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ABSTRACT

Biological neural network (BNN) algorithms have become popular in coverage
search in recent years. However, its edge activity values are weak, and it is sim-
ple to fall into a local optimum at a late stage of coverage. When applied to
complex environments, the 3D BNN network structure has high computational
and storage complexity. In order to solve the above problems, we propose an al-
gorithm for multi-robot cooperative coverage of complex terrain based on an im-
proved BNN. The algorithm models the complex terrain using a 2.5-dimensional
(2.5D) elevation map. Combining the dual-layer BNN network with the 2.5D
elevation map, we propose an elevation value priority mechanism. This mecha-
nism lets the robot make elevation-based decisions and prioritizes higher terrain
areas. The dual neural network’s first layer plans the robot’s path in normal
mode. The second network layer helps the robot escape the local optimum. Fi-
nally, the algorithm’s full coverage effect in complex terrains and the speed of
covering high terrain are verified by simulations. The experiments show that our
algorithm preferentially covers high points of the region and eventually covers
100% of complex terrain. Compared with other algorithms, our algorithm cov-
ers more efficiently and takes fewer steps than others. The speed of covering
high terrain areas has increased by 34.51%.
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1. INTRODUCTION
Robotic systems for full coverage tasks in complex environments are in high demand due to the rapid

development of geological exploration, agricultural monitoring, and environmental surveillance [1]. Modern
agriculture relies on robots for crop and soil monitoring, while geological exploration uses robots for data
collection across large areas. In real-world applications, task requirements often go beyond full coverage. For
instance, to optimise water distribution in agricultural irrigation, robots should prioritise higher elevation areas
[2], and geological exploration can benefit from focusing on high-elevation points to understand topography.
Thus, exploring unknown terrains while prioritising key areas is a major challenge.

Current full coverage path planning algorithms include A* [3], genetic algorithms [4], RRT* [5], the
Boustrophedon method [6], and spanning tree coverage (STC) [7]. These algorithms are widely used in various
scenarios. Cai et al. [3] introduced an algorithm (UAPP) integrating A* and the U-turn algorithm to clean areas
obstructed by irregular obstacles. Maxwell [8] proposed a Smooth-STC model that minimises backtracking
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and maximises coverage by optimising paths. However, most of these algorithms are designed for single-robot.
Boustrophedon methods partition work areas into cells, with robots planning within each cell. Jacobs and Bean
[9] examined common cell decomposition techniques, but Boustrophedon coverage lacks multi-robot synergy,
with each robot focusing on its partition and minimal coordination [10].

The bio-inspired neural network (BNN) algorithm is able to adjust the robot’s path in unknown envi-
ronments in real time by simulating the behaviour of biological neurons. Additionally, it doesn’t require any
learning and is computationally straightforward. It has been widely used in unknown and dynamic environ-
ments in recent years [11]. Cao and Sun [12] used a BNN network in the domain of multi-robot target search.
All robots share environmental information. Each robot perceives other robots in the vicinity as dynamic ob-
stacles. But as the search progresses, the amount of unexplored territory decreases, and the BNN algorithm
can quickly put the robot in a deadlock. Zhang et al. [13] combined BNN with a model predictive control
algorithm. Deadlock states are less common when the activity value goal function is defined to forecast and
solve the optimal inputs for the upcoming time sequence. However, the above work is mainly carried out in a
2D grid map, which only divides the environment into obstacles and free grids.

Zhu et al. [14] developed a novel BISOM method and tested its performance in an underwater 3D
workspace with obstacles by combining self-organising neural networks with BNN networks. The BNN net-
work and potential field were merged in the 3D underwater environment by Cao et al. [15]. The BNN network
devised the optimal trajectory for the underwater vehicle, while the potential field function refined the path
established by the bionic neural network, thereby achieving both static and dynamic target path planning for
the AUV. But to deal with the complicated world, the 2D BNN network architecture is changed to 3D, which
greatly increases the computing and storage capacity. A coarse and fine scale 3D map was suggested in the
literature to address the issue of extensive computation in the 3D BNN algorithm [16]. The D* algorithm cal-
culates the 3D optimal paths for the selected coarse scale map, followed by the application of the improved
BNN algorithm to determine the 3D optimal paths for the fine scale map. However, this method depends on
the invariance of geomorphological features and the selection of scale. Changes in the environment during task
execution, or significant differences in map features across scales, may hinder the method’s ability to achieve
global optimisation of the path.

In summary, BNN algorithms tend to get trapped in local optima, and 3D architectures are computa-
tionally expensive. We propose a multi-robot collaborative coverage algorithm for complex terrains using an
improved BNN. Our method employs a 2.5D mesh map to represent complex environments, combining a dual-
layer BNN with elevation-first coverage. This allows robots to prioritise high-elevation areas based on terrain
differences. The first BNN layer plans normal coverage paths, while the second layer helps avoid local optima.
A virtual edge mechanism is also introduced to address weak activity values at the BNN network’s edges. The
paper is organised as follows: section 2 discusses terrain modeling. Section 3 covers elevation-priority and
obstacle avoidance mechanisms. Section 4 details the improved BNN algorithm and robot decision-making.
Section 5 presents simulation results and comparisons with existing methods.

2. ENVIRONMENTAL MODELING
In coverage tasks for agricultural monitoring and geological exploration, terrain complexity arises

from natural obstacles and varying ground heights. Choosing an appropriate environmental representation
method is crucial for robots to interpret terrain. A 3D grid map [17] divides space into voxels, representing
complex structures like suspended objects and multi-layered facilities. However, 3D maps are memory-
intensive, especially in large-scale or high-resolution environments. In contrast, 2D raster maps use binary
values (0 or 1) to denote obstacles and passable areas [18], but fail to capture terrain features. A 2.5D grid map
stores height values on a 2D plane, effectively representing terrain undulations [19]. For mountainous or hilly
terrains, robots only need surface height data to find optimal paths, avoiding the complexity of full 3D map-
ping. Thus, we use 2.5D grid maps for environmental representation, as shown in Figure 1. Each grid’s number
indicates the elevation at its center point, relative to a reference datum [20]. Elevation values are mapped to
colors, as shown on the right of Figure 1. The dots represent the robot model, and the arrows show poten-
tial robot movement directions. Additionally, we assume that the robot has powerful sensing capabilities and
terrain adaptability, enabling it to accurately assess terrain height information and navigate effectively under
various conditions.
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Figure 1. 2.5D grid map and robot motion direction

3. ELEVATION-PRIORITY COVERAGE MECHANISM BASED ON BNN
Based on the environmental model and assumptions in section 2, the robot can accurately acquire

terrain information. Using this data, the robot makes decisions. To address the need for prioritising higher
terrain areas, and given the effectiveness of BNN in dynamic environments, we design a BNN-based elevation-
priority coverage mechanism. This mechanism enables the robot to focus on higher terrain areas while ensuring
full coverage.

3.1. Bio-inspired neural network
The BNN model utilized in this study is a discrete-time Hopfield-type neural network [21], constructed

on a grid map that incorporates complex terrain, as illustrated in Figure 2. Each circle represents a neuron
corresponding to a grid cell in the map, with each grid cell having an associated neuronal activity value [22].
Neurons are locally connected to one another within a small (0, r) region. The dynamic behavior of neuron
activity values is expressed by (1).

Figure 2. BNN with 2.5D grid map
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dmi

dt
= −Ami + (B −mi)

[Ii]+ +
∑
j∈Ni

wij [mj ]
+

− (D +mi) [Ii]
− (1)

where A represents the decay rate of the neuronal activity value, while B and −D denote the upper and lower
limits of the neuronal activity value, respectively. mi is the activity value of neuron i and Ii corresponds
to the external inputs applied to neuron i. The terms [a]+ = max{a, 0}, [a]− = max{−a, 0} are defined
accordingly. The expression [Ii]

+
+

∑
j∈Ni

wij [mj ]
+ are the excitatory input of current neuron i, while mj

refers to the activity value of the neighboring neuron j. The term [Ii]
− signifies the inhibitory input to neuron

i. The connection weight coefficients wij between neuron i and and its neighboring neuron j are defined as
(2). Ni is the set of neurons associated with neuron i.

wij = g(dij) =

{ u
dij

, 0 < dij < r

0, dij ≥ r
(2)

Here, dij denotes the Euclidean distance between the locations of neuron i and neuron j(i ̸= j). The constant
u is a positive value, r represents the radius of the receptive field, as shown in Figure 2, typically ensuring that
wij ∈ [0, 1]. It should be noted that the neural network model presented in this paper differs from existing
models. The model is primarily constructed on terrains with height information, incorporating various exter-
nal inputs(Ii) at different heights to ensure that the robot can effectively respond in a complex and dynamic
environment.

3.2. Elevation-priority coverage mechanism
A neuron’s external positive input in the neural network model consists of two parts: external ex-

citation ([Ii]
+) and surrounding neuron connectivity inputs (

∑
j∈Ni

wij [mj ]
+), ensuring only positive neuronal

activity propagates, while negative values act as local inhibition [23]. Neuronal activity is primarily influenced
by inhibitory and excitatory inputs [24]. Model stability theory asserts that the magnitude of Ii does not affect
the positivity or negativity of Lyapunov function derivatives [24], meaning model stability is independent of
Ii’s value. Thus, varying Ii results in different neuronal activity levels for different regions.

Terrain elevation varies by raster, influencing task feasibility and safety [20]. The robot uses this infor-
mation for real-time decision-making. Elevation differences are more dynamic and informative than absolute
values [25], defined as:

∆hj = |hi (x, y)− hj (x, y)| , j ∈ Ni (3)

where Ni is the set of neurons associated with neuron i, and hi(x, y) and hj(x, y) are the elevation values at the
current and potential decision points, respectively. This allows quick identification of obstacles or unsafe areas.
To prioritise higher terrain, we combine height differences with a BNN network to form the elevation-priority
coverage mechanism in (4).

Ij = α ∗∆hj ,∆hj ⩽ Hmax, j ∈ Ni (4)

where α is a constant, and Hmax is the maximum passable height difference.
For safety, an obstacle avoidance mechanism applies inhibitory inputs to neurons when the height

difference exceeds a threshold or when an obstacle is present, as shown in (5).

Ij = β,∆hj > Hmax or pj(x, y) ∈ NA, j ∈ Ni (5)

Here, β < 0, Hmax is the maximum height difference the robot can traverse, pj(x, y) represents the coordinates
of neuron j, and NA denotes the obstacle grid. Ij is the updated external input of neuron j.

4. IMPROVED BNN ALGORITHM DECISION
As coverage progresses, fewer meshes remain uncovered, often farther from the robot. Traditional

BNN algorithms struggle to guide robots to these areas, leading to repeated coverage and local optimisation
[26], [27]. To address this, we propose a locally optimal detrapping mechanism using dual BNN networks,
along with a virtual edge mechanism to resolve low activity values at the network’s edges.
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4.1. Virtual edge mechanism
Figure 3 shows the robot operating in a workspace W (red grids), with an inner workspace W1 (light

blue grids) and an edge workspace W2 (light green grids). Compared to W1, W2 has fewer surrounding grids,
making it less attractive and more likely to remain uncovered. Figure 4 demonstrates a collaborative coverage
scenario with four robots covering a 20x20 area. After 65 steps, uncovered areas (grey grids) are mainly at the
edge of the workspace (W2). To improve edge grid attraction, we introduce a virtual edge mechanism that adds
a virtual grid collection Vv of v layers extending from W2, with all grids set to an elevation of 0. These grids
are updated using the same method as (4) and (1). In Figure 3, virtual edges Vv are shown in grey, with dashed
arrows indicating areas the robot cannot traverse, and solid arrows showing the next step decisions.

Figure 3. Virtual edge mechanism Figure 4. Collaborative coverage of late stages

4.2. Dual BNN detrapping mechanism
To detect if the robot is trapped in a local optimum, we define the robot’s state as in (6):

State (Ri) =

{
1, Sr0 (Ri right) = 0&td > Td

0, others
(6)

where Sr0(Ri) represents the uncovered area in the robot’s detection range, td is the time in the local optimum,
and Td is the threshold. When there is no uncovered area within its range and the time exceeds Td, the robot
enters state 1 (local optimum). Otherwise, it operates in state 0.

Based on the robot’s state, we define two working modes in (7):

Mode (Ri) =

{
Breakout, State(Ri) = 1

Coverage, State(Ri) = 0
(7)

In the Breakout mode, in order to quickly reach the uncovered area and exit the local optimal state, the robot
must find a target point (Tx, Ty) that is as close as possible to its current location and is an uncovered grid.

Ij =

{
G, j ∈ Tj

α ∗∆hj , ∆hj ⩽ Hmax

(8)

As the robot executes the Breakout mode, the state may change. In order to identify whether the robot is out
of the local optimum, we define the robot termination state discriminant as in (9).

State (Ri) =

{
0,

Sr0
(Ri)

r20
⩾ σ or |Ri − Ti| ≤ rmin

1, others
(9)

where σ is the threshold for uncovered area and rmin is the minimum distance to the target. The robot switches
to Coverage mode when the uncovered area exceeds the threshold or it is close to the target; otherwise, it
continues the Breakout mode.
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4.3. Overall decision-making process
The robot’s final decision-making process is expressed in (10):

Pn ⇐ mPn
= max{mj , j = 1, 2, ..., k} (10)

where Pn represents the robot’s next position, mj is the activity value of a potential decision grid, and mPn
is

the maximum activity value among these grids. The decision-making flow for each robot is shown in Figure 5.
Algorithm 1 details the BNN update process, and algorithm 2 presents the pseudo-code for the local optimum
decoupling mechanism. The overall time complexity of the algorithm is O(Nr ∗ (k ∗N1 +N2 ∗Mx ∗My)),
where N1 is the number of steps in coverage mode, N2 is the number of steps in breakout mode, Nr is the
number of robots, and Mx ∗ My is the size of the breakout network, determined by the absolute differences
between the robot’s current position (Rx, Ry) and breakout point (Tx, Ty):

Mx = |Rx − Tx|, My = |Ry − Ty| (11)

This time complexity arises from Algorithm 1 updating the k surrounding neurons and Algorithm 2 updating the
second-layer breakout network. The space complexity is primarily determined by storing the map information,
O(Hx ∗Hy), where Hx and Hy represent the map’s dimensions.

Figure 5. Overall decision-making flowchart

Algorithm 1. Update neuron activity value
Input: current neuron activity value mc(x, y), x∈ [1, Hx], y∈ [1, Hy];elevation value of the robot’s current position hi (x, y); number of

robots Nr ; elevation of the surrounding grid hj (x, y), j = 1, 2 . . . , k
Output: renewed activity value mr(x, y), x∈ [1, Hx], y∈ [1, Hy]
1: for n = 1 → Nr do
2: for j = 1 → k do
3: calculate the ∆hj based on (3)
4: update the Ij based on (4),(5)
5: calculate the updated neuron activity value based on (1) and mc(x, y).
6: end for
7: end for

Multi-robot coverage algorithm in complex terrain based on improved bio-inspired... (Fangfang Zhang)
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Algorithm 2. VBNN jumps out of the local optimum
Input: current neurons activity value mc(x, y), x ∈ [1, Hx], y ∈ [1, Hy]; current status State (Ri)
Output: Neural network activity values after detrapping
1: while State (Ri)==1 do
2: Mode (Ri) = Breakout;
3: update the Ij based on (5),8;
4: calculate the neuron activity value based on (1);
5: make decisions based on (10);
6: if

Sr0
(Ri)

r20
⩾ σ or |Ri − Ti| ⩽ rmin then

7: State (Ri)==0;
8: Mode (Ri) = Coverage;
9: end if

10: end while

5. SIMULATION EXPERIMENT
5.1. Experimental evaluation indicators
5.1.1. Area coverage

Area coverage (AC) measures the algorithm’s path coverage ability. Higher coverage indicates more
comprehensive map coverage. It is defined as:

AC =

(
M

W

)
× 100% (12)

where M is the path-covered area and W is the total work area.

5.1.2. Mean coverage
To reduce randomness and better assess the robot’s overall coverage, we calculate the mean coverage

from multiple experiments:

MC =

∑n
i=1 ACi

n
(13)

where ACi is the area coverage of the i-th experiment and n is the total number of experiments.

5.1.3. Standard deviation of coverage
The standard deviation of coverage (SDC) quantifies variability across experiments. A lower value

indicates more consistent results:

SDC =

√∑n
i=1 (ACi − MC)2

n
(14)

where n is the total number of experiments.

5.2. Process of collaborative coverage
To evaluate the algorithm’s performance, we conducted simulation experiments using MATLAB 2021a

on a 1.60 GHz processor. The experimental parameters are as follows: the coverage area is a 20×20 grid, with
each grid having a unit length of 1. Initially, robots only know the environment boundaries, and each robot has
a 3×3 coverage area. The BBN parameters are: A = 2, B = D = 1, r =

√
2, u = 0.1, α = 0.125, β = −1,

Hmax = 5, timestep dt = 0.2, r0 = 4, rmin = 2
√
2, Td = 1, G = 5.

For collaborative coverage, four robots (R1(14,15), R2(9,5), R3(8,11), R4(6,11)) were tasked with
covering an uneven terrain with obstacles. The neural network activity values and robot motion trajectories at
different steps are shown in Figure 6. Figure 6(a) shows the trajectory and coverage of the robots when they
work collaboratively for 29 steps. Raster elevation values match raster colours in the figure’s right legend.
Barriers or impassable rasters are black. Light grey rasters represent added virtual edges. Dark grey rasters
represent uncovered areas. Figure 6(b) displays the neuronal activity map at 29 cooperative work steps. The
light blue filled area is the actual working area. It can be seen that the covered area’s neurone activity value
drops rapidly, while the uncovered area’s remains high, attracting the robot. The obstacle region has a negative
activity value, inhibiting the robot from passing through. The trajectory and coverage when completing the full

IAES Int J Rob & Autom, Vol. 14, No. 3, September 2025: 348-360



IAES Int J Rob & Autom ISSN: 2722-2586 ❒ 355

coverage task are shown in Figure 6(c). Full coverage was achieved in 66 steps. Four robots avoided obstacles
with little overlap in their trajectories. When this grid is covered, the elevation values at that location are also
stored in the 2.5D grid. After completing the coverage task, the neural network activity values in the entire
work area have stabilised, leaving only uncovered rasters at virtual edges as shown in Figure 6(d). The above
experiments demonstrate that our algorithm, guided by neurone activity values, can avoid obstacles and cover
the entire region.

(a) (b)

(c) (d)

Figure 6. Trajectories of MRS at different movement steps and corresponding activity values (a) motion
trajectory (N=29), (b) activity values (N=29), (c) motion trajectory (N=66), and (d) activity values (N=66)

5.3. Performance of the improved BNN algorithm
In order to avoid the partiality and randomness of a single experiment, we conducted 50 Monte Carlo

experiments in different terrains with different robot starting positions. The experimental platform and pa-
rameters are the same as in section 5.2.. The 3D maps of the three different terrains are shown in Figure 7.
Specifically, Figure 7(a) illustrates Terrain 1, Figure 7(b) illustrates Terrain 2, Figure 7(c) illustrates Terrain 3.
Each of the three terrains has a different number of maxima and different terrain complexity. To fully evaluate
the performance of our algorithm, we compared it to traditional neural networks and model predictive control
algorithms (DMPC) [13].
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(a) (b) (c)

Figure 7. Three different terrains (a) terrain 1, (b) terrain 2, and (c) terrain 3

Table 1 displays the mean coverage (MC) and standard deviation of coverage (SDC) of experiments
conducted on various terrains with 105 steps. As can be seen from Table 1, our algorithms achieve 100%
coverage under various terrains, completing the full coverage task. The trend of the mean coverage (MC)
versus the number of steps for different algorithms is shown in Figure 8. As can be seen from Figure 8, pre-
coverage areas are more uncovered, and coverage growth is similar for various algorithms. However, in late
coverage stages, our algorithm has faster growth and higher efficiency, while other algorithms have not reached
100% coverage on average. Table 2 displays the average number of steps for the experimental group completing
full coverage. As can be seen from Table 2, our algorithm has a superior full coverage completion rate (100%
vs. 38% vs. 24% in 50 sets of experiments in terrain 1), with a shorter average number of steps. In summary,
our algorithm achieves 100% coverage in various terrains, with fewer steps and higher efficiency.

Table 1. MC and SDC in different terrains
Our method GBNN DMPC

Terrain/indicators MC SDC MC SDC MC SDC
terrain 1 100% 0 95.76 0.0189 98.37 0.0131
terrain 2 100% 0 94.17 0.0195 97.83 0.0134
terrain 3 100% 0 95.12 0.0206 97.21 0.0129

Figure 8. Mean coverage(MC) with steps for different algorithms

Table 2. Number of groups completed and rate of completion and number of steps covered by completion
Indicators/method Our method DMPC GBNN

Number of groups completed(50) 50(50) 19(50) 12(50)
Rate of completion 100% 38% 24%

Average steps 90.90 100.82 127.25

IAES Int J Rob & Autom, Vol. 14, No. 3, September 2025: 348-360
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5.4. Elevation-priority coverage mechanism validation
Our algorithm uses the height difference information to make decisions, so the robot prefers higher

terrain for full coverage. To test the algorithm’s preference for higher terrain, we run 50 experiments on terrains
with different maximum elevation values. The experimental platforms and parameters are the same as in the
section 5.2. Table 3 compares the average number of steps needed to cover all high points in the region for
50 sets of experiments with other algorithms. Figure 9 displays the number of steps needed to cover all high
points in Terrain 1 for each experiment group.

Table 3. Mean number of steps when covered all maxima in different terrains
Our method BNN

terrain 1 (2max) 14.0800 21.5000
terrain 2 (3max) 22.7215 30.7468
terrain 3 (4max) 27.6761 35.4648

According to Figure 9, our algorithm covers the maximum of a region with fewer steps than the
traditional BNN algorithm in 38 out of 50 sets of experiments, while only 12 sets have the same steps for both
algorithms. Table 3 shows that our algorithm covers all maxima in a region with 14.0800 steps, a 34.51%
speedup over the BNN algorithm. In other terrains, our algorithm also covers the region fastest.

Figure 9. Number of steps when all maxima are covered for 50 sets of experiments

6. CONCLUSION
In this paper, we propose an algorithm for multiple robots to collaboratively cover complex unknown

terrain based on an improved bio-inspired neural network. The algorithm is improved to address the issues of
traditional BNNs falling into local optimums late in covering and the high computational complexity of 3D
neural networks in complex environments. The algorithm first builds a 2.5D grid map of the complex terrain
environment, preserving height information. Next, an elevation value priority mechanism is proposed by com-
bining a dual BNN model with the 2.5D grid map. This mechanism lets the robot use height difference to make
decisions and prefer higher terrain. The first layer of the network plans full-coverage paths in normal mode,
and the second layer plans extrication paths when the robot enters a local optimum. In addition, for BNN
edges with weak activity values, we added a virtual edge mechanism. The robot can also avoid obstacles and
other robots in real time with its obstacle avoidance mechanism. Simulations on different terrains confirm the
algorithm’s efficacy, achieving 100% coverage, higher efficiency, and faster regional high point detection com-
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pared to others. For future work, we aim to transition from simulation to real-world applications by equipping
robots with multiple sensors. Focusing on multi-sensor fusion, we will explore how to enhance environmental
perception and improve the algorithm’s adaptability and robustness in dynamic, real-world scenarios.
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