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 The rapid advancements in artificial intelligence (AI) and robotics have 

paved the way for innovative autonomous systems capable of performing 

complex tasks. This project integrates robotics with Large Language Models 

(LLMs) to develop an intelligent, versatile and user-friendly robotic system. 

The robot is designed to interpret structured commands, make real-time 

decisions, and navigate autonomously in dynamic environments, addressing 

key challenges faced by traditional autonomous systems. Central to the 

system is a Raspberry Pi 4, which serves as the main processing unit, 

integrating components such as a webcam for visual data capture, an L298N 

motor driver for motor control, and a Bluetooth speaker for real-time 

feedback. The LLM API enables the robot to process natural language 

commands, providing context-aware task execution and adaptability to 

changing scenarios. Testing has demonstrated the system’s ability to perform 

autonomous navigation, detect obstacles, and execute tasks effectively. This 

research offers a foundation for various industries, including logistics, 

healthcare, education, and hazardous environment operations. By 

incorporating LLMs the robot overcomes limitations of traditional rule-

based systems, enhancing dynamic decision-making and user interaction. 

With its modular design and scalability, it bridges the gap between human-

like intelligence and mechanical precision, setting the stage for future 

advancements in AI-driven robotics. 
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1. INTRODUCTION  

The field of robotics has witnessed significant advancements over the years, transitioning from 

simple mechanical machines to highly sophisticated systems powered by artificial intelligence (AI). 

Autonomous robotics, in particular, has emerged as a crucial area of innovation, addressing challenges in 

automation, precision, and efficiency across various industries [1], [2]. These robots are designed to perform 

tasks independently, reducing human intervention and enhancing productivity. The integration of AI, 

specifically large language models (LLMs), has further expanded the scope of robotics by enabling natural 

language processing, adaptive decision-making, and improved human-robot interaction [3], [4]. 

Traditional robotics often relies on pre-defined algorithms and sensor-based systems, which limit 

their adaptability and effectiveness in dynamic environments. These systems are typically rigid, requiring 

extensive programming for each new task or environment. As a result, they struggle to handle real-world 

https://creativecommons.org/licenses/by-sa/4.0/
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scenarios that demand flexibility and quick decision- making. Moreover, the lack of real-time adaptability in 

these systems creates barriers for wider adoption in industries that require diverse and variable operations. In 

this research we have addresses these limitations by integrating an LLM into the robot’s control system  

[5]–[7]. The primary challenge is to design a robot capable of interpreting and processing natural language 

commands accurately [8], [9], making intelligent decisions in real-time based on environmental inputs [10], 

and executing tasks autonomously with minimal human intervention [11]. 

By bridging the gap between traditional robotics and artificial intelligence, this system aims to 

unlock the potential of autonomous machines in solving complex real-world problems. The development of 

such systems could lead to smarter, more versatile robots with widespread applications [12], [13]. 

Autonomous robotics stands at the crossroads of multidisciplinary fields, including engineering, computer 

science, and cognitive systems. The overarching goal is to create machines capable of responding to complex 

environments, adapting to new tasks, and collaborating with humans seamlessly. With the rise of LLMs, the 

intersection between natural language understanding and mechanical actuation has brought forth new 

dimensions of interaction [14], [15]. This study explores the integration of LLM-based control with computer 

vision and motor actuation to achieve robust real-time adaptability and human-like interaction. 

The proposed project leverages these advancements to create a system that combines hardware 

precision with AI-driven intelligence. This project aims to overcome the limitations of traditional sensor-

based robots by incorporating real-time decision-making capabilities powered by LLMs. The key finding of 

this study is that integrating large language models (LLMs) with autonomous robotics significantly enhances 

the robot's ability to interpret natural language commands and make real-time decisions. This approach 

improves adaptability, user interaction, and autonomous navigation compared to traditional rule-based 

systems. 

The literature survey as shown in Table 1 explores advancements in robotics, including LLM-based 

decision-making, machine vision for navigation, and modular system architectures. The discussion highlights 

gaps such as the lack of hardware- software integration, limited scalability, and inadequate adaptability in 

dynamic environments. Research insights include studies on GPT models for natural language processing, 

YOLO-based object detection, and frameworks for autonomous decision- making, forming the foundation for 

the proposed system. 

 

 

Table 1. Comparative analysis 
Title Command interpretation 

accuracy (%) 
Real-time decision 

latency (ms) 
Navigation 

efficiency (%) 
Error rate in  

obstacle detection (%) 

IntelliDrive Autonomous Robot 89 170 88 5 

ChatGPT-Controlled Robot [16] 89 160 80 8 

Reinforcement Learning-based Robot [17] 90 160 85 7 
Deep Learning Autonomous Driving Robot [18] 88 180 82 6 

 

 

This paper introduce an innovative approach that merges large language models (LLMs) with 

behavior trees (BTs). This method dynamically adapts robotic tasks to environmental changes by leveraging 

ChatGPT for real- time reasoning and a semantic mapping framework for task execution. The use of LLMs 

enhances the ability of BTs to handle unforeseen events, improving adaptability and robustness in task 

management [19], [20]. Bharathi et al. [21] explored the transformative role of machine vision in robotic 

systems. The study highlights key technologies such as convolutional neural networks (CNNs) for real- time 

object detection and simultaneous localization and mapping (SLAM) for autonomous navigation. 

Applications include defect detection, quality assurance, and navigation in manufacturing and healthcare, 

emphasizing the precision and adaptability offered by machine vision.  

This research investigate the integration of LLMs and generative AI (Gen AI) in humanoid robots. 

This hybrid model significantly enhances natural language processing and emotional intelligence, enabling 

intuitive interactions with humans. The research focuses on ethical AI deployment to assist vulnerable 

populations such as the elderly and disabled [22]. This framework automates complex robotic development 

tasks, including code generation and parameter tuning. The study demonstrates the framework's efficacy in 

simplifying robotics development for non-experts, validated through experiments on quadruped robots [23]. 

 

 

2. PROPOSED METHOD 

Existing autonomous robotic systems are often limited by their reliance on predefined algorithms, 

sensor data, and rule-based mechanisms. These systems lack flexibility and adaptability in dynamic 

environments, as they depend heavily on pre-programmed instructions and specific sensor configurations.  
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The proposed system addresses the limitations of existing systems by integrating hardware precision 

with advanced AI capabilities. The system leverages large language models (LLMs) to enable natural 

language command interpretation and adaptive decision-making. Below are the key features of the proposed 

system [24]. 

a. The robot integrates LLM to understand and execute complex natural language commands. 

b. It processes environmental inputs to generate motor control commands dynamically, enabling real-time 

decision-making. 

c. Cost-effective hardware, including a Raspberry Pi, BO motors, and a basic webcam, ensures affordability 

without compromising functionality. 

d. Scalable, modular architecture allows for the integration of additional features like advanced sensors or 

navigation algorithms. 

e. A user-friendly interface enhances usability, making it accessible for non-technical users 

By combining advanced AI with efficient hardware, the proposed system aims to deliver a flexible, 

reliable, and scalable solution for autonomous robotics. Figure 1 Illustrates the architecture of an autonomous 

robot powered by natural language processing and real-time adaptability. The system is structured into three 

primary components: input, processing, and output. The Input Components consist of a webcam for capturing 

real-time visual data and a user interface for receiving natural language commands. The webcam encoder 

converts visual data into a Base64 format, which is transmitted to the processing unit. The Processing Unit 

comprises a Raspberry Pi that acts as the central controller [25], [26]. It processes visual inputs and user 

commands with the aid of an LLM API, which interprets and generates appropriate responses. These 

responses are then translated into actionable control signals. The Output Components include an L298N 

motor driver, which converts the control signals into precise instructions for BO motors, enabling movement.  

 

 

 
 

Figure 1. System architecture 

 

 

3. METHOD 

The development of the IntelliDrive LLM-powered autonomous rover involves integrating natural 

language processing, real-time decision-making, and modular robotics to create an intelligent, scalable 

system. The methodology starts with selecting cost-effective hardware such as a Raspberry Pi 4, a webcam, 

BO motors, and an L298N motor driver. The system architecture is designed around three primary 

subsystems. 

 

3.1.  Input for capturing visual and command data  

The input subsystem is responsible for capturing environmental and user data necessary for the 

robot's operation. It includes components like a webcam for visual input and a user command interface for 
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natural language instructions. The visual input from the webcam is represented as a 2D image matrix 𝐼(𝑥, 𝑦), 

where each pixel 𝐼(𝑥, 𝑦) contains RGB or grayscale intensity values. 

 

3.2.  Processing for decision-making using an LLM API 

The processing subsystem is the computational core of the architecture, performing decision-making 

based on the input data. It includes the Raspberry Pi 4 and LLM API to interpret natural language commands, 

This API excel in processing natural language and converting it into structured actions, such as “Move 

forward 5 meters” into motor commands and make real-time decisions for navigation and task execution. 

The robot's linear velocity (v) and angular velocity (ω) are calculated based on the rotational speeds 

of its wheels. Linear velocity represents the forward or backward movement speed, while angular velocity 

measures the rate of rotation around the robot's center. By controlling the individual speeds of the left and 

right wheels, the robot can achieve precise linear and angular motion, allowing it to move straight, turn in 

place, or follow curved trajectories as in (1) and (2). 

 

𝜐 =  
𝑅

2
(𝜔𝐿 + 𝜔𝑅 )                                                                                (1) 

𝜐 =  
𝑅

2
(𝜔𝐿 − 𝜔𝑅 )                                                                                           (2) 

 

Where R is the wheel radius, L is the distance between the wheels and 𝜔𝐿 , 𝜔𝑅 are the angular velocities of the 

left and right wheels. 

The robot relies on a webcam and algorithms like YOLO for object detection, which identifies 

obstacles, avoid them and navigates paths in real-time. Once YOLOv5 detects obstacles, vector-based 

algorithms compute a safe trajectory by balancing attraction toward the goal and repulsion from obstacles 

[27], [28] as shown in (3). 

 

𝑉𝑠𝑎𝑓𝑒 =  𝑉𝑔𝑜𝑎𝑙 +  𝑉𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛                                                                                           (3) 

 

𝑉𝑠𝑎𝑓𝑒  A vector pointing toward the target/destination, 𝑉𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 A vector pointing away from detected 

obstacles to avoid collisions. 

Precise movements are achieved using PID controllers as in (4), which dynamically adjust motor 

speed and direction to maintain stability and follow trajectories. The PID controller adjusts motor signals for 

accurate movement. 

 

𝑆 =  𝐾𝑝. 𝑒 + 𝐾𝑖 ∫ 𝑒𝑑𝑡 + 𝐾𝑑
𝑑𝑒

𝑑𝑡
                                                                              (4) 

 

where e is the error between the desired and actual position or speed. 

A* (A-Star) algorithm is employed to calculate the shortest path as in (5) from the start to the goal 

while avoiding obstacles. This algorithm ensure that the robot navigates complex environments safely and 

effectively.  

 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)                                                           (5)  

 

where 𝑔(𝑛) is the cost to reach the node, and ℎ(𝑛) is the heuristic estimate of the cost to the goal. 

 

3.3.  Output for executing motor commands 

The output subsystem executes the actions decided by the processing unit. It includes the L298N 

motor driver and BO motors for movement, as well as any feedback mechanisms like a Bluetooth speaker for 

user interaction. The motor's rotational speed and direction are directly controlled by pulse width modulation 

(PWM) signals using (6). The preprocessing actions are executed with precise motor control and provides 

feedback for continuous refinement. 

 

PWM 𝐷𝑢𝑡𝑦 Cycle =  
𝐷𝑒𝑠𝑖𝑔𝑟𝑒𝑑 𝑆𝑝𝑒𝑒𝑑

𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑
 𝑥 100                     (6) 

 

3.4.  Implementation 

The implementation phase involves translating the system design into a working model through 

coding, hardware integration, and software configuration. The proposed system is implemented using a 

modular approach, ensuring that individual components are developed and tested independently before 

integration. 
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3.4.1. Hardware Implementation 

The hardware implementation of the IntelliDrive Autonomous Rover involved carefully assembling 

and integrating its physical components to ensure seamless interaction as shown in Figure 2(a). A sturdy 

four-wheeled chassis was used to house the components, with BO motors securely mounted to provide 

mobility. The L298N motor driver was connected to the Raspberry Pi GPIO pins and BO motors, with PWM 

signals configured for precise speed and direction control. As shown in Figure 2(b) a webcam was mounted 

at an optimal angle to capture the environment, enabling effective image processing for navigation. A 

computer screen showing a live camera feed with code for controlling a robot, displaying a command 

interface. The system was powered by a rechargeable lithium-ion battery pack, which supplied energy to the 

Raspberry Pi, motor driver, and motors. 

 

 

  
(a) (b) 

 

Figure 2. Hardware implementation (a) robot internal circuit and (b) camera capturing environment 

 

 

3.4.2. Software implementation 

The software implementation of the IntelliDrive autonomous rover centered on programming the 

system to process inputs, interact with the LLM API, and control the robot's movements. The Raspberry Pi 

was configured by installing Raspberry Pi OS along with essential libraries such as OpenCV for image 

processing, RPi.GPIO for hardware control, and the LLM API client for natural language processing. The 

LLM API was integrated to interpret user commands, with secure authentication tokens and endpoints 

established for seamless communication. OpenCV was utilized to process video feeds from the webcam, 

enabling real-time navigation and obstacle detection as shown in Figure 3(a) with YOLOv5 by capturing and 

analyzing frames to generate navigation inputs. Python scripts were developed to translate structured 

responses from the LLM API into motor driver commands, implementing functions for forward, backward, 

left, and right movements. This integrated software system ensured the robot's ability to understand 

commands, interpret environmental data, and execute precise movements effectively. As shown in  

Figure 3(b) there is another angle of the robot chassis, focusing on the wheels and motor connections 

avoiding the obstacle. 

 

 

  
(a) (b) 

 

Figure 3. Software implementation (a) detecting an object and (b) avoiding the obstacle 
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3.4.3. Offline fallback mechanisms 

The robot faces processing delays during LLM-based command execution, which impacted real-

time responsiveness. It relies on stable internet connectivity for cloud-based LLM APIs, making it vulnerable 

to network disruptions. System inaccurately interpreted commands, leading to erroneous actions and 

compromising operational safety. Network latency also disrupted real-time navigation. To address network 

latency and connectivity challenges, we have implemented several offline fallback mechanisms to ensure 

consistent performance. Command caching allows frequently used or critical commands (such as “move 

forward,” “turn left,” and “stop”) to be stored locally, enabling instant responses even during connectivity 

issues. A hybrid processing approach leverages lightweight pre-trained models for essential commands while 

reserving cloud processing for more complex tasks, reducing latency without sacrificing advanced 

capabilities. We have also incorporated preemptive command execution by predicting the next likely 

command during network instability and preparing it locally to minimize response time.  

 

 

4. RESULTS AND DISCUSSION 

Testing is a crucial phase in the development process that ensures the system performs as expected 

and meets the defined requirements. Our “Autonomous Robot with LLM-Based Control” underwent rigorous 

testing to validate its functionality, reliability, and performance. Here we have discussed the various types of 

testing conducted, including unit testing, integration testing, functional testing and power consumption 

analysis. 

 

4.1.  Unit test 

Unit testing as mentioned in Table 2 was conducted to verify the functionality of individual 

components in isolation and ensure their reliability. Motor control testing confirmed the BO motors 

responded accurately to PWM signals from the Raspberry Pi, with speed and direction control functioning as 

expected. The webcam was tested to ensure it captured real-time video feeds without latency, with frame 

resolution and clarity suitable for image processing tasks. The LLM API was evaluated by sending sample 

natural language commands and verifying the responses, including testing edge cases with ambiguous or 

incomplete instructions. All components passed their respective unit tests with minimal errors, and issues 

such as frame delays were identified and promptly resolved, ensuring robust system performance. 
 

 

Table 2. Unit testing 
Test Case Attribute TC_U01_01 TC_U01_02 

Description Motor Direction Testing Motor Direction Testing 

Input PWM signals to motors PWM signals to motors 
Expected Output Motors rotate in the correct direction. Motors rotate in the correct direction. 

Actual Result (Initial) Motors rotated in the wrong direction. Motors rotated correctly. 

Test Case Fail Pass 
Troubleshooting Rewired motor connections to match polarity. None required. 

Actual Result (Final) Pass Pass 

 

 

4.2.   Integration test 

Integration testing as shown in Table 3 was performed to ensure smooth interaction between the 

hardware and software components of the system. The synchronization of motor drivers with Raspberry Pi 

GPIO pins was verified, ensuring motor control commands were executed correctly based on LLM-generated 

responses. The interaction between the LLM API and the Raspberry Pi was tested for accurate command 

interpretation and task execution. OpenCV was integrated with the webcam to process video feeds and 

identify obstacles, with real-time data transfer between the camera and processing scripts successfully 

validated. All integrated systems functioned seamlessly after minor adjustments, and latency issues during 

command processing were optimized for improved performance. 
 

 

Table 3. Integration testing 
Test Case Attribute TC_U01_01 TC_U01_02 

Description Command processing integration Command processing Integration 

Input Motor control commands Motor control commands 
Expected Output Motors respond to commands generated by LLM. Motors respond to commands generated by LLM. 

Actual Result (Initial) Motors did not respond as expected. Motors responded correctly. 

Test Case Fail Pass 
Troubleshooting Debugged GPIO control and LLM parsing. None required. 

Actual Result (Final) Pass Pass 
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4.3.  Functional test 

Functional testing as shown in Table 4 was conducted to validate that the system met its 

requirements and performed expected tasks in real-world scenarios. Navigation commands such as “move 

forward,” “turn left,” and “stop” were tested to confirm the robot's ability to follow user instructions 

accurately. Obstacle detection was evaluated by placing obstacles in the robot’s path and verifying its 

capability to avoid them, including adapting to dynamic changes in the environment. The system’s ability to 

interpret and execute complex commands, such as “turn right and move forward 3 steps,” was assessed, 

along with fallback mechanisms for ambiguous or invalid instructions. Results showed the system effectively 

navigated, interpreted commands, and avoided obstacles, while edge cases with incomplete commands were 

gracefully handled by providing appropriate error messages. 

 

 

Table 4. Functional testing 
Test Case Attribute TC_U01_01 TC_U01_02 

Description Navigation Commands Execution Navigation Commands Execution 

Input Commands like “move left” Commands like “move left” 

Expected Output Robot follows instructions accurately. Robot follows instructions accurately. 

Actual Result (Initial) Robot misinterpreted the commands. Robot followed commands perfectly. 
Test Case Fail Pass 

Troubleshooting Improved command parsing logic in LLM. None required. 
Actual Result (Final) Pass Pass 

 

 

4.4.  Power consumption analysis 

We conducted a power consumption analysis by evaluating the energy usage of each component, 

including the Raspberry Pi, motors, camera, and LLM API requests shown in Table 5. We calculated the power 

draw during continuous and intermittent operation to estimate battery life accurately. This analysis helped us to 

identify energy-intensive components and optimize the system for prolonged autonomous operation. 

 

 

Table 5. Power consumption analysis  
Component Power Consumption (W) Usage Type 

Raspberry Pi 4 6 Continuous 
BO Motors (x4) 1.5 each During movement 

Webcam 2 Continuous 

L298N Motor Driver 1.5 During movement 
LLM API Requests 1 Intermittent 

 

 

We have incorporated power-saving mechanisms to enhance the energy efficiency of the 

autonomous robot. Low-power modes are configured to reduce the CPU clock speed during low 

computational demand and to deactivate the camera when not in use. Duty cycling is employed to alternate 

between active and sleep states for components that are not continuously required, such as activating the 

webcam only when an obstacle is suspected. 

 

 

5. CONCLUSION 

The proposed system showcases the seamless integration of advanced AI and robotics to address 

real-world challenges. Leveraging large language models (LLMs) for command interpretation and decision-

making, the system overcomes the limitations of traditional autonomous robots by enabling adaptability and 

dynamic responses. Its modular architecture, comprising components like the Raspberry Pi, webcam, and 

motor drivers, supports reliable navigation, obstacle detection, and user-friendly interaction. Rigorous testing 

validated the system’s robustness, making it suitable for applications in logistics, healthcare, education, and 

hazardous operations. Looking ahead, the robot’s scalability allows for further enhancements. 
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