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 Robot localization is a foundational technology for autonomous navigation, 

enabling task execution and adaptation to dynamic environments. However, 

failure to return to the correct pose after power loss or sudden displacement 

(the “kidnapping” problem) can lead to critical system failures. Existing 

methods often suffer from slow relocalization, high computational cost, and 

poor robustness to dynamic obstacles. We propose a novel inertial 

measurement unit (IMU)-LiDAR fusion relocalization framework based on 

Gaussian historical constraints and adaptive likelihood field matching. By 

incorporating IMU-derived yaw constraints and modeling historical poses 

within a 3σ Gaussian region, our method effectively narrows the LiDAR 

search space. Curvature and normal vector-based feature extraction reduces 

point cloud volume by 50–70%, while dynamic obstacle filtering via multi-

frame differencing and neighborhood validation enhances robustness. An 

adaptive spiral search strategy further refines pose estimation. Compared to 

ORB-SLAM3 and adaptive Monte Carlo localization (AMCL), our method 

maintains comparable accuracy while significantly reducing relocalization 

time and CPU usage. Experimental results show a relocalization success rate 

of 84%, average time of 1.68 seconds, and CPU usage of 38.4%, 

demonstrating high efficiency and robustness in dynamic environments. 

Keywords: 

Adaptive likelihood field 

LiDAR-inertial measurement 

unit fusion 

Localization losses 

Relocalization 

ROS robots 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Min Kang 

School of Automation and Electrical Engineering, Zhejiang University of Science and Technology 

Hangzhou, Zhejiang, China 

Email: kangmin@zust.edu.cn 

 

 

1. INTRODUCTION 

A key prerequisite for mobile robots to accomplish autonomous navigation is positioning, which 

entails figuring out the robot’s posture in its operational environment. Tasks such as mapping, obstacle 

avoidance, area coverage, and target tracking rely on accurate localization. However, one major challenge is 

the “robot kidnapping” problem [1], where a robot is suddenly relocated to an unknown position without any 

prior information, causing a loss of localization. To ensure the safe and effective operation of robots in real-

world applications such as industrial automation, service robotics, and autonomous driving, it is crucial to 

address the relocalization problem after the robot loses its positioning [2]. 

Particle filtering and visual simultaneous localization and mapping (Visual SLAM) are two popular 

methods in robot relocalization. Visual SLAM uses camera image data to locate robots and create maps, and 

is strongly affected by changes in lighting [3]–[5]. Particle filtering uses a group of particles to estimate the 

robot’s state, but it is computationally demanding, particularly in large-scale environments [6]–[10]. These 

limitations, such as Visual SLAM’s sensitivity to illumination changes and particle filtering’s high 

computational costs, underscore the need for more reliable and effective relocalization techniques.  

https://creativecommons.org/licenses/by-sa/4.0/
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At present, many scholars have researched relocalization and achieved fruitful results. For example, 

Hu et al. [11] proposed a fusion positioning method combining Wi-Fi, LiDAR, and maps based on Kalman 

filtering. This method addresses two issues: the poor performance of single Wi-Fi positioning in indoor 

environments and incorrect LiDAR positioning due to ineffective feature extraction in specific scenarios. 

However, it requires substantial computational resources. Wang et al. [12] proposed a global positioning 

method based on the principles of laser odometry and improved adaptive Monte Carlo. They used laser 

odometry based on the point-to-line iterative closest point (PL-ICP) method to replace the traditional odometry 

and introduced the idea of deoxyribonucleic acid (DNA) crossover and mutation in genetics into the particle 

iteration process of AMCL. However, the iterative closest point (ICP) obtains the optimal approximate 

position solution through iteration. Its heavy calculation often causes the robot’s state to change before getting 

the position, resulting in a large cumulative error. Lan et al. [13] proposed narrow field of view (NFOV) error 

recognition to determine the status of base stations through the sliding window technique and standard 

deviation threshold, eliminating abnormal data. Graph optimization fusion positioning combines ultra-wide 

band (UWB) measurement values and odometer information to obtain accurate robot trajectories through 

optimization algorithms. UWB signals may be affected by environmental interference, affecting the reliability 

of measurement results. Wang et al. [1] suggested a residual network (ResNet)-based robot relocalization 

technique that combined coarse and fine matching to greatly increase positioning success rate and efficiency. 

Even though current approaches have some benefits, they still have drawbacks like a slow relocalization 

response and high computational complexity. Conventional approaches show limited accuracy in dynamic 

obstacle detection under challenging conditions such as lighting variations and object occlusion, which 

prevents them from meeting operational requirements in complex environments. Moreover, they often fail to 

effectively integrate historical pose data and inertial measurement unit (IMU) measurements to enable robust 

relocalization in dynamic scenarios, resulting in reduced adaptability and slow recovery after disruptions. 

In order to overcome these limitations, this study proposes a novel LiDAR-IMU fusion-based 

relocalization technique.  The method fuses IMU yaw angles with historical pose data to effectively compress 

the search space, and it utilizes curvature and normal vector analysis for feature extraction, significantly 

reducing data volume while preserving most critical environmental information.  Furthermore, we propose a 

frame-difference-based dynamic obstacle detection approach for accurate dynamic environment discrimination, 

along with an adaptive likelihood field matching algorithm that dynamically optimizes computational 

resource allocation according to environmental complexity for LiDAR-to-map matching. The experimental 

results demonstrate that the proposed method substantially improves system responsiveness and environmental 

adaptability, providing an effective solution for robot relocalization in complex dynamic scenarios. 

 

 

2. RELOCALIZATION APPROACH 

The relocalization implementation block diagram is shown in Figure 1. It mainly consists of a data 

input layer, processing module, and output layer. The data input layer includes data sources such as historical 

coordinates, grid maps, IMU, and LiDAR, responsible for collecting various raw data to provide basic 

information for the system. The processing module is the core part of the relocalization implementation, it 

performs analytical processing and data fusion on the input signals to determine the optimal robot pose 

estimation. The output layer then produces optimal pose estimation based on the processing module’s results, 

determining the robot’s position and orientation. 

 

2.1. Multi-source information fusion combining 

The multi-source information fusion module deeply integrates historical pose data, grid map 

information, and feature-extracted LiDAR and IMU measurements. The historical poses and grid map 

provide macroscopic position and environmental information, offering a global reference framework. 

Meanwhile, the fused LiDAR and IMU data contribute precise local environmental features and motion state 

information. This comprehensive integration enhances the robustness and accuracy of the relocalization 

process in complex dynamic environments. 

 

2.1.1. Gaussian 3σ constraint modeling for historical poses 

Data collection involves obtaining the pose data of the latest 10 successful localizations from  

the robot localization system. Each pose is typically represented as a vector 𝑝 = [𝑥, 𝑦, 𝜃]𝑇 , where x and y are 

the robot’s two-dimensional position coordinates and 𝜃 is its yaw angle. Denote these 10 poses as 

𝑝1, 𝑝2, ⋯ , 𝑝10. To calculate the mean vector 𝝁, given 𝑛 =  10 data points, for the translation part (x and y) 

and rotation part (𝜃), we use 𝝁 =
1

𝑛
∑ 𝑝𝑖

𝑛
𝑖=1 . In the two-dimensional translation and one-dimensional rotation 

case,  𝝁 = [𝜇𝑥, 𝜇𝑦, 𝜇𝜃]𝑇 with 𝜇𝑥 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , 𝜇𝑦 =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 , and 𝜇𝜃 =

1

𝑛
∑ 𝜃𝑖

𝑛
𝑖=1 . 
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Figure 1. Block diagram of the relocalization implementation 

 

 

The covariance matrix 𝜮, a 3 × 3 matrix for pose data, describes data distribution and  

inter-dimensional correlations. Its elements are calculated as𝛴𝑗𝑘 =
1

𝑛−1
∑ (𝑝𝑖𝑗 − 𝜇𝑗)(𝑝𝑖𝑘 − 𝜇𝑘)𝑛

𝑖=1  for  

𝑗, 𝑘 ∈ {1,2,3} corresponding to x, y, and 𝜃. Expanded, the covariance matrix is given by (1), 
 

𝜮 = [

𝜎𝑥𝑥
2 𝜎𝑥𝑦 𝜎𝑥𝜃

𝜎𝑦𝑥 𝜎𝑦𝑦
2 𝜎𝑦𝜃

𝜎𝜃𝑥 𝜎𝜃𝑦 𝜎𝜃𝜃
2

] (1) 

 

where 𝜎𝑥𝑥
2  and 𝜎𝑦𝑦

2  are x and y variances, 𝜎𝜃𝜃
2  is the 𝜃 variance, and 𝜎𝑥𝑦 = 𝜎𝑦𝑥, 𝜎𝑥𝜃 = 𝜎𝜃𝑥, 𝜎𝑦𝜃 = 𝜎𝜃𝑦  

are the respective covariances. The covariance matrix is dynamically adjusted to ensure  

𝜎𝑥𝑦
2 = 𝑚𝑎𝑥( 𝜎𝑥𝑥

2 , 𝜎𝑦𝑦
2 ) ≤ 0.25𝑚2 for translation variance and 𝜎𝜃

2 = 𝜎𝜃𝜃
2 ≤ 0.09𝑟𝑎𝑑2 for rotation variance, 

with adjustments 𝜎𝑥𝑥
2 = 𝑚𝑖𝑛( 𝜎𝑥𝑥

2 , 0.25), 𝜎𝑦𝑦
2 = 𝑚𝑖𝑛( 𝜎𝑦𝑦

2 , 0.25), 𝜎𝜃𝜃
2 = 𝑚𝑖𝑛( 𝜎𝜃𝜃

2 , 0.09). In a Gaussian 

distribution, the 3σ range, covering about 99.7% of the data, defines the effective search region. For two-

dimensional translation (x and y), it’s an ellipse obtained from the covariance matrix’s eigenvalue 

decomposition, and for one-dimensional rotation (𝜃), it is the interval [𝜇𝜃 − 3√𝜎𝜃𝜃
2 , 𝜇𝜃 + 3√𝜎𝜃𝜃

2 ]. When a 

new pose 𝑝𝑛𝑒𝑤 = [𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤 , 𝜃𝑛𝑒𝑤]𝑇 is observed, the Mahalanobis distance 𝑑𝑀 is calculated to measure its 

deviation from the historical Gaussian model. The formula for the Mahalanobis distance is given by (2). 

  

𝑑𝑀 = √(𝑝𝑛𝑒𝑤 − 𝝁)𝑇𝜮−1(𝑝𝑛𝑒𝑤 − 𝝁) (2) 
 

The system initiates the relocalization process if the Mahalanobis distance 𝑑𝑀 surpasses a predetermined 

threshold T, signifying a notable departure from the historical distribution.  

 

2.1.2. IMU pre-integration for relocalization 

When using information from an IMU for localization or relocalization, directly integrating raw 

accelerometer and gyroscope data often suffers from high-frequency noise and accumulated drift. Moreover, 

since the sampling frequency of the IMU is typically much higher than that of LiDAR, repeatedly integrating 

IMU data from the initial moment to the current frame incurs considerable computational cost. To address 

these issues, the pre-integration method has been proposed to efficiently aggregate high-frequency IMU data 

over the lower-frequency interval between two consecutive keyframes, thereby providing a stable relative 

motion constraint. The IMU pre-integration method was first formalized by Forster et al. [14], enabling 

efficient incorporation of high-frequency inertial data into optimization-based estimation frameworks without 

redundant re-integration. 

The core idea of IMU pre-integration is to integrate the angular velocity and linear acceleration over 

the time interval between two frames to obtain a relative pose increment. This approach avoids redundant re-

integration from the initial state during each optimization. In addition, to accommodate the updates of state 

variables (e.g., orientation) during the nonlinear optimization process, the Jacobians of the pre-integrated 

quantities with respect to the initial states are also computed. This facilitates the incorporation of IMU factors 

into optimization-based frameworks. 
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The resulting pre-integrated quantities include the relative rotation increment 𝛥𝑅ij, the relative 

velocity increment 𝛥𝑣ij, and the relative position increment 𝛥𝑝ij. After removing the effects of gravity and 

sensor bias, the IMU pre-integration can be approximated by (3) to (5). 
 

𝛥𝑅𝑖𝑗 ≈ ∏ 𝑒𝑥𝑝((𝜔𝑘 − 𝑏𝑔)𝛥𝑡)
𝑗−1
𝑘=𝑖  (3) 

 

𝛥𝑣𝑖𝑗 ≈ ∑ 𝑅𝑘(𝑎𝑘 − 𝑏𝑎)𝛥𝑡
𝑗−1
𝑘=𝑖  (4) 

 

𝛥𝑝𝑖𝑗 ≈ ∑ [𝑣𝑘𝛥𝑡 +
1

2
𝑅𝑘(𝑎𝑘 − 𝑏𝑎)𝛥𝑡2]

𝑗−1
𝑘=𝑖  (5) 

 

Here, 𝜔𝑘 and 𝑎𝑘 denote the gyroscope and accelerometer measurements at time 𝑘, respectively, 𝑏𝑔 and 𝑏𝑎 

represent the gyroscope and accelerometer biases, and 𝑅𝑘 is the rotation matrix at time 𝑘. 

In situations such as robot kidnapping, where the robot’s prior pose estimate becomes invalid, IMU 

pre-integration can provide a relatively stable motion prior to assist LiDAR in pose initialization. This 

enables rapid relocalization. Furthermore, the high-frequency nature of IMU measurements allows the system 

to continuously capture orientation changes over short time intervals, thereby improving its responsiveness to 

abrupt motion. 

 

2.1.3. Dynamic processing module 

With its data serving as the foundation of the adaptive likelihood field for assessing position 

probability distributions, LiDAR is essential for localization and environmental perception. However, there 

are two main issues with LiDAR data. First, even though 2D point cloud data is rich, dynamic obstacles 

interference and sensor limitations introduce measurement errors. Second, the massive amount of LiDAR 

data raises storage requirements and decreases computational efficiency.  

The dynamic processing module is mainly responsible for processing LiDAR data. Dynamic 

objects, such as moving vehicles and pedestrians, are common in real-world applications. Accurate 

positioning may be compromised by dynamic object interference in LiDAR point clouds [15]. To counteract 

this interference, the dynamic processing module processes radar data using a multi-frame differential 

detection technique. 

Let the current frame be the c-th frame, with its LiDAR scan distance data sequence represented as 

𝑅𝑐 = [𝑟𝑐1, 𝑟𝑐2, ⋯ , 𝑟𝑐𝑁], where N denotes the number of LiDAR scan points. For M historical frames, the 

distance data sequence of the m-th historical frame is 𝑅ℎ𝑚 = [𝑟ℎ𝑚1, 𝑟ℎ𝑚2, ⋯ , 𝑟ℎ𝑚𝑁], where 𝑚 = 1,2, ⋯ , 𝑀. 

For the i-th scan point, the inter-frame difference 𝛥𝑟𝑖𝑚 between the current frame and the m-th historical 

frame is calculated as (6). 
 

𝛥𝑟𝑖𝑚 = |𝑟𝑐𝑖 − 𝑟ℎ𝑚𝑖| (6) 
 

The neighborhood point set for the i-th scan point is defined as 𝒩𝑖 . For each neighboring point 𝑗 ∈
𝒩𝑖 , we employ an indicator function 𝕀(𝛥𝑟𝑗𝑚 > 𝑇) to evaluate whether the inter-frame difference 𝛥𝑟𝑗𝑚 

exceeds threshold T. The function returns 1 when 𝛥𝑟𝑗𝑚 > 𝑇, and 0 otherwise. 

If ∑ 𝕀𝑗∈𝒩𝑖
(𝛥𝑟𝑗𝑚 > 𝑇) ≥ 1, the i-th scan point is preliminarily identified as potentially dynamic. 

However, a special case requires consideration before final determination. 

In real-world scenarios, when a LiDAR beam switches from a dynamic obstacle to a static 

background due to object movement, the point may falsely trigger dynamic detection. To resolve this, we 

analyze both distance change patterns (sudden increase followed by stabilization) and scan angles to 

distinguish true dynamic points from revealed static features. This approach prevents misclassification when 
∑ 𝕀𝑗∈𝒩𝑖

(𝛥𝑟𝑗𝑚 > 𝑇) ≥ 1 occurs due to obstacle displacement rather than actual dynamics, substantially 

reducing false positives in the detection system. 

 

2.1.4. Feature extraction module 

Feature extraction techniques address the problem of massive LiDAR data by identifying key 

feature points and shape information, significantly reducing data volume while retaining critical 

environmental details. This approach accelerates processing and improves analysis accuracy [16]. 

Finding jump points—points in the LiDAR data where the distance between adjacent measurements 

substantially deviates from the expected range, indicating potential object boundaries or data anomalies [17]. 

the point clouds are segmented using the proper thresholds and rules, and Each group of segmented points is 

regarded as a local neighborhood. Formula (4) yields the covariance matrix of the local neighborhood, 

assuming that each local neighborhood contains k point clouds. 
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𝐶 =
1

𝑘
∑ (𝑝𝑖 − 𝑝̄)𝑘

𝑖=1 (𝑝𝑖 − 𝑝̄)𝑇 (7) 

 

Among them, 𝑝𝑖  is the point in the neighborhood, and 𝑝̄ is the centroid of the neighborhood. Then, 

perform eigenvalue decomposition on the covariance matrix C to obtain three eigenvalues 𝜆1, 𝜆2, and 𝜆3. The 

curvature is calculated by the ratio of the minimum eigenvalue to the sum of the eigenvalues, as shown in (5). 

Points with larger curvature usually correspond to corner points or edges in the environment. 
 

𝑘 =
𝑚𝑖𝑛(𝜆1,𝜆2,𝜆3)

𝜆1+𝜆2+𝜆3
 (8) 

 

The parameters of a circle are fitted by the least squares method [18]. Suppose the equation of a 

circle is (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2. Where (𝑎, 𝑏) are the coordinates of the center of the circle and 𝑟 is the 

radius. For the points (𝑥
𝑧𝑡

𝑖 , 𝑦
𝑧𝑡

𝑖) (represents the global coordinate system coordinates of the points projected 

onto the map from the points scanned by the laser) in the given point cloud data. Substitute them into the 

equation of the circle to construct a series of equations about 𝑎, 𝑏 and 𝑟. Then, minimize the sum of the 

squared distances from the points to the circle, that is, solve for the values that make (6) reach its minimum. 
 

𝑚𝑖𝑛
𝑎,𝑏,𝑟

∑ [√(𝑥𝑧𝑡
𝑖 − 𝑎)

2

+ (𝑦𝑧𝑡
𝑖 − 𝑏)

2

𝑎 − 𝑟2]

2

𝑛
𝑖  (9) 

 

To mitigate the excessive influence of long straight lines during data processing, a strategy of 

weakening their weight is adopted. This method guarantees the efficient retention of environmental 

characteristic information. The positioning algorithm can more effectively identify potential positions by 

using the processed data for probability inference, which improves the system’s overall accuracy and 

robustness. 

 

2.2. Adaptive likelihood field method 

The beam model is prone to local optima and high computational costs. The adaptive likelihood 

field approach overcomes the beam model’s drawbacks, particularly its non-smoothness in cluttered 

environments [19], [20]. The likelihood field model by reducing computational complexity and blurring 

obstacles provides smoother and more efficient results than the beam model [21], [22]. The probability 

distribution of the likelihood field [23] can be represented by (7). 
 

𝑝(𝑧𝑡|𝑥𝑡 , 𝑚) = ∏ 𝑝(𝑧𝑡
𝑖|𝑥𝑡 , 𝑚)𝑛

𝑖=1  (10) 

 

Among them, 𝑧𝑡
𝑖 is the i-th LiDAR measurement value at time, 𝑥𝑡is the pose of the robot at time, and 

𝑚 is the map. The likelihood field model blurs the obstacles in the workspace, making it applicable to 

various spatial situations with smoother and more efficient results. Its core idea is to regard the points on the 

grid as forming a magnetic field that attracts the surrounding point clouds, and the attraction decays with the 

square of the distance (or Gaussian decay can be used) [24], [25]. The endpoints obtained by LiDAR 

measurement in the global coordinate system are projected. At time t, the posture of the robot is 

𝑥𝑡 = (𝑥, 𝑦, 𝜃)𝑇, the installation position of the LiDAR relative to the center coordinates of the robot is 

(𝑥𝑘,𝑠𝑒𝑛𝑠𝑦𝑘,𝑠𝑒𝑛𝑠)
𝑇
, the angle of the laser beam of the LiDAR relative to the orientation of the robot is 𝜃𝑘,𝑠𝑒𝑛𝑠, 

the coordinates of the laser-measured endpoints relative to the center of the LiDAR is 𝑧𝑡
𝑘, and the coordinates 

of the points scanned by the laser projected onto the global coordinate system of the map is (𝑥𝑧𝑡
𝑘𝑦𝑧𝑡

𝑘), as 

shown in Figure 2, their relationships are described by (8). This technique offers a more dependable method 

for robot relocalization while successfully addressing the drawbacks of the beam model. The robot uses this 

formula to update its position estimate in the global coordinate system based on its current posture and sensor 

measurements, achieving precise positioning. 
 

(
𝑥𝑧𝑡

𝑘

𝑦𝑧𝑡
𝑘

) = (
𝑥
𝑦) + (

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
𝑥𝑘,𝑠𝑒𝑛𝑠

𝑦𝑘,𝑠𝑒𝑛𝑠
) + 𝑧𝑡

𝑘 (
𝑐𝑜𝑠(𝜃 + 𝜃𝑘,𝑠𝑒𝑛𝑠)

𝑠𝑖𝑛(𝜃 + 𝜃𝑘,𝑠𝑒𝑛𝑠)
) (11) 

 

During relocalization initialization, the system constructs a 3σ-constrained search region on the 2D 

plane by leveraging real-time IMU yaw angle measurements (𝜃). This approach reduces the LiDAR heading 

search range to ±30° (an 83.3% reduction compared to full 360° search) while initializing the positional 

search space using historical trajectory variance constraints (𝜎𝑥𝑥
2 , 𝜎𝑦𝑦

2 ≤ 0.25𝑚2) 
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Figure 2. Robot coordinate transformation 

 

 

For each candidate pose [𝑥, 𝑦, 𝜃]𝑇 , the system processes LiDAR data through dynamic obstacle 

removal and static feature extraction, then calculates the likelihood of matching between environmental features 

(edges/planes) and pre-built map elements. The iterative optimization maximizes the likelihood function 

𝑝(𝑧𝑡|𝑥𝑡 , 𝑚), where 𝑧𝑡 denotes current observations, 𝑥𝑡represents candidate poses, and 𝑚is the static map. 

If the maximum matching score within the initial search region falls below the predefined threshold, 

the system activates an adaptive spiral expansion strategy as shown in Figure 3. Taking the initial search 

center as the origin, it dynamically adjusts the search step size using 𝐿𝑘 = 𝐿0 ⋅ 𝑟𝑘 (where 𝐿0 = 0.5 𝑚 is the 

initial step size and 𝑟 = 0.8 is the decay rate), extending the search area in a spiral pattern outward. The 

feature matching and optimization procedure is repeated following each expansion until a pose that satisfies 

the requirements is discovered. The final candidate pose is validated twice: first, it is examined for validity 

within the boundaries of the map and for the absence of collisions; second, IMU pre-integration is used to 

confirm that the motion constraints are consistent. Pose validation completes the relocalization process by 

publishing the pose to the output layer. 

 

 

 
 

Figure 3. Expansion map of search scope 

 

 

3. RESULTS AND DISCUSSION 

This section explains the results of research and at the same time is given comprehensive discussion. 

Results can be presented in figures, graphs, tables and others that make the reader understand easily [14], 

[15]. The discussion can be made in several sub-sections. 

To establish the technical foundation for subsequent evaluation, we first analyze the core perception 

module’s performance. This initial validation focuses on real-time dynamic obstacle detection using LiDAR 

point cloud processing, and robust feature extraction for environmental characterization. The verified 

performance of these subsystems directly enables the relocalization capabilities demonstrated in later 

benchmark and field tests. 
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3.1. LiDAR-based dynamic obstacle detection and feature extraction 

The system is implemented on a real robotic platform equipped with an RPLIDAR A2 LiDAR 

sensor (model: RPLIDAR A2, 10 Hz scanning frequency, 16 m maximum range, 0.15 m minimum range, 

0.0032 rad angular resolution, and 0.0858 s scan duration), which is used for 2D environmental scanning. 

The experimental setup includes dynamic human subjects walking at different speeds. The system operates 

on Ubuntu 20.04 with the robot operating system (ROS), and the resulting 2D scans are visualized in rviz, as 

illustrated in Figure 4. 

Figure 4(a) shows the processed LiDAR data after dynamic obstacle detection and feature 

extraction, where the red point cloud represents the detected dynamic obstacles and the green point cloud 

corresponds to the extracted static features. Compared to the raw LiDAR data shown in Figure 4(b), which is 

visualized in yellow, the processed data is significantly reduced in volume. In particular, the number of 

points is reduced by approximately 50% to 70%, indicating a substantial decrease in redundant or non-

essential data. Despite this reduction, key environmental features such as corners and arcs are largely 

preserved, ensuring that the structural integrity of the scene is maintained for relocalization. 

The experimental results demonstrate that the proposed method effectively filters dynamic elements 

while preserving essential geometric features of the environment. This not only improves data efficiency but 

also enhances the robustness and accuracy of subsequent relocalization modules. 

 

 

 
(a) 

 
(b) 

 

Figure 4. LiDAR data comparison: (a) LiDAR data after dynamic obstacle detection and feature extraction 

and (b) raw LiDAR data 

 

 

3.2. Benchmark testing on OpenLORIS-Scene Dataset 

This study uses the OpenLORIS-Scene public dataset to test the relocalization system’s localization 

accuracy in indoor environments. The dataset was acquired by mobile robots in real-world environments, 

which included ground truth trajectories from motion capture devices or high-precision LiDAR as well as 

multimodal sensor data from a variety of settings, such as cafes, corridors, and offices.  

Figure 5 illustrates the selection of four data sequences from two distinct scenarios in the 

OpenLORIS-Scene dataset used for evaluation. Specifically, Figure 5(a) and Figure 5(b) correspond to the 

Cafe1-1 and Cafe1-2 sequences, which capture dynamic indoor environments with frequent human activity. 

In contrast, Figure 5(c) and Figure 5(d) show the Corridor1-1 and Corridor1-2 sequences, which present 

challenges such as strong glass reflections and illumination changes. These representative sequences 

highlight the diverse environmental conditions under which our relocalization method is tested. The 

experimental platform consisted of an upper computer based on an Intel Core i5 processor running Ubuntu 

20.04 with the ROS integrated into it. An offline sparse semantic map of the target environment was 

generated using ORB-SLAM3, running in Monocular-Inertial mode with a custom configuration file adapted 

to the dataset. This map included feature points, keyframes, and covisibility graphs. Both our algorithm and 

AMCL utilize the high-precision grid maps created with Lidar Inertial Odometry via Smoothing and 

Mapping (LIO-SAM) as ground truth references. Each dataset had 20 experimental trials for testing each 

algorithm, and the relocalization error was defined as (12) and (13). 

 

𝑃err = √(𝑥̂ − 𝑥)2 + (𝑦̂ − 𝑦)2 (12) 

 

𝜃𝑒𝑟𝑟 = |𝜃̂ − 𝜃| ×
180

𝜋
 (13) 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 5. OpenLORIS-Scene dataset environments: (a) Cafe1-1 series, (b) Cafe1-2 series, (c) Corridor1-1 

series, and (d) Corridor1-2 series 

 

 

Figure 6 shows box plots of relocalization experiment results comparing different algorithms across 

multiple evaluation metrics. A box-plot is a statistical graph for describing the discrete degree of a group of 

data. The stability of the relocalization can be reflected by the box-plot. The horizontal line inside the box of 

a box plot represents the average value. As shown in Figure 6(a), the box plots of our algorithm demonstrate 

a relatively lower overall position (average error: 0.146 m) and smaller data dispersion. According to 

comparative analysis, our approach outperforms the LiDAR-dependent AMCL algorithm (0.321 m average 

error) by 54.7% in terms of overall positional error while achieving positioning accuracy on par with ORB-

SLAM3 (0.150 m average error). But as Figure 6(b) illustrates, our algorithm’s angular error noticeably rises 

when compared to ORB-SLAM3, especially in corridor datasets. The main causes of this performance 

degradation are (1) the LiDAR system’s 180° scanning range in the OpenLORIS-Scene dataset and (2) the 

glass surfaces that are common in corridor environments, which significantly reduce the number of 

detectable LiDAR feature points, consequently increasing the dispersion of angular measurements. 

Further analysis incorporating Figure 6(c) and Figure 6(d) reveals that our algorithm achieves an 

average CPU utilization of just 0.40 units, representing an 84.7% reduction compared to ORB-SLAM3 (2.60 

units) and a 58.9% improvement over AMCL (0.97 units). In terms of processing time, our algorithm 

completes relocalization in 1.30 seconds on average; only 15% slower than ORB-SLAM3’s 1.13 seconds 

while being 74.4% faster than AMCL’s 5.08-second runtime. The lower position and compact dispersion of 

its box plots clearly demonstrate that the proposed method consumes fewer computational resources while 

maintaining stable performance during relocalization processes. These characteristics confirm the algorithm’s 

higher computational efficiency and faster relocalization capability. 

 

3.3. Field validation in real-world environments 

To verify the effectiveness and robustness of the proposed method, experiments were conducted in 

an actual room environment using a comprehensive sensor suite. The real robot platform was equipped with 

an RPLIDAR A2 LiDAR sensor for 2D environmental scanning, a WHEELTEC N100 IMU for precise 

motion tracking and orientation estimation, and an upper computer based on Intel Core i5 processor. The 

system operated under the Ubuntu 20.04 environment with the ROS framework. For comparison, ORB-

SLAM3 was run in Monocular-Inertial mode using a monocular camera and the WHEELTEC N100 IMU, 

with image-IMU synchronization achieved through timestamp alignment. Figure 7 presents the experimental 

setup, where Figure 7(a) shows the physical test environment, Figure 7(b) displays the corresponding test 

environment map, and Figure 7(c) illustrates the complete mobile robot platform with all integrated sensors. 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 6. Relocalization experiment data of datasets-comparison of different algorithms: (a) position error, 

(b) angle error, (c) CPU load, and (d) time cost 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 7. Relocalization test environment: (a) test environment, (b) test environment map, and (c) robot 

mobile 
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This study conducted a series of “robot kidnapping” tests to evaluate the performance of three 

algorithms: the proposed method, ORB-SLAM3, and AMCL. To enhance the comparative analysis under 

dynamic conditions, the experimental environment incorporated moving obstacles that accounted for 

approximately 15% of both LiDAR scans and camera frames. Additional challenging scenarios were 

introduced at specific locations: glass interference at Point C and reduced illumination at Point F. The 

experimental evaluation involved conducting comprehensive robot kidnapping tests across multiple scenarios 

(A→B, B→C, C→D, D→E, and E→F), with systematic performance comparisons measured through four 

key metrics: positioning accuracy (mean error and success rate documented in Table 1) and computational 

efficiency (processing time and CPU utilization presented in Table 2). 
 

 

Table 1. Position error and success rate comparison by algorithm 
Experimental 

points 
Our algorithm  ORB-SLAM3  AMCL 

Mean 
error 

Success 
rate 

 Mean 
error 

Success 
rate 

 Mean 
error 

Success 
rate 

A →B 0.073m, 

0.58° 

100%  0.074m, 

0.57° 

95%  0.210m, 

9.25° 

60% 

B →C 0.137m, 

0.70° 

60%  0.108m, 

0.69° 

80%  0.394m, 

11.32° 

10% 

C →D 0.109m，
0.72° 

80%  0.112m, 
0.62° 

85%  0.224m, 
10.49° 

45% 

D →E 0.113m, 
0.92° 

95%  0.090m, 
0.76° 

90%  0.262m, 
1.56° 

30% 

E →F 0.101m, 

0.61° 

85%  0.137m, 

1.10° 

55%  0.527m, 

1.31° 

40% 

Mean 

 

0.106m, 

0.65° 

84%  0.104m, 

0.74° 

81%  0.323m, 

6.78° 

37% 

 

 

Table 2. Execution time and CPU utilization comparison by algorithm 
Experimental 

points 
Our algorithm  ORB-SLAM3  AMCL 

Mean 
time 

CPU 
load 

 Mean 
time 

CPU 
load 

 Mean 
time 

CPU 
load 

A →B 0.68s 35.4%  2.82s 278.2%  4.55s 100.6% 

B →C 2.67s 37.3%  2.17s 265.7%  7.58s 99.6% 
C →D 1.74s 39.9%  1.93s 246.4%  4.62s 98.4% 

D →E 1.18s 41.9%  2.20s 277.4%  4.48s 101.7% 

E →F 2.15s 37.6%  2.66 264.1%  5.15s 88.9% 
Mean 1.68s 38.4%  2.34s 266.3%  5.27s 97.9% 

 

 

 The proposed algorithm demonstrates superior relocalization accuracy due to IMU-based heading 

constraints, achieving an 89.6% reduction in mean yaw error compared to AMCL. Furthermore, the overall 

success rate is improved by 47% relative to AMCL. The conventional AMCL approach is prone to premature 

particle convergence, where particles erroneously concentrate in locally optimal—but globally incorrect—

regions, leading to suboptimal pose estimation. 

In Scenario C with glass interference, the proposed method maintains a positional error of merely 

0.109 m with a 60% success rate, whereas AMCL exhibits significantly higher errors and a drastically 

reduced success rate of 10%, rendering it nearly ineffective. These results underscore the critical role of the 

Gaussian 3σ constraint modeling for historical poses in enhancing robustness. 

While ORB-SLAM3 achieves an 80% success rate in Scenario C, its performance significantly 

degrades under low-light conditions (Scenario F), exhibiting a 26.9% increase in positional error and a 31.3% 

decline in success rate (from 80% to 55%). In contrast, the proposed algorithm maintains stable performance 

in Scenario F, demonstrating its illumination-invariant reliability. This consistent performance effectively 

highlights the inherent advantage of LiDAR’s insensitivity to lighting variations. 

The computational efficiency evaluation demonstrates that the proposed method achieves significant 

improvements across all metrics compared to baseline algorithms. Relative to AMCL (97.9% CPU 

utilization), the proposed solution shows a 68.1% improvement in localization speed (1.68 s vs 5.27 s) while 

reducing CPU usage by 60.8% (38.4% vs 97.9%). When compared to ORB-SLAM3 (266.3% CPU 

utilization), it maintains a 28.5% speed advantage with an 85.6% reduction in computational load (38.4% vs 

266.3%). Although processing demands increase in feature-dense scenarios (C and F) due to extensive 

feature extraction and long-range relocalization requirements, the algorithm’s optimized LiDAR processing 

pipeline and efficient spiral search strategy enable it to consistently outperform AMCL in both accuracy and 

resource utilization. These results validate the system’s ability to maintain high computational efficiency 

while delivering robust performance across diverse operating conditions. 
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The experimental results demonstrate the effectiveness of the proposed IMU-LiDAR likelihood 

field matching framework, which achieves three key performance benchmarks: i) an 84% success rate in 

robot kidnapping recovery scenarios, ii) an average relocalization time of 1.68 seconds, and iii) a CPU 

utilization rate of only 38.4%. These quantitative metrics collectively verify that the proposed method 

significantly improves both localization accuracy and system robustness in challenging real-world operating 

conditions, while maintaining exceptional computational efficiency. 

 

 

4. CONCLUSION 

Resolving the initial pose estimation and “robot kidnapping” issues is fundamental to enabling 

autonomous robot navigation, a critical capability for applications in industrial automation, service robotics, 

and autonomous driving. This study proposes a Robot Gaussian-Historical Relocalization algorithm based on 

IMU-LiDAR likelihood field matching, achieving significant improvements in localization accuracy, 

robustness, and computational efficiency. By leveraging IMU heading constraints and historical pose priors, 

it effectively reduces yaw error and increases relocalization success rates, particularly in challenging 

scenarios with dynamic obstacles or poor lighting. Compared to AMCL and ORB-SLAM3, the method not 

only offers faster and more reliable relocalization but also operates with substantially lower CPU usage. 

These results validate the algorithm’s suitability for real-world mobile robot applications, especially in 

environments where traditional vision- or particle-based methods struggle. Nevertheless, the method faces 

challenges in environments with weak geometric features, repetitive structures, or severe sensor interference 

such as fog, dust, or reflections. 

Future work will first address the limitations caused by sensor noise and failure. We plan to conduct 

a detailed sensitivity analysis on the impact of errors in historical poses and sensor measurements, and 

explore adaptive uncertainty modeling to enhance robustness under challenging conditions. In parallel, we 

will explore machine learning-based methods such as CNNs and Transformers to enhance LiDAR feature 

extraction in ambiguous environments. Once a more robust single-robot system is established, we will extend 

the method to multi-robot scenarios, enabling shared relocalization for better scalability and coordination. 
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