensures consistent 

operation even in complex scenarios. Moreover, integrating fault detection algorithms into the system 

enhances reliability by identifying anomalies like sensor malfunctions, leaks, or blockages, enabling 

proactive maintenance. Thus, the automation of a three-tank system serves as a foundational model for 

understanding and implementing control strategies in larger industrial processes such as chemical 

manufacturing, water treatment, and oil refining. 

This section presents simulation results that demonstrate the effectiveness of the proposed FD 

method. For simulation purposes, abrupt and intermittent faults are introduced in the sensors and actuators of 

the advanced three-tank system illustrated in Figure 1. Such faults significantly degrade system performance 

and are included in the study to evaluate the capability of the proposed method in identifying these critical 

issues. Modeling errors from the system linearization process are incorporated as norm-bounded model 

uncertainties. The behavior of the three-tank system is described by the following set of nonlinear equations, 

which capture its dynamics. 
 

𝐴ℎ̇1 = 𝑄1 − 𝑄13 

𝐴ℎ̇2 = 𝑄2 + 𝑄32 − 𝑄20        

𝐴ℎ̇1 = 𝑄13 − 𝑄32         (41) 
 

with 

𝑄13 = 𝑎1𝑠13𝑠𝑔𝑛(ℎ1 − ℎ3)√2𝑔|ℎ1 − ℎ3| 

𝑄32 = 𝑎3𝑠23𝑠𝑔𝑛(ℎ3 − ℎ2)√2𝑔|ℎ3 − ℎ2| 

𝑄20 = 𝑎2𝑠0√2𝑔ℎ2 

 

 

 
 

Figure 1. A three-tank system [33] 
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The process outputs y(k), represented by ℎ3, ℎ2, ℎ1, corresponding to the water levels in the 

respective tanks. The process inputs u(k) are denoted by Q1 and Q2, while Qij represents the flow rate of water 

from tank i-th to tank j-th. Additionally, s13 and s23 refer to the cross-sectional areas of the pipes connecting 

the respective tanks. The cross-sectional area of the pipe connected to Tank 2 is 𝑠0. sgn denotes the signum 

function, which is defined as 
 

sgn(𝑥) = {
−1
0
1

𝑖𝑓𝑥 < 0
𝑖𝑓𝑥 = 0

𝑖𝑓𝑥 > 0
 

𝑠13 = 𝑠23 = 𝑠0 =  𝑠𝑛 

 

The system's primary parameters and coefficients are shown in Table 1. In the three-tank system, an 

unknown disturbance arises from water falling into the tanks from the pumps. Additionally, the sensors used 

to measure water levels introduce noise measurement. For fault detection (FD), a linear model of the system 

is derived by applying Taylor series expansion and linearizing the dynamics around the equilibrium or 

operating point. This process results in a linear nominal model of the discrete-time system in state-space 

form, as shown in (1). The linearization is performed at the operating points ℎ1 = 45cm, ℎ2 = 15cm and 

ℎ3 = 30cm. Nominal matrices are obtained after linearizing the nonlinear model of the system. 

 

𝐴 = [
0.9915 0 0.0084

0 0.9807 0.0082
0.0084 0.0082 0.9833

]; 𝐵 = [
0.0065 0.0008
0.0008 0.0065

0 0
];  𝐸𝑑 = [

0.25 0 0
0 0.25 0
0 0 0.25

]; 

𝐶 = diag[1,1,1];  𝐷 = 0;  𝐸𝑓 = 𝐵;  𝐹𝑑 = 𝐹𝑓 = diag[1,1,1] 

 

The linearization process incorporates modelling errors known as norm-bounded model uncertainty into the 

system matrices, which are denoted as: 

 

𝐻1 = 𝐻2 = [
−0.01 0 0

0 −0.01 0
0 0 −0.01

] ; 𝐺1 = [
0.01 0 0.015
0 0.01 0.015

0.01 0.01 0.05
];𝐺2 = [

0.01 0 0
0 0.02 0
0 0 0

] 

 

 

Table 1. Three-tank system's parameters [33] 
Parameters Value Unit 

𝐴 154 cm2 

𝑠𝑛 0.5 cm2 

𝐻𝑚𝑎𝑥 62 cm 

𝑄1𝑚𝑎𝑥 100 cm3/sec 

𝑄2𝑚𝑎𝑥 100 cm3/sec 

𝑎1 0.46  

𝑎2 0.60  

𝑎3 0.45  

 

 

The uncertain parameter (∑ = diag[0.9597,0.9597,0.9597]) is chosen at random and unknown 

disturbance, 𝑑(𝑘) ∈ [−0.01,0.01] is used for simulations. The pump inflows are assumed to be constant with 

specified values of 𝑄1 = 25.6 cm3/sec and 𝑄2 = 39.5 cm3/sec. After solving the linear matrix inequalities in 

(13) and (14), a disturbance attenuation level of γ = 1.026 and a fault sensitivity level of β = 1.9891 are 

achieved. The corresponding filter gain matrix is computed using (39) and is given as 

 

𝐿 = [
0.3265 −0.0001 −0.0017

∗ 6.7344 −0.0017
∗ ∗ 6.7265

] 

 

Furthermore, the residual evaluation function is computed using 𝑙2 norm of the residual (40) and the 

threshold is computed as 𝐽𝑡ℎ|𝑓=0 = ‖𝑟(𝑘)‖2𝑢(𝑘)∈𝑙2

sup
= 0.03. The residual in the sensor/actuator fault-free case 

is shown in Figure 2. 

Figure 3 displays the impact of an abrupt sensor fault in Tank 1 on the residual. A fault with a 10 cm 

offset is introduced to the sensor input of Tank 1 at t = 80 sec. The simulation results confirm that the fault is 

successfully detected. Comparable responses and successful detections are also observed for faults in the 
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other sensors. As shown in Figure 3, the evaluation function remains below the threshold prior to the fault 

occurrence but exceeds the threshold when the sensor fault occurs at t = 80 sec. Similarly, Figure 4 

demonstrates the response when an intermittent fault is applied to the actuator of Pump 1. The results 

highlight that the fault detection filter effectively identified faults in the discrete-time system, even in the 

presence of unknown disturbances and model uncertainty. 

 

 

 
 

Figure 2. Residual in a fault-free case 

 

 

 
 

Figure 3. An abrupt sensor FD in Tank 1 

 

 

Remark: In section 3, two linear matrix inequalities (LMIs) are derived for fault detection (FD) in linear 

uncertain systems. An H- index-based fault-sensitive filter is designed to improve the fault sensitivity of the 

residual. However, this filter also exhibits sensitivity to disturbances and model uncertainties. In contrast, the 

H∞ FD filter ensures disturbance attenuation but also provides robustness against faults. To address these 

challenges, a multi-objective H-/H∞ based FD filter is proposed, which simultaneously offers robustness to 

disturbances and model uncertainties, as well as sensitivity to faults. Rather than maximizing β and 

minimizing γ separately, the performance index, β/γ, is maximized in this design. It is important to note that 

the residual generated by the H-/H∞ based filter may be less sensitive than that produced by the H- index-

based fault-sensitive filter. Similarly, the residual from the H-/H∞ based filter might be less robust to 

disturbances and model uncertainties compared to the residual from the H∞ based filter. Nevertheless, the 

proposed H-/H∞ based FD filter is advantageous as it achieves both disturbance attenuation and fault 

sensitivity simultaneously. 

 



                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 14, No. 2, June 2025: 214-226 

224 

 
 

Figure 4. Simulated fault (top); Evaluated residual and threshold in actuator fault (bottom) 

 

 

5. CONCLUSION 

Robotics and automation systems rely on advanced fault detection mechanisms to ensure seamless 

operation, prevent downtime, and maintain safety standards. This paper addresses the fault detection problem 

for discrete-time linear systems subjected to deterministic disturbances and norm-bounded model uncertainty. 

The proposed FD filter generates a residual that simultaneously attenuates the effect of model uncertainty and 

disturbance and enhances the sensitivity to faults. The filter optimizes the H-/H∞ performance index, 

ensuring the best trade-off between robustness and sensitivity in all directions of the residual space. A 

solution to the problem is formulated using linear matrix inequality constraints. Successful actuator and 

sensor fault detection results of the three-tank system obtained from simulation validate the effectiveness of 

the proposed observer-based FD system. By identifying and addressing the faults, these systems can enhance 

reliability and efficiency across various industrial applications. 
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