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 The development of simultaneous localization and mapping (SLAM) 

technology is crucial for advancing autonomous systems in robotics and 

navigation. However, camera-based SLAM systems face significant 

challenges in accuracy, robustness, and computational efficiency, 

particularly under conditions of environmental variability, dynamic scenes, 

and hardware limitations. This paper provides a comprehensive review of 

camera-based SLAM methodologies, focusing on their different approaches 

for pose estimation, map reconstruction, and camera type. The application of 

deep learning also will be discussed on how it is expected to improve 

performance. The objective of this paper is to advance the understanding of 

camera-based SLAM systems and to provide a foundation for future 

innovations in robust, efficient, and adaptable SLAM solutions. Additionally, 

it offers pertinent references and insights for the design and implementation 

of next-generation SLAM systems across various applications. 
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1. INTRODUCTION 

Simultaneous localization and mapping (SLAM) is a fundamental technology widely used in 

robotics, autonomous vehicles, and other applications where machines must interpret and navigate their 

surroundings. The SLAM process involves simultaneously generating a map of an unfamiliar environment 

and determining the device's position within it. Among various sensor options for SLAM, cameras are 

particularly notable due to their low cost, compact design, and ability to capture detailed visual data [1]. 

Camera-based SLAM has attracted substantial interest because it utilizes visual information to estimate 

motion and construct maps, offering a cost-effective alternative to sensors like LiDAR and excelling in tasks 

that demand high spatial resolution [2]. 

Despite its promise, visual SLAM faces several challenges, particularly in real-world applications. 

Dynamic environments, where objects are constantly moving, can disrupt feature tracking and reduce 

mapping accuracy [3]. Textureless surfaces, such as plain walls or floors, lack distinguishable features, 

making it difficult to extract and match key points [4]. Poor lighting conditions, such as dim environments  

or overexposed scenes, can degrade image quality and hinder the system's ability to detect and track  

features reliably. To overcome these obstacles, feature-based (indirect) methods [5] and direct methods [6] 

have provided a solid foundation for building accurate and efficient maps. Indirect methods follow  

a two-step process. 

Camera-based SLAM systems can be classified into three main categories based on the type of 

camera used: monocular, stereo, and RGB-D systems [7]–[9]. The pipeline of camera-based SLAM generally 
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consists of three core stages: pose estimation, loop closure detection, and mapping. Pose estimation involves 

determining the camera’s position and orientation within the environment. Loop closure detection identifies 

instances where the camera revisits previously explored areas, enabling the system to correct accumulated 

errors and enhance the global consistency of the estimated trajectory. Mapping, the final stage, focuses on 

creating a structured representation of the environment, such as a 3D map or other spatial models. The 

performance of SLAM systems is typically evaluated using widely recognized public datasets such as KITTI 

[10], New College [11], Technical University of Munich (TUM) [12], [13], EuRoc micro aerial vehicle 

(MAV) [14], which serve as benchmarks, offering real-world data collected from a variety of scenarios. 

The rapid advancement of computer vision algorithms has significantly improved camera-based 

SLAM in recent years. This review aims to provide a comprehensive overview of camera-based SLAM, 

focusing on its key components, state-of-the-art techniques, and applications. We categorize and analyze 

existing methods, discuss their strengths and limitations, and highlight recent trends, including the 

incorporation of deep learning. Additionally, we address challenges and open problems in the field, 

emphasizing the importance of robust and scalable solutions for real-world applications. 

 

 

2. DIFFERENT APPROACHES 

Indirect methods and direct methods represent two primary approaches in camera-based SLAM, 

each with its own strengths and limitations. Indirect methods are particularly effective in environments rich 

in texture. Direct methods, in contrast, bypass the need for explicit feature extraction and instead operate on 

raw pixel intensities. There are also several methods for reconstructing maps, including sparse, semi-dense, 

and dense methods. While dense methods try to use and rebuild every pixel in the 2D picture domain, sparse 

methods simply use and reconstruct a chosen selection of independent points, usually corners. Direct and 

indirect are not interchangeable with the terms dense and sparse. All four pairings are actually feasible: Both 

direct and sparse, as well as direct and dense, indirect and dense, indirect and sparse [15]. 

 

2.1.  Direct methods 

The number of reconstructed points varies among the three types of direct methods in SLAM: dense, 

semi-dense, and sparse. These modifications strike a compromise between trade-offs between map detail, 

computational efficiency, and environmental robustness. Dense methods use all of the pixel intensity values 

in the image to reconstruct the surroundings and estimate camera motion. A notable example of this type is 

ElasticFusion by Whelan et al. [16], who used joint optimization, photometric pose estimation and geometric 

pose estimation. They utilize the randomized fern encoding [17] for appearance-based place recognition and 

five cost functions to optimize the deformation graph. The accuracy of the generated map is then maintained 

by optimizing this deformation graph, which is made up of a collection of nodes and edges dispersed 

throughout the model to be deformed. 

Semi-dense methods do not rebuild the entire surface. One well-known example that shows semi-

dense mapping capabilities in large-scale environments is large-scale direct SLAM (LSD-SLAM) [6]. The 

technique combines filtering-based estimate of semi-dense depth maps with direct image alignment. New 

camera images are continuously tracked by the tracking component. Filtering over several per-pixel, small-

baseline stereo comparisons in conjunction with interleaved spatial regularization, as in [18], refines depth. 

They identify previously visited areas using fast appearance-based mapping (FABMAP) [19] and utilize pose 

graph optimization to minimize the error. Figure 1 shows the 3D map reconstruction of LSD-SLAM. 

 

 

 
 

Figure 1. LSD-SLAM 3D reconstruction [6] 
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Dense (or semi-dense) methods, which usually favor smoothness, create a geometric prior by taking 

use of the connectedness of the employed picture region. However, in the sparse formulation, geometry 

parameters (key point positions) are conditionally independent given the camera poses and intrinsics, and the 

concept of neighborhood is absent [15]. These techniques are more reliant on the presence of observable key 

points in the surroundings and may result in less detailed maps. For the visual odometry (VO) application 

known as direct sparse odometry (DSO), Engel et al. [15] effectively integrated the advantages of direct 

methods with the adaptability of sparse approaches. They accomplish the photometric counterpart of 

windowed sparse bundle adjustment by jointly optimizing for all involved parameters (inverse depth values, 

camera intrinsics, and camera extrinsic). Additionally, they maintain the geometry representation used by 

previous direct techniques, which is representations of 3D points as inverse depth in a reference frame.  

The example result of the direct method is shown in Figure 2. Figure 2(a) shows the 3D map reconstruction 

of DSO. 

 

 

 
 

 
 

(a) (b) 

 

Figure 2. Example results of direct methods (a) DSO 3D reconstruction [15] and (b) the estimated trajectory 

using LDSO [20] (before (red) and after (yellow) loop closure) 

 

 

However, VO suffers from the cumulative drift in unobservable degrees of freedom in the absence 

of a loop closing. This restricts the application to short-term motion estimation because it results in an 

erroneous long-term camera trajectory and map. A loop closures module was added to the DSO algorithm by 

Gao et al. [20]. While maintaining DSO's resilience in feature-poor contexts, they modify its point selection 

approach to prioritize recurring corner features. Then, using traditional BoW, the chosen corner 

characteristics are employed for loop closure detection [21]. The drift error is then decreased by using pose 

graph optimization. The effects of a loop closure module are depicted in Figure 2(b). Table 1 shows the 

comparison of the direct methods. 

 

 

Table 1. The comparison of direct methods 
SLAM 

algorithm 

Map 

reconstruction 

Pose estimation Loop closures and global map refinement 

ElasticFusion Dense Minimizes the geometric and photometric errors 
between the global surface model and the current 

RGB-D frame 

Utilize the randomized fern encoding [17] for 
appearance-based place recognition, utilize five 

cost functions to optimize the deformation 

graph 
LSD-SLAM Semi-dense Created an initial depth map using frame-to-

frame motion estimate, reduces the photometric 

error and aligns the reference frame with the 
current frame 

Identifies previously visited areas using 

FABMAP [19], utilize pose graph optimization 

to minimize the error 

LDSO Sparse Maintaining the geometry model used by other 
direct approaches, jointly optimize for all related 

parameters 

Utilize corner features for loop closure 
detection with BoW, utilize pose graph 

optimization to minimize the error 
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2.2.  Indirect methods 

Indirect methods rely on detecting, describing, and matching visual features between consecutive 

frames, for instance [5], [22]–[25]. Feature detection and description are central to feature-based methods. 

Detectors, such as features from accelerated segment test (FAST), speeded-up robust features (SURF) [26], 

and oriented FAST and rotated BRIEF (ORB) [27], identify feature points in the image. Figure 3 illustrates 

examples of extracted features used in feature-based methods. The example of identified ORB features in the 

outdoor dataset [28] are displayed in Figure 3(a). These features are then described using descriptors that are 

often utilized to help detect a loop as in [5], [23], [29]. Motion estimation and mapping are achieved by 

analyzing the correspondence between detected features. Visual odometry computes the relative motion 

between frames, often using robust techniques like random sample consensus (RANSAC) [30] to eliminate 

outliers, as seen in [23], [29], [31]. 

 

 

 
(a)  

 
(b)  

  

Figure 3. Example of extracted features (a) ORB features in outdoor dataset [28] and (b) of SLD extraction 

algorithm [25] 

 

 

The indirect methods can also make use of line features. In order to extract more dependable 

features in a low-textured environment, Li et al. [25] merged point and line features. Compared to point 

features, line features are more common in outdoor settings and are less impacted by variations in 

illumination. They reflect organized environments more effectively than point features and provide more 

important information about the geometric content of an image. Point and line features are extracted in 

parallel by RPL-SLAM [25] with the ORB method for point features and the straight line segment detector 

(SLD) algorithm for line segment extraction as shown in Figure 3(b). 

Indirect methods usually utilize a sparse approach, where the less detailed map is reconstructed. 

ORB-SLAM [5] is an example of indirect methods that utilize a sparse approach, where they extract feature 

points using the ORB algorithm which are oriented multiscale FAST corners with a 256-bit descriptor 

associated. These extracted ORB descriptors are utilized to create the vocabulary for the place recognition 

module based on a bag of words (DBoW2) [21], to perform loop detection and re-localization. A covisibility 

graph is constructed along the process, which is based on the covisibility information between keyframes. 

This graph is utilized to build an essential graph, i.e., a sparser subgraph of the covisibility to reduce the 

amount of utilized keyframes. An optimization is performed over the essential graph using the Levenberg-

Marquardt algorithm implemented in g2o [32] to maintain global consistency and loop closing. ORB-SLAM 

has successfully tested on real-world datasets [10], [11], where it can handle loop closure and re-localization 

effectively as shown in Figure 4. 

Regarding the performance of RPL-SLAM, the authors claim that their proposed method 

outperforms the RGB-D version of ORB-SLAM2 [33] in the majority of sequences across the TUM RGB-D 

[13] and Imperial College London and National University of Ireland Maynooth (ICL-NUIM) [34] datasets. 

However, in certain datasets, the positioning accuracy of RPL-SLAM decreases. This issue arises because, in 

images with rich texture information, false positives in straight-line extraction can occur. These false 

detections introduce additional system noise, leading to increased errors during computation and a reduction 

in positioning accuracy. To address this limitation, future research will focus on exploring optimization 

strategies. 
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Figure 4. Result of ORB-SLAM in new college dataset [5] 
 

 

2.3. Semi-direct methods 

It is also feasible to combine direct and indirect approaches, as demonstrated in [35]–[37]. A semi-

direct visual odometry (SVO) was presented by Foster et al. [33] that combines the accuracy and speed of 

direct methods with the success criteria of feature-based approaches (keyframe selection, parallel tracking 

and mapping, and tracking numerous features). For motion estimation, their semi-direct method does away 

with the requirement for expensive feature extraction and reliable matching methods. At high frame speeds, 

their system achieves subpixel precision by working directly with pixel intensities. 3D points are estimated 

using a probabilistic mapping approach that explicitly models outlier observations, resulting in fewer outliers 

and more dependable points. In scenes with minimal, repetitive, and high-frequency texture, robustness is 

enhanced by precise and high frame-rate motion estimates. A modified parallel tracking and mapping 

(PTAM) algorithm [38] that can operate in vast areas was used to compare the performance of SVO. PTAM 

[39] is one of the indirect methods used for micro aerial vehicles (MAVs). According to the study, SVO is a 

more effective option for visual odometry in MAV applications since it delivers higher accuracy than PTAM. 
 

 

3. DIFFERENT CAMERA TYPES 

Camera-based SLAM algorithms employ various types of camera systems, each offering unique 

advantages and limitations depending on the application and environment. Monocular cameras are among the 

most commonly used due to their simplicity, affordability, and compact form factor, and can be utilized for 

direct [6], [18] and indirect methods [5], [7], [24], [38], [39]. For indirect methods, motion between two 

consecutive views is determined by solving the epipolar geometry equation. This requires assumptions about 

the intrinsic camera parameters. Since monocular cameras lack depth information, pose estimation only 

provides relative motion, not absolute scale. To address this, additional constraints or assumptions, like 

known object dimensions or scene regularities, are introduced. 

Stereo cameras provide two images from left and right perspectives separated by a fixed baseline. 

These images can be utilized to capture depth information by triangulating corresponding points in the two 

images. This makes stereo systems inherently more robust in estimating scene geometry and scale compared 

to monocular systems. Stereo cameras can be utilized for direct, indirect, or semi-direct methods as 

demonstrated in [8], [36], [40], [41]. Engel et al. [8] and Wang et al. [40] utilized stereo camera for direct 

approaches. Stereo LSD-SLAM [8] utilize both static, fixed-baseline stereo and temporal, variable-baseline 

stereo cues. Their technique uses photometric and geometric residuals at a semi-dense subset of pixels to 

directly align pictures. When there is enough information available for either static or temporal stereo 

estimation, these pixels are selected. 

The benefits of using a stereo camera are also highlighted in Stereo DSO [40], which combines 

static stereo with multi-view stereo. Rather than relying on random depth for initialization [6], [15], [18], the 
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system leverages depth information from static stereo matching, enabling the direct calculation of absolute 

scale and providing initial depth estimates for multi-view stereo. Qualitative and quantitative evaluations 

were conducted on the KITTI [10] and Cityscapes [42] datasets, comparing the results with other stereo 

SLAM methods, such as ORB-SLAM2 [33] and Stereo LSD-SLAM [8]. According to the assessments, 

Stereo DSO outperforms all other compared approaches in terms of accuracy. Specifically, an analysis on the 

KITTI dataset shows that Stereo DSO outperforms Stereo ORB-SLAM2 with loop closing and global bundle 

adjustment, even in the absence of closing big loops. The Stereo DSO result in the KITTI dataset is displayed 

in Figure 5. 

 

 

 
 

Figure 5. Result of Stereo DSO on sequence 00 of the KITTI dataset [40] 

 

 

RGB-D cameras, such as Microsoft Kinect or Intel RealSense, provide both color (RGB) and depth 

(D) information directly. Instead of just employing photometric error, it may also incorporate geometric error 

to improve performance for direct methods. Both direct and indirect methods may be used with RGB-D 

cameras, as shown in [16], [25]. The benefits of RGB-D cameras are demonstrated in [25], [33]. It is possible 

to immediately recover the 3D information of point and line characteristics from the RGB-D pictures that are 

taken by a depth camera. The precision of camera location is therefore increased as the matching process uses 

3D-3D correspondences instead of the 2D-2D correspondences found in conventional RGB cameras. 

 

 

4. DEEP LEARNING APPLICATIONS 

Deep learning techniques have been more and more effective as artificial intelligence has developed, 

especially in domains like object identification where they provide noticeably greater accuracy [43]. The 

front end of conventional camera-based SLAM techniques is built on manually designed feature extraction 

and matching algorithms. These techniques, which each have advantages and disadvantages, usually employ 

descriptor or Kanade-Lucas-Tomasi (KLT)-based feature tracking. Although KLT tracking is often quicker, 

it is less resilient to occlusions, age contrast (such as challenging visibility circumstances), and significant 

perspective shifts (which may be caused by fast camera movements). Longer-term feature monitoring is 

possible using descriptor-based tracking, but the computational cost is higher. To solve this problem, some 

researchers use deep learning in the feature extraction and tracking portion of the camera-based SLAM. 

Han et al. [3] introduced a visual odometry system that leverages convolutional neural networks 

(CNN) for feature extraction, specifically using the SuperPoint network [44]. This approach replaces 

traditional hand-engineered feature extraction methods with a CNN-based method, where the comparison is 

shown in Figure 6. However, the researchers stated that the system failed to perform in a dynamic 

environment. However, Hamesse et al. [45] provide a hybrid visual-inertial odometry (VIO) system that 

combines a conventional visual-inertial optimization back end with a deep feature matching front end. Based 

on SuperPoint and LightGlue [46] neural networks, the authors created a feature tracker that can be directly 



                ISSN: 2722-2586 

IAES Int J Rob & Autom, Vol. 14, No. 2, June 2025: 162-172 

168 

linked to the VINS-Mono [29] estimation back-end. The system outperforms the standard VINS-Mono, 

according to extensive testing on Vicon room and EuRoC [14] machine hall datasets. 

 

 

 
 

Figure 6. Comparison SuperPoint matching ability to other traditional algorithms [44] 

 

 

Traditional SLAM systems typically rely on low-level geometric features, which can result in 

failures in recognizing loop closures in environments with repetitive or unclear visual information. For loop 

closure detection, several methods also have been proposed to improve SLAM performance. Chen et al. [47] 

proposed a method to improve the performance of traditional ORB-SLAM2 [33] by incorporating semantic 

information through the Mask R-CNN model. The Mask R-CNN model detects objects in the image, 

provides semantic labels, and gives a high-quality segmentation result to the object. On the other hand,  

Dai et al. [48] utilized Resnet34 to detect loop closures. 

For handling the problem of performing in a dynamic environment, Xinguang et al. [49] introduced 

an enhanced visual SLAM system designed for dynamic environments, based on an improved Mask R-CNN 

neural network. The proposed SLAM algorithm leverages the semantic segmentation capabilities of the 

modified Mask R-CNN to differentiate between static and dynamic parts of the scene as shown in Figure 7. 

Subsequently, the dynamic feature points are disregarded by the algorithm that detects motion consistency 

and estimates the camera's pose by static feature points in the static region. Fu et al. [50] also proposed a 

method for dealing with dynamic environments by integrating Mask R CNN with an attention mechanism. 

The researchers integrated the convolutional block attention module (CBAM) into the Mask R-CNN network 

to enhance dynamic object segmentation. These dynamic object removal methods are then combined with 

ORB-SLAM2 [33]. However, both proposed methods remain slow, even with GPU acceleration, making 

them unreliable for real-time applications. 

 

 

 
 

 
 

Figure 7. Example of segmentation scenarios in SLAM systems [49] 
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Deep learning methods have also been applied directly as the method in VO as in [51], [52].  

Wang et al. [52] proposed a novel DL-based monocular VO algorithm by leveraging deep recurrent 

convolutional neural networks (RCNNs) [53], which is the first end-to-end approach on the monocular VO 

through deep neural networks (DNNs). By leveraging the geometric feature representation that CNN has 

learned, they suggested an RCNN architecture that allows the DL-based VO technique to be applied to whole 

new contexts. The KITTI dataset is used to assess this VO's performance, and it yields a trajectory that is 

quite precise and compatible with the ground reality as shown in Figure 8. 

 

 

 
 

Figure 8. Estimated VO on sequence 05 of KITTI dataset [52] 

 

 

5. FUTURE RESEARCH DISCUSSION 

Environmental elements including illumination, motion blur, and scene texture can have an impact 

on camera-based SLAM systems. Due to the effect of dynamic objects, it is also challenging to perform well 

in dynamic situations. Deep learning methods have been utilized to handle dynamic objects, but real-time 

performance is hard to achieve. Additionally, to increase processing speed without compromising accuracy, 

optimization strategies like GPU acceleration and sparse representations are used. Despite these 

developments, there is still a challenge in striking a balance between robust handling of dynamic aspects and 

real-time speed, which motivates continued study into algorithm efficiency and adaptation to a variety of 

real-world situations 

 

 

6. CONCLUSION 

Past research on simultaneous localization and mapping (SLAM) has achieved significant 

advancements through traditional techniques like indirect and direct methods, which leverage robust 

geometric and photometric data for accurate localization and mapping. Innovations in loop closure 

detection and the use of various camera systems, such as monocular, stereo, and RGB-D, have addressed 

challenges like scale ambiguity, depth estimation, and scene complexity, with trade-offs between 

simplicity and spatial information richness. The integration of deep learning has further revolutionized 

SLAM by enhancing feature extraction, environment understanding, and dynamic object segmentation, 

enabling improved robustness and adaptability in complex scenarios. Despite these advancements, 

achieving real-time performance and scalability in diverse, complex environments remains a major 

challenge. 
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